mirror of
https://github.com/esphome/esphome.git
synced 2026-02-13 03:02:02 +00:00
Compare commits
64 Commits
wifi-memcp
...
posix_tz
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9c185b42c3 | ||
|
|
1fe95d8f82 | ||
|
|
849df4b2a8 | ||
|
|
5f7582ffdb | ||
|
|
dcd0f53027 | ||
|
|
b5e073bf7f | ||
|
|
cde2199b64 | ||
|
|
a1eef9870c | ||
|
|
19e9ab253e | ||
|
|
e3a99f12e4 | ||
|
|
d31a860bf2 | ||
|
|
cfea3472bd | ||
|
|
31859a3eb5 | ||
|
|
9f3e5f990f | ||
|
|
f317f58545 | ||
|
|
01c23eace3 | ||
|
|
9b8556c2b2 | ||
|
|
9628c213b5 | ||
|
|
07a71c412d | ||
|
|
0d736e4143 | ||
|
|
a93e3b6fa0 | ||
|
|
22ab20ba4c | ||
|
|
6ee51b0159 | ||
|
|
e2b3186731 | ||
|
|
31aa58c45d | ||
|
|
a757cb3c91 | ||
|
|
91ad54d864 | ||
|
|
3703755e03 | ||
|
|
c1d380dee4 | ||
|
|
b2120609b9 | ||
|
|
9e6e8a7ecb | ||
|
|
de06b36544 | ||
|
|
695df9b979 | ||
|
|
aa91cdd984 | ||
|
|
284a9cdab6 | ||
|
|
77ebfc8687 | ||
|
|
899f2bbac5 | ||
|
|
bb35e7b4b5 | ||
|
|
64e4edd70f | ||
|
|
300b7169ad | ||
|
|
1353dbc31e | ||
|
|
300eea034b | ||
|
|
90a06b5249 | ||
|
|
1b7b307d08 | ||
|
|
a946aefbed | ||
|
|
8708f96de4 | ||
|
|
bd056b3b9e | ||
|
|
5d49c81e2d | ||
|
|
bec7d6d223 | ||
|
|
973105f2e5 | ||
|
|
53fb876738 | ||
|
|
d2bc168f39 | ||
|
|
34ec72ad49 | ||
|
|
85c814b712 | ||
|
|
fc951baebc | ||
|
|
a1cdfe71de | ||
|
|
c1971955a3 | ||
|
|
e1df75fc9b | ||
|
|
ea83330ab9 | ||
|
|
4cdf0224ba | ||
|
|
47f029b713 | ||
|
|
d45a20af83 | ||
|
|
d37c37ef62 | ||
|
|
aad3764806 |
@@ -256,7 +256,7 @@ SYMBOL_PATTERNS = {
|
||||
"ipv6_stack": ["nd6_", "ip6_", "mld6_", "icmp6_", "icmp6_input"],
|
||||
# Order matters! More specific categories must come before general ones.
|
||||
# mdns must come before bluetooth to avoid "_mdns_disable_pcb" matching "ble_" pattern
|
||||
"mdns_lib": ["mdns", "packet$"],
|
||||
"mdns_lib": ["mdns"],
|
||||
# memory_mgmt must come before wifi_stack to catch mmu_hal_* symbols
|
||||
"memory_mgmt": [
|
||||
"mem_",
|
||||
@@ -794,6 +794,7 @@ SYMBOL_PATTERNS = {
|
||||
"s_dp",
|
||||
"s_ni",
|
||||
"s_reg_dump",
|
||||
"packet$",
|
||||
"d_mult_table",
|
||||
"K",
|
||||
"fcstab",
|
||||
|
||||
@@ -117,7 +117,37 @@ void APIServer::setup() {
|
||||
void APIServer::loop() {
|
||||
// Accept new clients only if the socket exists and has incoming connections
|
||||
if (this->socket_ && this->socket_->ready()) {
|
||||
this->accept_new_connections_();
|
||||
while (true) {
|
||||
struct sockaddr_storage source_addr;
|
||||
socklen_t addr_len = sizeof(source_addr);
|
||||
|
||||
auto sock = this->socket_->accept_loop_monitored((struct sockaddr *) &source_addr, &addr_len);
|
||||
if (!sock)
|
||||
break;
|
||||
|
||||
char peername[socket::SOCKADDR_STR_LEN];
|
||||
sock->getpeername_to(peername);
|
||||
|
||||
// Check if we're at the connection limit
|
||||
if (this->clients_.size() >= this->max_connections_) {
|
||||
ESP_LOGW(TAG, "Max connections (%d), rejecting %s", this->max_connections_, peername);
|
||||
// Immediately close - socket destructor will handle cleanup
|
||||
sock.reset();
|
||||
continue;
|
||||
}
|
||||
|
||||
ESP_LOGD(TAG, "Accept %s", peername);
|
||||
|
||||
auto *conn = new APIConnection(std::move(sock), this);
|
||||
this->clients_.emplace_back(conn);
|
||||
conn->start();
|
||||
|
||||
// First client connected - clear warning and update timestamp
|
||||
if (this->clients_.size() == 1 && this->reboot_timeout_ != 0) {
|
||||
this->status_clear_warning();
|
||||
this->last_connected_ = App.get_loop_component_start_time();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (this->clients_.empty()) {
|
||||
@@ -148,84 +178,46 @@ void APIServer::loop() {
|
||||
while (client_index < this->clients_.size()) {
|
||||
auto &client = this->clients_[client_index];
|
||||
|
||||
if (client->flags_.remove) {
|
||||
// Rare case: handle disconnection (don't increment - swapped element needs processing)
|
||||
this->remove_client_(client_index);
|
||||
} else {
|
||||
if (!client->flags_.remove) {
|
||||
// Common case: process active client
|
||||
client->loop();
|
||||
client_index++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void APIServer::remove_client_(size_t client_index) {
|
||||
auto &client = this->clients_[client_index];
|
||||
|
||||
#ifdef USE_API_USER_DEFINED_ACTION_RESPONSES
|
||||
this->unregister_active_action_calls_for_connection(client.get());
|
||||
#endif
|
||||
ESP_LOGV(TAG, "Remove connection %s", client->get_name());
|
||||
|
||||
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
|
||||
// Save client info before closing socket and removal for the trigger
|
||||
char peername_buf[socket::SOCKADDR_STR_LEN];
|
||||
std::string client_name(client->get_name());
|
||||
std::string client_peername(client->get_peername_to(peername_buf));
|
||||
#endif
|
||||
|
||||
// Close socket now (was deferred from on_fatal_error to allow getpeername)
|
||||
client->helper_->close();
|
||||
|
||||
// Swap with the last element and pop (avoids expensive vector shifts)
|
||||
if (client_index < this->clients_.size() - 1) {
|
||||
std::swap(this->clients_[client_index], this->clients_.back());
|
||||
}
|
||||
this->clients_.pop_back();
|
||||
|
||||
// Last client disconnected - set warning and start tracking for reboot timeout
|
||||
if (this->clients_.empty() && this->reboot_timeout_ != 0) {
|
||||
this->status_set_warning();
|
||||
this->last_connected_ = App.get_loop_component_start_time();
|
||||
}
|
||||
|
||||
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
|
||||
// Fire trigger after client is removed so api.connected reflects the true state
|
||||
this->client_disconnected_trigger_.trigger(client_name, client_peername);
|
||||
#endif
|
||||
}
|
||||
|
||||
void APIServer::accept_new_connections_() {
|
||||
while (true) {
|
||||
struct sockaddr_storage source_addr;
|
||||
socklen_t addr_len = sizeof(source_addr);
|
||||
|
||||
auto sock = this->socket_->accept_loop_monitored((struct sockaddr *) &source_addr, &addr_len);
|
||||
if (!sock)
|
||||
break;
|
||||
|
||||
char peername[socket::SOCKADDR_STR_LEN];
|
||||
sock->getpeername_to(peername);
|
||||
|
||||
// Check if we're at the connection limit
|
||||
if (this->clients_.size() >= this->max_connections_) {
|
||||
ESP_LOGW(TAG, "Max connections (%d), rejecting %s", this->max_connections_, peername);
|
||||
// Immediately close - socket destructor will handle cleanup
|
||||
sock.reset();
|
||||
continue;
|
||||
}
|
||||
|
||||
ESP_LOGD(TAG, "Accept %s", peername);
|
||||
// Rare case: handle disconnection
|
||||
#ifdef USE_API_USER_DEFINED_ACTION_RESPONSES
|
||||
this->unregister_active_action_calls_for_connection(client.get());
|
||||
#endif
|
||||
ESP_LOGV(TAG, "Remove connection %s", client->get_name());
|
||||
|
||||
auto *conn = new APIConnection(std::move(sock), this);
|
||||
this->clients_.emplace_back(conn);
|
||||
conn->start();
|
||||
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
|
||||
// Save client info before closing socket and removal for the trigger
|
||||
char peername_buf[socket::SOCKADDR_STR_LEN];
|
||||
std::string client_name(client->get_name());
|
||||
std::string client_peername(client->get_peername_to(peername_buf));
|
||||
#endif
|
||||
|
||||
// First client connected - clear warning and update timestamp
|
||||
if (this->clients_.size() == 1 && this->reboot_timeout_ != 0) {
|
||||
this->status_clear_warning();
|
||||
// Close socket now (was deferred from on_fatal_error to allow getpeername)
|
||||
client->helper_->close();
|
||||
|
||||
// Swap with the last element and pop (avoids expensive vector shifts)
|
||||
if (client_index < this->clients_.size() - 1) {
|
||||
std::swap(this->clients_[client_index], this->clients_.back());
|
||||
}
|
||||
this->clients_.pop_back();
|
||||
|
||||
// Last client disconnected - set warning and start tracking for reboot timeout
|
||||
if (this->clients_.empty() && this->reboot_timeout_ != 0) {
|
||||
this->status_set_warning();
|
||||
this->last_connected_ = App.get_loop_component_start_time();
|
||||
}
|
||||
|
||||
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
|
||||
// Fire trigger after client is removed so api.connected reflects the true state
|
||||
this->client_disconnected_trigger_.trigger(client_name, client_peername);
|
||||
#endif
|
||||
// Don't increment client_index since we need to process the swapped element
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -234,11 +234,6 @@ class APIServer : public Component,
|
||||
#endif
|
||||
|
||||
protected:
|
||||
// Accept incoming socket connections. Only called when socket has pending connections.
|
||||
void __attribute__((noinline)) accept_new_connections_();
|
||||
// Remove a disconnected client by index. Swaps with last element and pops.
|
||||
void __attribute__((noinline)) remove_client_(size_t client_index);
|
||||
|
||||
#ifdef USE_API_NOISE
|
||||
bool update_noise_psk_(const SavedNoisePsk &new_psk, const LogString *save_log_msg, const LogString *fail_log_msg,
|
||||
const psk_t &active_psk, bool make_active);
|
||||
|
||||
@@ -47,8 +47,8 @@ void CaptivePortal::handle_config(AsyncWebServerRequest *request) {
|
||||
request->send(stream);
|
||||
}
|
||||
void CaptivePortal::handle_wifisave(AsyncWebServerRequest *request) {
|
||||
const auto &ssid = request->arg("ssid");
|
||||
const auto &psk = request->arg("psk");
|
||||
std::string ssid = request->arg("ssid").c_str(); // NOLINT(readability-redundant-string-cstr)
|
||||
std::string psk = request->arg("psk").c_str(); // NOLINT(readability-redundant-string-cstr)
|
||||
ESP_LOGI(TAG,
|
||||
"Requested WiFi Settings Change:\n"
|
||||
" SSID='%s'\n"
|
||||
@@ -56,10 +56,10 @@ void CaptivePortal::handle_wifisave(AsyncWebServerRequest *request) {
|
||||
ssid.c_str(), psk.c_str());
|
||||
#ifdef USE_ESP8266
|
||||
// ESP8266 is single-threaded, call directly
|
||||
wifi::global_wifi_component->save_wifi_sta(ssid.c_str(), psk.c_str());
|
||||
wifi::global_wifi_component->save_wifi_sta(ssid, psk);
|
||||
#else
|
||||
// Defer save to main loop thread to avoid NVS operations from HTTP thread
|
||||
this->defer([ssid, psk]() { wifi::global_wifi_component->save_wifi_sta(ssid.c_str(), psk.c_str()); });
|
||||
this->defer([ssid, psk]() { wifi::global_wifi_component->save_wifi_sta(ssid, psk); });
|
||||
#endif
|
||||
request->redirect(ESPHOME_F("/?save"));
|
||||
}
|
||||
|
||||
@@ -110,8 +110,6 @@ class EthernetComponent : public Component {
|
||||
const char *get_use_address() const;
|
||||
void set_use_address(const char *use_address);
|
||||
void get_eth_mac_address_raw(uint8_t *mac);
|
||||
// Remove before 2026.9.0
|
||||
ESPDEPRECATED("Use get_eth_mac_address_pretty_into_buffer() instead. Removed in 2026.9.0", "2026.3.0")
|
||||
std::string get_eth_mac_address_pretty();
|
||||
const char *get_eth_mac_address_pretty_into_buffer(std::span<char, MAC_ADDRESS_PRETTY_BUFFER_SIZE> buf);
|
||||
eth_duplex_t get_duplex_mode();
|
||||
|
||||
@@ -1,17 +1,4 @@
|
||||
from esphome.components.mipi import (
|
||||
ETMOD,
|
||||
FRMCTR2,
|
||||
GMCTRN1,
|
||||
GMCTRP1,
|
||||
IFCTR,
|
||||
MODE_RGB,
|
||||
PWCTR1,
|
||||
PWCTR3,
|
||||
PWCTR4,
|
||||
PWCTR5,
|
||||
PWSET,
|
||||
DriverChip,
|
||||
)
|
||||
from esphome.components.mipi import DriverChip
|
||||
import esphome.config_validation as cv
|
||||
|
||||
from .amoled import CO5300
|
||||
@@ -142,16 +129,6 @@ DriverChip(
|
||||
),
|
||||
),
|
||||
)
|
||||
ST7789P = DriverChip(
|
||||
"ST7789P",
|
||||
# Max supported dimensions
|
||||
width=240,
|
||||
height=320,
|
||||
# SPI: RGB layout
|
||||
color_order=MODE_RGB,
|
||||
invert_colors=True,
|
||||
draw_rounding=1,
|
||||
)
|
||||
|
||||
ILI9488_A.extend(
|
||||
"PICO-RESTOUCH-LCD-3.5",
|
||||
@@ -185,61 +162,3 @@ AXS15231.extend(
|
||||
cs_pin=9,
|
||||
reset_pin=21,
|
||||
)
|
||||
|
||||
# Waveshare 1.83-v2
|
||||
#
|
||||
# Do not use on 1.83-v1: Vendor warning on different chip!
|
||||
ST7789P.extend(
|
||||
"WAVESHARE-1.83-V2",
|
||||
# Panel size smaller than ST7789 max allowed
|
||||
width=240,
|
||||
height=284,
|
||||
# Vendor specific init derived from vendor sample code
|
||||
# "LCD_1.83_Code_Rev2/ESP32/LCD_1in83/LCD_Driver.cpp"
|
||||
# Compatible MIT license, see esphome/LICENSE file.
|
||||
initsequence=(
|
||||
(FRMCTR2, 0x0C, 0x0C, 0x00, 0x33, 0x33),
|
||||
(ETMOD, 0x35),
|
||||
(0xBB, 0x19),
|
||||
(PWCTR1, 0x2C),
|
||||
(PWCTR3, 0x01),
|
||||
(PWCTR4, 0x12),
|
||||
(PWCTR5, 0x20),
|
||||
(IFCTR, 0x0F),
|
||||
(PWSET, 0xA4, 0xA1),
|
||||
(
|
||||
GMCTRP1,
|
||||
0xD0,
|
||||
0x04,
|
||||
0x0D,
|
||||
0x11,
|
||||
0x13,
|
||||
0x2B,
|
||||
0x3F,
|
||||
0x54,
|
||||
0x4C,
|
||||
0x18,
|
||||
0x0D,
|
||||
0x0B,
|
||||
0x1F,
|
||||
0x23,
|
||||
),
|
||||
(
|
||||
GMCTRN1,
|
||||
0xD0,
|
||||
0x04,
|
||||
0x0C,
|
||||
0x11,
|
||||
0x13,
|
||||
0x2C,
|
||||
0x3F,
|
||||
0x44,
|
||||
0x51,
|
||||
0x2F,
|
||||
0x1F,
|
||||
0x1F,
|
||||
0x20,
|
||||
0x23,
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
@@ -38,7 +38,8 @@ void PulseMeterSensor::setup() {
|
||||
}
|
||||
|
||||
void PulseMeterSensor::loop() {
|
||||
State state;
|
||||
// Reset the count in get before we pass it back to the ISR as set
|
||||
this->get_->count_ = 0;
|
||||
|
||||
{
|
||||
// Lock the interrupt so the interrupt code doesn't interfere with itself
|
||||
@@ -57,35 +58,31 @@ void PulseMeterSensor::loop() {
|
||||
}
|
||||
this->last_pin_val_ = current;
|
||||
|
||||
// Get the latest state from the ISR and reset the count in the ISR
|
||||
state.last_detected_edge_us_ = this->state_.last_detected_edge_us_;
|
||||
state.last_rising_edge_us_ = this->state_.last_rising_edge_us_;
|
||||
state.count_ = this->state_.count_;
|
||||
this->state_.count_ = 0;
|
||||
// Swap out set and get to get the latest state from the ISR
|
||||
std::swap(this->set_, this->get_);
|
||||
}
|
||||
|
||||
const uint32_t now = micros();
|
||||
|
||||
// If an edge was peeked, repay the debt
|
||||
if (this->peeked_edge_ && state.count_ > 0) {
|
||||
if (this->peeked_edge_ && this->get_->count_ > 0) {
|
||||
this->peeked_edge_ = false;
|
||||
state.count_--;
|
||||
this->get_->count_--; // NOLINT(clang-diagnostic-deprecated-volatile)
|
||||
}
|
||||
|
||||
// If there is an unprocessed edge, and filter_us_ has passed since, count this edge early.
|
||||
// Wait for the debt to be repaid before counting another unprocessed edge early.
|
||||
if (!this->peeked_edge_ && state.last_rising_edge_us_ != state.last_detected_edge_us_ &&
|
||||
now - state.last_rising_edge_us_ >= this->filter_us_) {
|
||||
// If there is an unprocessed edge, and filter_us_ has passed since, count this edge early
|
||||
if (this->get_->last_rising_edge_us_ != this->get_->last_detected_edge_us_ &&
|
||||
now - this->get_->last_rising_edge_us_ >= this->filter_us_) {
|
||||
this->peeked_edge_ = true;
|
||||
state.last_detected_edge_us_ = state.last_rising_edge_us_;
|
||||
state.count_++;
|
||||
this->get_->last_detected_edge_us_ = this->get_->last_rising_edge_us_;
|
||||
this->get_->count_++; // NOLINT(clang-diagnostic-deprecated-volatile)
|
||||
}
|
||||
|
||||
// Check if we detected a pulse this loop
|
||||
if (state.count_ > 0) {
|
||||
if (this->get_->count_ > 0) {
|
||||
// Keep a running total of pulses if a total sensor is configured
|
||||
if (this->total_sensor_ != nullptr) {
|
||||
this->total_pulses_ += state.count_;
|
||||
this->total_pulses_ += this->get_->count_;
|
||||
const uint32_t total = this->total_pulses_;
|
||||
this->total_sensor_->publish_state(total);
|
||||
}
|
||||
@@ -97,15 +94,15 @@ void PulseMeterSensor::loop() {
|
||||
this->meter_state_ = MeterState::RUNNING;
|
||||
} break;
|
||||
case MeterState::RUNNING: {
|
||||
uint32_t delta_us = state.last_detected_edge_us_ - this->last_processed_edge_us_;
|
||||
float pulse_width_us = delta_us / float(state.count_);
|
||||
ESP_LOGV(TAG, "New pulse, delta: %" PRIu32 " µs, count: %" PRIu32 ", width: %.5f µs", delta_us, state.count_,
|
||||
pulse_width_us);
|
||||
uint32_t delta_us = this->get_->last_detected_edge_us_ - this->last_processed_edge_us_;
|
||||
float pulse_width_us = delta_us / float(this->get_->count_);
|
||||
ESP_LOGV(TAG, "New pulse, delta: %" PRIu32 " µs, count: %" PRIu32 ", width: %.5f µs", delta_us,
|
||||
this->get_->count_, pulse_width_us);
|
||||
this->publish_state((60.0f * 1000000.0f) / pulse_width_us);
|
||||
} break;
|
||||
}
|
||||
|
||||
this->last_processed_edge_us_ = state.last_detected_edge_us_;
|
||||
this->last_processed_edge_us_ = this->get_->last_detected_edge_us_;
|
||||
}
|
||||
// No detected edges this loop
|
||||
else {
|
||||
@@ -144,14 +141,14 @@ void IRAM_ATTR PulseMeterSensor::edge_intr(PulseMeterSensor *sensor) {
|
||||
// This is an interrupt handler - we can't call any virtual method from this method
|
||||
// Get the current time before we do anything else so the measurements are consistent
|
||||
const uint32_t now = micros();
|
||||
auto &edge_state = sensor->edge_state_;
|
||||
auto &state = sensor->state_;
|
||||
auto &state = sensor->edge_state_;
|
||||
auto &set = *sensor->set_;
|
||||
|
||||
if ((now - edge_state.last_sent_edge_us_) >= sensor->filter_us_) {
|
||||
edge_state.last_sent_edge_us_ = now;
|
||||
state.last_detected_edge_us_ = now;
|
||||
state.last_rising_edge_us_ = now;
|
||||
state.count_++; // NOLINT(clang-diagnostic-deprecated-volatile)
|
||||
if ((now - state.last_sent_edge_us_) >= sensor->filter_us_) {
|
||||
state.last_sent_edge_us_ = now;
|
||||
set.last_detected_edge_us_ = now;
|
||||
set.last_rising_edge_us_ = now;
|
||||
set.count_++; // NOLINT(clang-diagnostic-deprecated-volatile)
|
||||
}
|
||||
|
||||
// This ISR is bound to rising edges, so the pin is high
|
||||
@@ -163,26 +160,26 @@ void IRAM_ATTR PulseMeterSensor::pulse_intr(PulseMeterSensor *sensor) {
|
||||
// Get the current time before we do anything else so the measurements are consistent
|
||||
const uint32_t now = micros();
|
||||
const bool pin_val = sensor->isr_pin_.digital_read();
|
||||
auto &pulse_state = sensor->pulse_state_;
|
||||
auto &state = sensor->state_;
|
||||
auto &state = sensor->pulse_state_;
|
||||
auto &set = *sensor->set_;
|
||||
|
||||
// Filter length has passed since the last interrupt
|
||||
const bool length = now - pulse_state.last_intr_ >= sensor->filter_us_;
|
||||
const bool length = now - state.last_intr_ >= sensor->filter_us_;
|
||||
|
||||
if (length && pulse_state.latched_ && !sensor->last_pin_val_) { // Long enough low edge
|
||||
pulse_state.latched_ = false;
|
||||
} else if (length && !pulse_state.latched_ && sensor->last_pin_val_) { // Long enough high edge
|
||||
pulse_state.latched_ = true;
|
||||
state.last_detected_edge_us_ = pulse_state.last_intr_;
|
||||
state.count_++; // NOLINT(clang-diagnostic-deprecated-volatile)
|
||||
if (length && state.latched_ && !sensor->last_pin_val_) { // Long enough low edge
|
||||
state.latched_ = false;
|
||||
} else if (length && !state.latched_ && sensor->last_pin_val_) { // Long enough high edge
|
||||
state.latched_ = true;
|
||||
set.last_detected_edge_us_ = state.last_intr_;
|
||||
set.count_++; // NOLINT(clang-diagnostic-deprecated-volatile)
|
||||
}
|
||||
|
||||
// Due to order of operations this includes
|
||||
// length && latched && rising (just reset from a long low edge)
|
||||
// !latched && (rising || high) (noise on the line resetting the potential rising edge)
|
||||
state.last_rising_edge_us_ = !pulse_state.latched_ && pin_val ? now : state.last_detected_edge_us_;
|
||||
set.last_rising_edge_us_ = !state.latched_ && pin_val ? now : set.last_detected_edge_us_;
|
||||
|
||||
pulse_state.last_intr_ = now;
|
||||
state.last_intr_ = now;
|
||||
sensor->last_pin_val_ = pin_val;
|
||||
}
|
||||
|
||||
|
||||
@@ -46,16 +46,17 @@ class PulseMeterSensor : public sensor::Sensor, public Component {
|
||||
uint32_t total_pulses_ = 0;
|
||||
uint32_t last_processed_edge_us_ = 0;
|
||||
|
||||
// This struct and variable are used to pass data between the ISR and loop.
|
||||
// The data from state_ is read and then count_ in state_ is reset in each loop.
|
||||
// This must be done while guarded by an InterruptLock. Use this variable to send data
|
||||
// from the ISR to the loop not the other way around (except for resetting count_).
|
||||
// This struct (and the two pointers) are used to pass data between the ISR and loop.
|
||||
// These two pointers are exchanged each loop.
|
||||
// Use these to send data from the ISR to the loop not the other way around (except for resetting the values).
|
||||
struct State {
|
||||
uint32_t last_detected_edge_us_ = 0;
|
||||
uint32_t last_rising_edge_us_ = 0;
|
||||
uint32_t count_ = 0;
|
||||
};
|
||||
volatile State state_{};
|
||||
State state_[2];
|
||||
volatile State *set_ = state_;
|
||||
volatile State *get_ = state_ + 1;
|
||||
|
||||
// Only use the following variables in the ISR or while guarded by an InterruptLock
|
||||
ISRInternalGPIOPin isr_pin_;
|
||||
|
||||
481
esphome/components/time/posix_tz.cpp
Normal file
481
esphome/components/time/posix_tz.cpp
Normal file
@@ -0,0 +1,481 @@
|
||||
#include "esphome/core/defines.h"
|
||||
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
|
||||
#include "posix_tz.h"
|
||||
#include <cctype>
|
||||
|
||||
namespace esphome::time {
|
||||
|
||||
// Global timezone - set once at startup, rarely changes
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) - intentional mutable state
|
||||
static ParsedTimezone global_tz_{};
|
||||
|
||||
void set_global_tz(const ParsedTimezone &tz) { global_tz_ = tz; }
|
||||
|
||||
const ParsedTimezone &get_global_tz() { return global_tz_; }
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Helper to parse an unsigned integer from string, updating pointer
|
||||
static uint32_t parse_uint(const char *&p) {
|
||||
uint32_t value = 0;
|
||||
while (std::isdigit(static_cast<unsigned char>(*p))) {
|
||||
value = value * 10 + (*p - '0');
|
||||
p++;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
bool is_leap_year(int year) { return (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0); }
|
||||
|
||||
// Get days in year (avoids duplicate is_leap_year calls)
|
||||
static inline int days_in_year(int year) { return is_leap_year(year) ? 366 : 365; }
|
||||
|
||||
// Convert days since epoch to year, updating days to remainder
|
||||
static int __attribute__((noinline)) days_to_year(int64_t &days) {
|
||||
int year = 1970;
|
||||
int diy;
|
||||
while (days >= (diy = days_in_year(year))) {
|
||||
days -= diy;
|
||||
year++;
|
||||
}
|
||||
while (days < 0) {
|
||||
year--;
|
||||
days += days_in_year(year);
|
||||
}
|
||||
return year;
|
||||
}
|
||||
|
||||
// Extract just the year from a UTC epoch
|
||||
static int epoch_to_year(time_t epoch) {
|
||||
int64_t days = epoch / 86400;
|
||||
if (epoch < 0 && epoch % 86400 != 0)
|
||||
days--;
|
||||
return days_to_year(days);
|
||||
}
|
||||
|
||||
int days_in_month(int year, int month) {
|
||||
switch (month) {
|
||||
case 2:
|
||||
return is_leap_year(year) ? 29 : 28;
|
||||
case 4:
|
||||
case 6:
|
||||
case 9:
|
||||
case 11:
|
||||
return 30;
|
||||
default:
|
||||
return 31;
|
||||
}
|
||||
}
|
||||
|
||||
// Zeller-like algorithm for day of week (0 = Sunday)
|
||||
int __attribute__((noinline)) day_of_week(int year, int month, int day) {
|
||||
// Adjust for January/February
|
||||
if (month < 3) {
|
||||
month += 12;
|
||||
year--;
|
||||
}
|
||||
int k = year % 100;
|
||||
int j = year / 100;
|
||||
int h = (day + (13 * (month + 1)) / 5 + k + k / 4 + j / 4 - 2 * j) % 7;
|
||||
// Convert from Zeller (0=Sat) to standard (0=Sun)
|
||||
return ((h + 6) % 7);
|
||||
}
|
||||
|
||||
void __attribute__((noinline)) epoch_to_tm_utc(time_t epoch, struct tm *out_tm) {
|
||||
// Days since epoch
|
||||
int64_t days = epoch / 86400;
|
||||
int32_t remaining_secs = epoch % 86400;
|
||||
if (remaining_secs < 0) {
|
||||
days--;
|
||||
remaining_secs += 86400;
|
||||
}
|
||||
|
||||
out_tm->tm_sec = remaining_secs % 60;
|
||||
remaining_secs /= 60;
|
||||
out_tm->tm_min = remaining_secs % 60;
|
||||
out_tm->tm_hour = remaining_secs / 60;
|
||||
|
||||
// Day of week (Jan 1, 1970 was Thursday = 4)
|
||||
out_tm->tm_wday = static_cast<int>((days + 4) % 7);
|
||||
if (out_tm->tm_wday < 0)
|
||||
out_tm->tm_wday += 7;
|
||||
|
||||
// Calculate year (updates days to day-of-year)
|
||||
int year = days_to_year(days);
|
||||
out_tm->tm_year = year - 1900;
|
||||
out_tm->tm_yday = static_cast<int>(days);
|
||||
|
||||
// Calculate month and day
|
||||
int month = 1;
|
||||
int dim;
|
||||
while (days >= (dim = days_in_month(year, month))) {
|
||||
days -= dim;
|
||||
month++;
|
||||
}
|
||||
|
||||
out_tm->tm_mon = month - 1;
|
||||
out_tm->tm_mday = static_cast<int>(days) + 1;
|
||||
out_tm->tm_isdst = 0;
|
||||
}
|
||||
|
||||
bool skip_tz_name(const char *&p) {
|
||||
if (*p == '<') {
|
||||
// Angle-bracket quoted name: <+07>, <-03>, <AEST>
|
||||
p++; // skip '<'
|
||||
while (*p && *p != '>') {
|
||||
p++;
|
||||
}
|
||||
if (*p == '>') {
|
||||
p++; // skip '>'
|
||||
return true;
|
||||
}
|
||||
return false; // Unterminated
|
||||
}
|
||||
|
||||
// Standard name: 3+ letters
|
||||
const char *start = p;
|
||||
while (*p && std::isalpha(static_cast<unsigned char>(*p))) {
|
||||
p++;
|
||||
}
|
||||
return (p - start) >= 3;
|
||||
}
|
||||
|
||||
int32_t __attribute__((noinline)) parse_offset(const char *&p) {
|
||||
int sign = 1;
|
||||
if (*p == '-') {
|
||||
sign = -1;
|
||||
p++;
|
||||
} else if (*p == '+') {
|
||||
p++;
|
||||
}
|
||||
|
||||
int hours = parse_uint(p);
|
||||
int minutes = 0;
|
||||
int seconds = 0;
|
||||
|
||||
if (*p == ':') {
|
||||
p++;
|
||||
minutes = parse_uint(p);
|
||||
if (*p == ':') {
|
||||
p++;
|
||||
seconds = parse_uint(p);
|
||||
}
|
||||
}
|
||||
|
||||
return sign * (hours * 3600 + minutes * 60 + seconds);
|
||||
}
|
||||
|
||||
// Helper to parse the optional /time suffix (reuses parse_offset logic)
|
||||
static void parse_transition_time(const char *&p, DSTRule &rule) {
|
||||
rule.time_seconds = 2 * 3600; // Default 02:00
|
||||
if (*p == '/') {
|
||||
p++;
|
||||
rule.time_seconds = parse_offset(p);
|
||||
}
|
||||
}
|
||||
|
||||
void __attribute__((noinline)) julian_to_month_day(int julian_day, int &out_month, int &out_day) {
|
||||
// J format: day 1-365, Feb 29 is NOT counted even in leap years
|
||||
// So day 60 is always March 1
|
||||
// Iterate forward through months (no array needed)
|
||||
int remaining = julian_day;
|
||||
out_month = 1;
|
||||
while (out_month <= 12) {
|
||||
// Days in month for non-leap year (J format ignores leap years)
|
||||
int dim = days_in_month(2001, out_month); // 2001 is non-leap year
|
||||
if (remaining <= dim) {
|
||||
out_day = remaining;
|
||||
return;
|
||||
}
|
||||
remaining -= dim;
|
||||
out_month++;
|
||||
}
|
||||
out_day = remaining;
|
||||
}
|
||||
|
||||
void __attribute__((noinline)) day_of_year_to_month_day(int day_of_year, int year, int &out_month, int &out_day) {
|
||||
// Plain format: day 0-365, Feb 29 IS counted in leap years
|
||||
// Day 0 = Jan 1
|
||||
int remaining = day_of_year;
|
||||
out_month = 1;
|
||||
|
||||
while (out_month <= 12) {
|
||||
int days_this_month = days_in_month(year, out_month);
|
||||
if (remaining < days_this_month) {
|
||||
out_day = remaining + 1;
|
||||
return;
|
||||
}
|
||||
remaining -= days_this_month;
|
||||
out_month++;
|
||||
}
|
||||
|
||||
// Shouldn't reach here with valid input
|
||||
out_month = 12;
|
||||
out_day = 31;
|
||||
}
|
||||
|
||||
bool parse_dst_rule(const char *&p, DSTRule &rule) {
|
||||
rule = {}; // Zero initialize
|
||||
|
||||
if (*p == 'M' || *p == 'm') {
|
||||
// M format: Mm.w.d (month.week.day)
|
||||
rule.type = DSTRuleType::MONTH_WEEK_DAY;
|
||||
p++;
|
||||
|
||||
rule.month = parse_uint(p);
|
||||
if (rule.month < 1 || rule.month > 12)
|
||||
return false;
|
||||
|
||||
if (*p++ != '.')
|
||||
return false;
|
||||
|
||||
rule.week = parse_uint(p);
|
||||
if (rule.week < 1 || rule.week > 5)
|
||||
return false;
|
||||
|
||||
if (*p++ != '.')
|
||||
return false;
|
||||
|
||||
rule.day_of_week = parse_uint(p);
|
||||
if (rule.day_of_week > 6)
|
||||
return false;
|
||||
|
||||
} else if (*p == 'J' || *p == 'j') {
|
||||
// J format: Jn (Julian day 1-365, not counting Feb 29)
|
||||
rule.type = DSTRuleType::JULIAN_NO_LEAP;
|
||||
p++;
|
||||
|
||||
rule.day = parse_uint(p);
|
||||
if (rule.day < 1 || rule.day > 365)
|
||||
return false;
|
||||
|
||||
} else if (std::isdigit(static_cast<unsigned char>(*p))) {
|
||||
// Plain number format: n (day 0-365, counting Feb 29)
|
||||
rule.type = DSTRuleType::DAY_OF_YEAR;
|
||||
|
||||
rule.day = parse_uint(p);
|
||||
if (rule.day > 365)
|
||||
return false;
|
||||
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Parse optional /time suffix
|
||||
parse_transition_time(p, rule);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Calculate days from Jan 1 of given year to given month/day
|
||||
static int __attribute__((noinline)) days_from_year_start(int year, int month, int day) {
|
||||
int days = day - 1;
|
||||
for (int m = 1; m < month; m++) {
|
||||
days += days_in_month(year, m);
|
||||
}
|
||||
return days;
|
||||
}
|
||||
|
||||
// Calculate days from epoch to Jan 1 of given year (for DST transition calculations)
|
||||
// Only supports years >= 1970. Timezone is either compiled in from YAML or set by
|
||||
// Home Assistant, so pre-1970 dates are not a concern.
|
||||
static int64_t __attribute__((noinline)) days_to_year_start(int year) {
|
||||
int64_t days = 0;
|
||||
for (int y = 1970; y < year; y++) {
|
||||
days += days_in_year(y);
|
||||
}
|
||||
return days;
|
||||
}
|
||||
|
||||
time_t __attribute__((noinline)) calculate_dst_transition(int year, const DSTRule &rule, int32_t base_offset_seconds) {
|
||||
int month, day;
|
||||
|
||||
switch (rule.type) {
|
||||
case DSTRuleType::MONTH_WEEK_DAY: {
|
||||
// Find the nth occurrence of day_of_week in the given month
|
||||
int first_dow = day_of_week(year, rule.month, 1);
|
||||
|
||||
// Days until first occurrence of target day
|
||||
int days_until_first = (rule.day_of_week - first_dow + 7) % 7;
|
||||
int first_occurrence = 1 + days_until_first;
|
||||
|
||||
if (rule.week == 5) {
|
||||
// "Last" occurrence - find the last one in the month
|
||||
int dim = days_in_month(year, rule.month);
|
||||
day = first_occurrence;
|
||||
while (day + 7 <= dim) {
|
||||
day += 7;
|
||||
}
|
||||
} else {
|
||||
// nth occurrence
|
||||
day = first_occurrence + (rule.week - 1) * 7;
|
||||
}
|
||||
month = rule.month;
|
||||
break;
|
||||
}
|
||||
|
||||
case DSTRuleType::JULIAN_NO_LEAP:
|
||||
// J format: day 1-365, Feb 29 not counted
|
||||
julian_to_month_day(rule.day, month, day);
|
||||
break;
|
||||
|
||||
case DSTRuleType::DAY_OF_YEAR:
|
||||
// Plain format: day 0-365, Feb 29 counted
|
||||
day_of_year_to_month_day(rule.day, year, month, day);
|
||||
break;
|
||||
|
||||
case DSTRuleType::NONE:
|
||||
// Should never be called with NONE, but handle it gracefully
|
||||
month = 1;
|
||||
day = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
// Calculate days from epoch to this date
|
||||
int64_t days = days_to_year_start(year) + days_from_year_start(year, month, day);
|
||||
|
||||
// Convert to epoch and add transition time and base offset
|
||||
return days * 86400 + rule.time_seconds + base_offset_seconds;
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
bool __attribute__((noinline)) is_in_dst(time_t utc_epoch, const ParsedTimezone &tz) {
|
||||
if (!tz.has_dst()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
int year = internal::epoch_to_year(utc_epoch);
|
||||
|
||||
// Calculate DST start and end for this year
|
||||
// DST start transition happens in standard time
|
||||
time_t dst_start = internal::calculate_dst_transition(year, tz.dst_start, tz.std_offset_seconds);
|
||||
// DST end transition happens in daylight time
|
||||
time_t dst_end = internal::calculate_dst_transition(year, tz.dst_end, tz.dst_offset_seconds);
|
||||
|
||||
if (dst_start < dst_end) {
|
||||
// Northern hemisphere: DST is between start and end
|
||||
return (utc_epoch >= dst_start && utc_epoch < dst_end);
|
||||
} else {
|
||||
// Southern hemisphere: DST is outside the range (wraps around year)
|
||||
return (utc_epoch >= dst_start || utc_epoch < dst_end);
|
||||
}
|
||||
}
|
||||
|
||||
bool parse_posix_tz(const char *tz_string, ParsedTimezone &result) {
|
||||
if (!tz_string || !*tz_string) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const char *p = tz_string;
|
||||
|
||||
// Initialize result (dst_start/dst_end default to type=NONE, so has_dst() returns false)
|
||||
result.std_offset_seconds = 0;
|
||||
result.dst_offset_seconds = 0;
|
||||
result.dst_start = {};
|
||||
result.dst_end = {};
|
||||
|
||||
// Skip standard timezone name
|
||||
if (!internal::skip_tz_name(p)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Parse standard offset (required)
|
||||
if (!*p || (!std::isdigit(static_cast<unsigned char>(*p)) && *p != '+' && *p != '-')) {
|
||||
return false;
|
||||
}
|
||||
result.std_offset_seconds = internal::parse_offset(p);
|
||||
|
||||
// Check for DST name
|
||||
if (!*p) {
|
||||
return true; // No DST
|
||||
}
|
||||
|
||||
// If next char is comma, there's no DST name but there are rules (invalid)
|
||||
if (*p == ',') {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if there's something that looks like a DST name start
|
||||
// (letter or angle bracket). If not, treat as trailing garbage and return success.
|
||||
if (!std::isalpha(static_cast<unsigned char>(*p)) && *p != '<') {
|
||||
return true; // No DST, trailing characters ignored
|
||||
}
|
||||
|
||||
if (!internal::skip_tz_name(p)) {
|
||||
return false; // Invalid DST name (started but malformed)
|
||||
}
|
||||
|
||||
// Optional DST offset (default is std - 1 hour)
|
||||
if (*p && *p != ',' && (std::isdigit(static_cast<unsigned char>(*p)) || *p == '+' || *p == '-')) {
|
||||
result.dst_offset_seconds = internal::parse_offset(p);
|
||||
} else {
|
||||
result.dst_offset_seconds = result.std_offset_seconds - 3600;
|
||||
}
|
||||
|
||||
// Parse DST rules (required when DST name is present)
|
||||
if (*p != ',') {
|
||||
// DST name without rules - treat as no DST since we can't determine transitions
|
||||
return true;
|
||||
}
|
||||
|
||||
p++;
|
||||
if (!internal::parse_dst_rule(p, result.dst_start)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Second rule is required per POSIX
|
||||
if (*p != ',') {
|
||||
return false;
|
||||
}
|
||||
p++;
|
||||
// has_dst() now returns true since dst_start.type was set by parse_dst_rule
|
||||
return internal::parse_dst_rule(p, result.dst_end);
|
||||
}
|
||||
|
||||
bool epoch_to_local_tm(time_t utc_epoch, const ParsedTimezone &tz, struct tm *out_tm) {
|
||||
if (!out_tm) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Determine DST status once (avoids duplicate is_in_dst calculation)
|
||||
bool in_dst = is_in_dst(utc_epoch, tz);
|
||||
int32_t offset = in_dst ? tz.dst_offset_seconds : tz.std_offset_seconds;
|
||||
|
||||
// Apply offset (POSIX offset is positive west, so subtract to get local)
|
||||
time_t local_epoch = utc_epoch - offset;
|
||||
|
||||
internal::epoch_to_tm_utc(local_epoch, out_tm);
|
||||
out_tm->tm_isdst = in_dst ? 1 : 0;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace esphome::time
|
||||
|
||||
#ifndef USE_HOST
|
||||
// Override libc's localtime functions to use our timezone on embedded platforms.
|
||||
// This allows user lambdas calling ::localtime() to get correct local time
|
||||
// without needing the TZ environment variable (which pulls in scanf bloat).
|
||||
// On host, we use the normal TZ mechanism since there's no memory constraint.
|
||||
|
||||
// Thread-safe version
|
||||
extern "C" struct tm *localtime_r(const time_t *timer, struct tm *result) {
|
||||
if (timer == nullptr || result == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
esphome::time::epoch_to_local_tm(*timer, esphome::time::get_global_tz(), result);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Non-thread-safe version (uses static buffer, standard libc behavior)
|
||||
extern "C" struct tm *localtime(const time_t *timer) {
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
|
||||
static struct tm localtime_buf;
|
||||
return localtime_r(timer, &localtime_buf);
|
||||
}
|
||||
#endif // !USE_HOST
|
||||
|
||||
#endif // USE_TIME_TIMEZONE
|
||||
132
esphome/components/time/posix_tz.h
Normal file
132
esphome/components/time/posix_tz.h
Normal file
@@ -0,0 +1,132 @@
|
||||
#pragma once
|
||||
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
|
||||
#include <cstdint>
|
||||
#include <ctime>
|
||||
|
||||
namespace esphome::time {
|
||||
|
||||
/// Type of DST transition rule
|
||||
enum class DSTRuleType : uint8_t {
|
||||
NONE = 0, ///< No DST rule (used to indicate no DST)
|
||||
MONTH_WEEK_DAY, ///< M format: Mm.w.d (e.g., M3.2.0 = 2nd Sunday of March)
|
||||
JULIAN_NO_LEAP, ///< J format: Jn (day 1-365, Feb 29 not counted)
|
||||
DAY_OF_YEAR, ///< Plain number: n (day 0-365, Feb 29 counted in leap years)
|
||||
};
|
||||
|
||||
/// Rule for DST transition (packed for 32-bit: 12 bytes)
|
||||
struct DSTRule {
|
||||
int32_t time_seconds; ///< Seconds after midnight (default 7200 = 2:00 AM)
|
||||
uint16_t day; ///< Day of year (for JULIAN_NO_LEAP and DAY_OF_YEAR)
|
||||
DSTRuleType type; ///< Type of rule
|
||||
uint8_t month; ///< Month 1-12 (for MONTH_WEEK_DAY)
|
||||
uint8_t week; ///< Week 1-5, 5 = last (for MONTH_WEEK_DAY)
|
||||
uint8_t day_of_week; ///< Day 0-6, 0 = Sunday (for MONTH_WEEK_DAY)
|
||||
};
|
||||
|
||||
/// Parsed POSIX timezone information (packed for 32-bit: 32 bytes)
|
||||
struct ParsedTimezone {
|
||||
int32_t std_offset_seconds; ///< Standard time offset from UTC in seconds (positive = west)
|
||||
int32_t dst_offset_seconds; ///< DST offset from UTC in seconds
|
||||
DSTRule dst_start; ///< When DST starts
|
||||
DSTRule dst_end; ///< When DST ends
|
||||
|
||||
/// Check if this timezone has DST rules
|
||||
bool has_dst() const { return this->dst_start.type != DSTRuleType::NONE; }
|
||||
};
|
||||
|
||||
/// Parse a POSIX TZ string into a ParsedTimezone struct.
|
||||
/// Supports formats like:
|
||||
/// - "EST5" (simple offset, no DST)
|
||||
/// - "EST5EDT,M3.2.0,M11.1.0" (with DST, M-format rules)
|
||||
/// - "CST6CDT,M3.2.0/2,M11.1.0/2" (with transition times)
|
||||
/// - "<+07>-7" (angle-bracket notation for special names)
|
||||
/// - "IST-5:30" (half-hour offsets)
|
||||
/// - "EST5EDT,J60,J300" (J-format: Julian day without leap day)
|
||||
/// - "EST5EDT,60,300" (plain day number: day of year with leap day)
|
||||
/// @param tz_string The POSIX TZ string to parse
|
||||
/// @param result Output: the parsed timezone data
|
||||
/// @return true if parsing succeeded, false on error
|
||||
bool parse_posix_tz(const char *tz_string, ParsedTimezone &result);
|
||||
|
||||
/// Convert a UTC epoch to local time using the parsed timezone.
|
||||
/// This replaces libc's localtime() to avoid scanf dependency.
|
||||
/// @param utc_epoch Unix timestamp in UTC
|
||||
/// @param tz The parsed timezone
|
||||
/// @param[out] out_tm Output tm struct with local time
|
||||
/// @return true on success
|
||||
bool epoch_to_local_tm(time_t utc_epoch, const ParsedTimezone &tz, struct tm *out_tm);
|
||||
|
||||
/// Set the global timezone used by epoch_to_local_tm() when called without a timezone.
|
||||
/// This is called by RealTimeClock::apply_timezone_() to enable ESPTime::from_epoch_local()
|
||||
/// to work without libc's localtime().
|
||||
void set_global_tz(const ParsedTimezone &tz);
|
||||
|
||||
/// Get the global timezone.
|
||||
const ParsedTimezone &get_global_tz();
|
||||
|
||||
/// Check if a given UTC epoch falls within DST for the parsed timezone.
|
||||
/// @param utc_epoch Unix timestamp in UTC
|
||||
/// @param tz The parsed timezone
|
||||
/// @return true if DST is in effect at the given time
|
||||
bool is_in_dst(time_t utc_epoch, const ParsedTimezone &tz);
|
||||
|
||||
// Internal helper functions exposed for testing
|
||||
|
||||
namespace internal {
|
||||
|
||||
/// Skip a timezone name (letters or <...> quoted format)
|
||||
/// @param p Pointer to current position, updated on return
|
||||
/// @return true if a valid name was found
|
||||
bool skip_tz_name(const char *&p);
|
||||
|
||||
/// Parse an offset in format [-]hh[:mm[:ss]]
|
||||
/// @param p Pointer to current position, updated on return
|
||||
/// @return Offset in seconds
|
||||
int32_t parse_offset(const char *&p);
|
||||
|
||||
/// Parse a DST rule in format Mm.w.d[/time], Jn[/time], or n[/time]
|
||||
/// @param p Pointer to current position, updated on return
|
||||
/// @param rule Output: the parsed rule
|
||||
/// @return true if parsing succeeded
|
||||
bool parse_dst_rule(const char *&p, DSTRule &rule);
|
||||
|
||||
/// Convert Julian day (J format, 1-365 not counting Feb 29) to month/day
|
||||
/// @param julian_day Day number 1-365
|
||||
/// @param[out] month Output: month 1-12
|
||||
/// @param[out] day Output: day of month
|
||||
void julian_to_month_day(int julian_day, int &month, int &day);
|
||||
|
||||
/// Convert day of year (plain format, 0-365 counting Feb 29) to month/day
|
||||
/// @param day_of_year Day number 0-365
|
||||
/// @param year The year (for leap year calculation)
|
||||
/// @param[out] month Output: month 1-12
|
||||
/// @param[out] day Output: day of month
|
||||
void day_of_year_to_month_day(int day_of_year, int year, int &month, int &day);
|
||||
|
||||
/// Calculate day of week for any date (0 = Sunday)
|
||||
/// Uses a simplified algorithm that works for years 1970-2099
|
||||
int day_of_week(int year, int month, int day);
|
||||
|
||||
/// Get the number of days in a month
|
||||
int days_in_month(int year, int month);
|
||||
|
||||
/// Check if a year is a leap year
|
||||
bool is_leap_year(int year);
|
||||
|
||||
/// Convert epoch to year/month/day/hour/min/sec (UTC)
|
||||
void epoch_to_tm_utc(time_t epoch, struct tm *out_tm);
|
||||
|
||||
/// Calculate the epoch timestamp for a DST transition in a given year.
|
||||
/// @param year The year (e.g., 2026)
|
||||
/// @param rule The DST rule (month, week, day_of_week, time)
|
||||
/// @param base_offset_seconds The timezone offset to apply (std or dst depending on context)
|
||||
/// @return Unix epoch timestamp of the transition
|
||||
time_t calculate_dst_transition(int year, const DSTRule &rule, int32_t base_offset_seconds);
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace esphome::time
|
||||
|
||||
#endif // USE_TIME_TIMEZONE
|
||||
@@ -14,8 +14,8 @@
|
||||
#include <sys/time.h>
|
||||
#endif
|
||||
#include <cerrno>
|
||||
|
||||
#include <cinttypes>
|
||||
#include <cstdlib>
|
||||
|
||||
namespace esphome::time {
|
||||
|
||||
@@ -23,9 +23,33 @@ static const char *const TAG = "time";
|
||||
|
||||
RealTimeClock::RealTimeClock() = default;
|
||||
|
||||
ESPTime __attribute__((noinline)) RealTimeClock::now() {
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
time_t epoch = this->timestamp_now();
|
||||
struct tm local_tm;
|
||||
if (epoch_to_local_tm(epoch, get_global_tz(), &local_tm)) {
|
||||
return ESPTime::from_c_tm(&local_tm, epoch);
|
||||
}
|
||||
// Fallback to UTC if parsing failed
|
||||
return ESPTime::from_epoch_utc(epoch);
|
||||
#else
|
||||
return ESPTime::from_epoch_local(this->timestamp_now());
|
||||
#endif
|
||||
}
|
||||
|
||||
void RealTimeClock::dump_config() {
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
ESP_LOGCONFIG(TAG, "Timezone: '%s'", this->timezone_.c_str());
|
||||
const auto &tz = get_global_tz();
|
||||
// POSIX offset is positive west, negate for conventional UTC+X display
|
||||
int std_h = -tz.std_offset_seconds / 3600;
|
||||
int std_m = (std::abs(tz.std_offset_seconds) % 3600) / 60;
|
||||
if (tz.has_dst()) {
|
||||
int dst_h = -tz.dst_offset_seconds / 3600;
|
||||
int dst_m = (std::abs(tz.dst_offset_seconds) % 3600) / 60;
|
||||
ESP_LOGCONFIG(TAG, "Timezone: UTC%+d:%02d (DST UTC%+d:%02d)", std_h, std_m, dst_h, dst_m);
|
||||
} else {
|
||||
ESP_LOGCONFIG(TAG, "Timezone: UTC%+d:%02d", std_h, std_m);
|
||||
}
|
||||
#endif
|
||||
auto time = this->now();
|
||||
ESP_LOGCONFIG(TAG, "Current time: %04d-%02d-%02d %02d:%02d:%02d", time.year, time.month, time.day_of_month, time.hour,
|
||||
@@ -72,11 +96,6 @@ void RealTimeClock::synchronize_epoch_(uint32_t epoch) {
|
||||
ret = settimeofday(&timev, nullptr);
|
||||
}
|
||||
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
// Move timezone back to local timezone.
|
||||
this->apply_timezone_();
|
||||
#endif
|
||||
|
||||
if (ret != 0) {
|
||||
ESP_LOGW(TAG, "setimeofday() failed with code %d", ret);
|
||||
}
|
||||
@@ -89,9 +108,29 @@ void RealTimeClock::synchronize_epoch_(uint32_t epoch) {
|
||||
}
|
||||
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
void RealTimeClock::apply_timezone_() {
|
||||
setenv("TZ", this->timezone_.c_str(), 1);
|
||||
void RealTimeClock::apply_timezone_(const char *tz) {
|
||||
ParsedTimezone parsed{};
|
||||
|
||||
// Handle null or empty input - use UTC
|
||||
if (tz == nullptr || *tz == '\0') {
|
||||
set_global_tz(parsed);
|
||||
return;
|
||||
}
|
||||
|
||||
#ifdef USE_HOST
|
||||
// On host platform, also set TZ environment variable for libc compatibility
|
||||
setenv("TZ", tz, 1);
|
||||
tzset();
|
||||
#endif
|
||||
|
||||
// Parse the POSIX TZ string using our custom parser
|
||||
if (!parse_posix_tz(tz, parsed)) {
|
||||
ESP_LOGW(TAG, "Failed to parse timezone: %s", tz);
|
||||
// parsed stays as default (UTC) on failure
|
||||
}
|
||||
|
||||
// Set global timezone for all time conversions
|
||||
set_global_tz(parsed);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
@@ -6,6 +6,9 @@
|
||||
#include "esphome/core/component.h"
|
||||
#include "esphome/core/helpers.h"
|
||||
#include "esphome/core/time.h"
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
#include "posix_tz.h"
|
||||
#endif
|
||||
|
||||
namespace esphome::time {
|
||||
|
||||
@@ -20,26 +23,31 @@ class RealTimeClock : public PollingComponent {
|
||||
explicit RealTimeClock();
|
||||
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
/// Set the time zone.
|
||||
void set_timezone(const std::string &tz) {
|
||||
this->timezone_ = tz;
|
||||
this->apply_timezone_();
|
||||
}
|
||||
/// Set the time zone from a POSIX TZ string.
|
||||
void set_timezone(const char *tz) { this->apply_timezone_(tz); }
|
||||
|
||||
/// Set the time zone from raw buffer, only if it differs from the current one.
|
||||
/// Set the time zone from a character buffer with known length.
|
||||
/// The buffer does not need to be null-terminated.
|
||||
void set_timezone(const char *tz, size_t len) {
|
||||
if (this->timezone_.length() != len || memcmp(this->timezone_.c_str(), tz, len) != 0) {
|
||||
this->timezone_.assign(tz, len);
|
||||
this->apply_timezone_();
|
||||
if (tz == nullptr) {
|
||||
this->apply_timezone_(nullptr);
|
||||
return;
|
||||
}
|
||||
// Stack buffer - TZ strings from tzdata are typically short (< 50 chars)
|
||||
char buf[128];
|
||||
if (len >= sizeof(buf))
|
||||
len = sizeof(buf) - 1;
|
||||
memcpy(buf, tz, len);
|
||||
buf[len] = '\0';
|
||||
this->apply_timezone_(buf);
|
||||
}
|
||||
|
||||
/// Get the time zone currently in use.
|
||||
std::string get_timezone() { return this->timezone_; }
|
||||
/// Set the time zone from a std::string.
|
||||
void set_timezone(const std::string &tz) { this->apply_timezone_(tz.c_str()); }
|
||||
#endif
|
||||
|
||||
/// Get the time in the currently defined timezone.
|
||||
ESPTime now() { return ESPTime::from_epoch_local(this->timestamp_now()); }
|
||||
ESPTime now();
|
||||
|
||||
/// Get the time without any time zone or DST corrections.
|
||||
ESPTime utcnow() { return ESPTime::from_epoch_utc(this->timestamp_now()); }
|
||||
@@ -58,8 +66,7 @@ class RealTimeClock : public PollingComponent {
|
||||
void synchronize_epoch_(uint32_t epoch);
|
||||
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
std::string timezone_{};
|
||||
void apply_timezone_();
|
||||
void apply_timezone_(const char *tz);
|
||||
#endif
|
||||
|
||||
LazyCallbackManager<void()> time_sync_callback_;
|
||||
|
||||
@@ -90,6 +90,7 @@ void IDFUARTComponent::setup() {
|
||||
return;
|
||||
}
|
||||
this->uart_num_ = static_cast<uart_port_t>(next_uart_num++);
|
||||
this->lock_ = xSemaphoreCreateMutex();
|
||||
|
||||
#if (SOC_UART_LP_NUM >= 1)
|
||||
size_t fifo_len = ((this->uart_num_ < SOC_UART_HP_NUM) ? SOC_UART_FIFO_LEN : SOC_LP_UART_FIFO_LEN);
|
||||
@@ -101,7 +102,11 @@ void IDFUARTComponent::setup() {
|
||||
this->rx_buffer_size_ = fifo_len * 2;
|
||||
}
|
||||
|
||||
xSemaphoreTake(this->lock_, portMAX_DELAY);
|
||||
|
||||
this->load_settings(false);
|
||||
|
||||
xSemaphoreGive(this->lock_);
|
||||
}
|
||||
|
||||
void IDFUARTComponent::load_settings(bool dump_config) {
|
||||
@@ -121,20 +126,13 @@ void IDFUARTComponent::load_settings(bool dump_config) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
#ifdef USE_UART_WAKE_LOOP_ON_RX
|
||||
constexpr int event_queue_size = 20;
|
||||
QueueHandle_t *event_queue_ptr = &this->uart_event_queue_;
|
||||
#else
|
||||
constexpr int event_queue_size = 0;
|
||||
QueueHandle_t *event_queue_ptr = nullptr;
|
||||
#endif
|
||||
err = uart_driver_install(this->uart_num_, // UART number
|
||||
this->rx_buffer_size_, // RX ring buffer size
|
||||
0, // TX ring buffer size. If zero, driver will not use a TX buffer and TX function will
|
||||
// block task until all data has been sent out
|
||||
event_queue_size, // event queue size/depth
|
||||
event_queue_ptr, // event queue
|
||||
0 // Flags used to allocate the interrupt
|
||||
0, // TX ring buffer size. If zero, driver will not use a TX buffer and TX function will
|
||||
// block task until all data has been sent out
|
||||
20, // event queue size/depth
|
||||
&this->uart_event_queue_, // event queue
|
||||
0 // Flags used to allocate the interrupt
|
||||
);
|
||||
if (err != ESP_OK) {
|
||||
ESP_LOGW(TAG, "uart_driver_install failed: %s", esp_err_to_name(err));
|
||||
@@ -284,7 +282,9 @@ void IDFUARTComponent::set_rx_timeout(size_t rx_timeout) {
|
||||
}
|
||||
|
||||
void IDFUARTComponent::write_array(const uint8_t *data, size_t len) {
|
||||
xSemaphoreTake(this->lock_, portMAX_DELAY);
|
||||
int32_t write_len = uart_write_bytes(this->uart_num_, data, len);
|
||||
xSemaphoreGive(this->lock_);
|
||||
if (write_len != (int32_t) len) {
|
||||
ESP_LOGW(TAG, "uart_write_bytes failed: %d != %zu", write_len, len);
|
||||
this->mark_failed();
|
||||
@@ -299,6 +299,7 @@ void IDFUARTComponent::write_array(const uint8_t *data, size_t len) {
|
||||
bool IDFUARTComponent::peek_byte(uint8_t *data) {
|
||||
if (!this->check_read_timeout_())
|
||||
return false;
|
||||
xSemaphoreTake(this->lock_, portMAX_DELAY);
|
||||
if (this->has_peek_) {
|
||||
*data = this->peek_byte_;
|
||||
} else {
|
||||
@@ -310,6 +311,7 @@ bool IDFUARTComponent::peek_byte(uint8_t *data) {
|
||||
this->peek_byte_ = *data;
|
||||
}
|
||||
}
|
||||
xSemaphoreGive(this->lock_);
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -318,6 +320,7 @@ bool IDFUARTComponent::read_array(uint8_t *data, size_t len) {
|
||||
int32_t read_len = 0;
|
||||
if (!this->check_read_timeout_(len))
|
||||
return false;
|
||||
xSemaphoreTake(this->lock_, portMAX_DELAY);
|
||||
if (this->has_peek_) {
|
||||
length_to_read--;
|
||||
*data = this->peek_byte_;
|
||||
@@ -326,6 +329,7 @@ bool IDFUARTComponent::read_array(uint8_t *data, size_t len) {
|
||||
}
|
||||
if (length_to_read > 0)
|
||||
read_len = uart_read_bytes(this->uart_num_, data, length_to_read, 20 / portTICK_PERIOD_MS);
|
||||
xSemaphoreGive(this->lock_);
|
||||
#ifdef USE_UART_DEBUGGER
|
||||
for (size_t i = 0; i < len; i++) {
|
||||
this->debug_callback_.call(UART_DIRECTION_RX, data[i]);
|
||||
@@ -338,7 +342,9 @@ size_t IDFUARTComponent::available() {
|
||||
size_t available = 0;
|
||||
esp_err_t err;
|
||||
|
||||
xSemaphoreTake(this->lock_, portMAX_DELAY);
|
||||
err = uart_get_buffered_data_len(this->uart_num_, &available);
|
||||
xSemaphoreGive(this->lock_);
|
||||
|
||||
if (err != ESP_OK) {
|
||||
ESP_LOGW(TAG, "uart_get_buffered_data_len failed: %s", esp_err_to_name(err));
|
||||
@@ -352,7 +358,9 @@ size_t IDFUARTComponent::available() {
|
||||
|
||||
void IDFUARTComponent::flush() {
|
||||
ESP_LOGVV(TAG, " Flushing");
|
||||
xSemaphoreTake(this->lock_, portMAX_DELAY);
|
||||
uart_wait_tx_done(this->uart_num_, portMAX_DELAY);
|
||||
xSemaphoreGive(this->lock_);
|
||||
}
|
||||
|
||||
void IDFUARTComponent::check_logger_conflict() {}
|
||||
@@ -376,13 +384,6 @@ void IDFUARTComponent::start_rx_event_task_() {
|
||||
ESP_LOGV(TAG, "RX event task started");
|
||||
}
|
||||
|
||||
// FreeRTOS task that relays UART ISR events to the main loop.
|
||||
// This task exists because wake_loop_threadsafe() is not ISR-safe (it uses a
|
||||
// UDP loopback socket), so we need a task as an ISR-to-main-loop trampoline.
|
||||
// IMPORTANT: This task must NOT call any UART wrapper methods (read_array,
|
||||
// write_array, peek_byte, etc.) or touch has_peek_/peek_byte_ — all reading
|
||||
// is done by the main loop. This task only reads from the event queue and
|
||||
// calls App.wake_loop_threadsafe().
|
||||
void IDFUARTComponent::rx_event_task_func(void *param) {
|
||||
auto *self = static_cast<IDFUARTComponent *>(param);
|
||||
uart_event_t event;
|
||||
@@ -404,14 +405,8 @@ void IDFUARTComponent::rx_event_task_func(void *param) {
|
||||
|
||||
case UART_FIFO_OVF:
|
||||
case UART_BUFFER_FULL:
|
||||
// Don't call uart_flush_input() here — this task does not own the read side.
|
||||
// ESP-IDF examples flush on overflow because the same task handles both events
|
||||
// and reads, so flush and read are serialized. Here, reads happen on the main
|
||||
// loop, so flushing from this task races with read_array() and can destroy data
|
||||
// mid-read. The driver self-heals without an explicit flush: uart_read_bytes()
|
||||
// calls uart_check_buf_full() after each chunk, which moves stashed FIFO bytes
|
||||
// into the ring buffer and re-enables RX interrupts once space is freed.
|
||||
ESP_LOGW(TAG, "FIFO overflow or ring buffer full");
|
||||
ESP_LOGW(TAG, "FIFO overflow or ring buffer full - clearing");
|
||||
uart_flush_input(self->uart_num_);
|
||||
#if defined(USE_SOCKET_SELECT_SUPPORT) && defined(USE_WAKE_LOOP_THREADSAFE)
|
||||
App.wake_loop_threadsafe();
|
||||
#endif
|
||||
|
||||
@@ -8,13 +8,6 @@
|
||||
|
||||
namespace esphome::uart {
|
||||
|
||||
/// ESP-IDF UART driver wrapper.
|
||||
///
|
||||
/// Thread safety: All public methods must only be called from the main loop.
|
||||
/// The ESP-IDF UART driver API does not guarantee thread safety, and ESPHome's
|
||||
/// peek byte state (has_peek_/peek_byte_) is not synchronized. The rx_event_task
|
||||
/// (when enabled) must not call any of these methods — it communicates with the
|
||||
/// main loop exclusively via App.wake_loop_threadsafe().
|
||||
class IDFUARTComponent : public UARTComponent, public Component {
|
||||
public:
|
||||
void setup() override;
|
||||
@@ -33,9 +26,7 @@ class IDFUARTComponent : public UARTComponent, public Component {
|
||||
void flush() override;
|
||||
|
||||
uint8_t get_hw_serial_number() { return this->uart_num_; }
|
||||
#ifdef USE_UART_WAKE_LOOP_ON_RX
|
||||
QueueHandle_t *get_uart_event_queue() { return &this->uart_event_queue_; }
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Load the UART with the current settings.
|
||||
@@ -55,20 +46,18 @@ class IDFUARTComponent : public UARTComponent, public Component {
|
||||
protected:
|
||||
void check_logger_conflict() override;
|
||||
uart_port_t uart_num_;
|
||||
QueueHandle_t uart_event_queue_;
|
||||
uart_config_t get_config_();
|
||||
SemaphoreHandle_t lock_;
|
||||
|
||||
bool has_peek_{false};
|
||||
uint8_t peek_byte_;
|
||||
|
||||
#ifdef USE_UART_WAKE_LOOP_ON_RX
|
||||
// RX notification support — runs on a separate FreeRTOS task.
|
||||
// IMPORTANT: rx_event_task_func must NOT call any UART wrapper methods (read_array,
|
||||
// write_array, etc.) or touch has_peek_/peek_byte_. It must only read from the
|
||||
// event queue and call App.wake_loop_threadsafe().
|
||||
// RX notification support
|
||||
void start_rx_event_task_();
|
||||
static void rx_event_task_func(void *param);
|
||||
|
||||
QueueHandle_t uart_event_queue_;
|
||||
TaskHandle_t rx_event_task_handle_{nullptr};
|
||||
#endif // USE_UART_WAKE_LOOP_ON_RX
|
||||
};
|
||||
|
||||
@@ -557,9 +557,7 @@ static void set_json_id(JsonObject &root, EntityBase *obj, const char *prefix, J
|
||||
root[ESPHOME_F("device")] = device_name;
|
||||
}
|
||||
#endif
|
||||
#ifdef USE_ENTITY_ICON
|
||||
root[ESPHOME_F("icon")] = obj->get_icon_ref();
|
||||
#endif
|
||||
root[ESPHOME_F("entity_category")] = obj->get_entity_category();
|
||||
bool is_disabled = obj->is_disabled_by_default();
|
||||
if (is_disabled)
|
||||
@@ -585,7 +583,8 @@ static void set_json_icon_state_value(JsonObject &root, EntityBase *obj, const c
|
||||
|
||||
// Helper to get request detail parameter
|
||||
static JsonDetail get_request_detail(AsyncWebServerRequest *request) {
|
||||
return request->arg(ESPHOME_F("detail")) == "all" ? DETAIL_ALL : DETAIL_STATE;
|
||||
auto *param = request->getParam(ESPHOME_F("detail"));
|
||||
return (param && param->value() == "all") ? DETAIL_ALL : DETAIL_STATE;
|
||||
}
|
||||
|
||||
#ifdef USE_SENSOR
|
||||
@@ -862,10 +861,10 @@ void WebServer::handle_fan_request(AsyncWebServerRequest *request, const UrlMatc
|
||||
}
|
||||
auto call = is_on ? obj->turn_on() : obj->turn_off();
|
||||
|
||||
parse_num_param_(request, ESPHOME_F("speed_level"), call, &decltype(call)::set_speed);
|
||||
parse_int_param_(request, ESPHOME_F("speed_level"), call, &decltype(call)::set_speed);
|
||||
|
||||
if (request->hasArg(ESPHOME_F("oscillation"))) {
|
||||
auto speed = request->arg(ESPHOME_F("oscillation"));
|
||||
if (request->hasParam(ESPHOME_F("oscillation"))) {
|
||||
auto speed = request->getParam(ESPHOME_F("oscillation"))->value();
|
||||
auto val = parse_on_off(speed.c_str());
|
||||
switch (val) {
|
||||
case PARSE_ON:
|
||||
@@ -1041,14 +1040,14 @@ void WebServer::handle_cover_request(AsyncWebServerRequest *request, const UrlMa
|
||||
}
|
||||
|
||||
auto traits = obj->get_traits();
|
||||
if ((request->hasArg(ESPHOME_F("position")) && !traits.get_supports_position()) ||
|
||||
(request->hasArg(ESPHOME_F("tilt")) && !traits.get_supports_tilt())) {
|
||||
if ((request->hasParam(ESPHOME_F("position")) && !traits.get_supports_position()) ||
|
||||
(request->hasParam(ESPHOME_F("tilt")) && !traits.get_supports_tilt())) {
|
||||
request->send(409);
|
||||
return;
|
||||
}
|
||||
|
||||
parse_num_param_(request, ESPHOME_F("position"), call, &decltype(call)::set_position);
|
||||
parse_num_param_(request, ESPHOME_F("tilt"), call, &decltype(call)::set_tilt);
|
||||
parse_float_param_(request, ESPHOME_F("position"), call, &decltype(call)::set_position);
|
||||
parse_float_param_(request, ESPHOME_F("tilt"), call, &decltype(call)::set_tilt);
|
||||
|
||||
DEFER_ACTION(call, call.perform());
|
||||
request->send(200);
|
||||
@@ -1107,7 +1106,7 @@ void WebServer::handle_number_request(AsyncWebServerRequest *request, const UrlM
|
||||
}
|
||||
|
||||
auto call = obj->make_call();
|
||||
parse_num_param_(request, ESPHOME_F("value"), call, &decltype(call)::set_value);
|
||||
parse_float_param_(request, ESPHOME_F("value"), call, &decltype(call)::set_value);
|
||||
|
||||
DEFER_ACTION(call, call.perform());
|
||||
request->send(200);
|
||||
@@ -1175,13 +1174,12 @@ void WebServer::handle_date_request(AsyncWebServerRequest *request, const UrlMat
|
||||
|
||||
auto call = obj->make_call();
|
||||
|
||||
const auto &value = request->arg(ESPHOME_F("value"));
|
||||
// Arduino String has isEmpty() not empty(), use length() for cross-platform compatibility
|
||||
if (value.length() == 0) { // NOLINT(readability-container-size-empty)
|
||||
if (!request->hasParam(ESPHOME_F("value"))) {
|
||||
request->send(409);
|
||||
return;
|
||||
}
|
||||
call.set_date(value.c_str(), value.length());
|
||||
|
||||
parse_string_param_(request, ESPHOME_F("value"), call, &decltype(call)::set_date);
|
||||
|
||||
DEFER_ACTION(call, call.perform());
|
||||
request->send(200);
|
||||
@@ -1236,13 +1234,12 @@ void WebServer::handle_time_request(AsyncWebServerRequest *request, const UrlMat
|
||||
|
||||
auto call = obj->make_call();
|
||||
|
||||
const auto &value = request->arg(ESPHOME_F("value"));
|
||||
// Arduino String has isEmpty() not empty(), use length() for cross-platform compatibility
|
||||
if (value.length() == 0) { // NOLINT(readability-container-size-empty)
|
||||
if (!request->hasParam(ESPHOME_F("value"))) {
|
||||
request->send(409);
|
||||
return;
|
||||
}
|
||||
call.set_time(value.c_str(), value.length());
|
||||
|
||||
parse_string_param_(request, ESPHOME_F("value"), call, &decltype(call)::set_time);
|
||||
|
||||
DEFER_ACTION(call, call.perform());
|
||||
request->send(200);
|
||||
@@ -1296,13 +1293,12 @@ void WebServer::handle_datetime_request(AsyncWebServerRequest *request, const Ur
|
||||
|
||||
auto call = obj->make_call();
|
||||
|
||||
const auto &value = request->arg(ESPHOME_F("value"));
|
||||
// Arduino String has isEmpty() not empty(), use length() for cross-platform compatibility
|
||||
if (value.length() == 0) { // NOLINT(readability-container-size-empty)
|
||||
if (!request->hasParam(ESPHOME_F("value"))) {
|
||||
request->send(409);
|
||||
return;
|
||||
}
|
||||
call.set_datetime(value.c_str(), value.length());
|
||||
|
||||
parse_string_param_(request, ESPHOME_F("value"), call, &decltype(call)::set_datetime);
|
||||
|
||||
DEFER_ACTION(call, call.perform());
|
||||
request->send(200);
|
||||
@@ -1481,14 +1477,10 @@ void WebServer::handle_climate_request(AsyncWebServerRequest *request, const Url
|
||||
parse_string_param_(request, ESPHOME_F("swing_mode"), call, &decltype(call)::set_swing_mode);
|
||||
|
||||
// Parse temperature parameters
|
||||
// static_cast needed to disambiguate overloaded setters (float vs optional<float>)
|
||||
using ClimateCall = decltype(call);
|
||||
parse_num_param_(request, ESPHOME_F("target_temperature_high"), call,
|
||||
static_cast<ClimateCall &(ClimateCall::*) (float)>(&ClimateCall::set_target_temperature_high));
|
||||
parse_num_param_(request, ESPHOME_F("target_temperature_low"), call,
|
||||
static_cast<ClimateCall &(ClimateCall::*) (float)>(&ClimateCall::set_target_temperature_low));
|
||||
parse_num_param_(request, ESPHOME_F("target_temperature"), call,
|
||||
static_cast<ClimateCall &(ClimateCall::*) (float)>(&ClimateCall::set_target_temperature));
|
||||
parse_float_param_(request, ESPHOME_F("target_temperature_high"), call,
|
||||
&decltype(call)::set_target_temperature_high);
|
||||
parse_float_param_(request, ESPHOME_F("target_temperature_low"), call, &decltype(call)::set_target_temperature_low);
|
||||
parse_float_param_(request, ESPHOME_F("target_temperature"), call, &decltype(call)::set_target_temperature);
|
||||
|
||||
DEFER_ACTION(call, call.perform());
|
||||
request->send(200);
|
||||
@@ -1729,12 +1721,12 @@ void WebServer::handle_valve_request(AsyncWebServerRequest *request, const UrlMa
|
||||
}
|
||||
|
||||
auto traits = obj->get_traits();
|
||||
if (request->hasArg(ESPHOME_F("position")) && !traits.get_supports_position()) {
|
||||
if (request->hasParam(ESPHOME_F("position")) && !traits.get_supports_position()) {
|
||||
request->send(409);
|
||||
return;
|
||||
}
|
||||
|
||||
parse_num_param_(request, ESPHOME_F("position"), call, &decltype(call)::set_position);
|
||||
parse_float_param_(request, ESPHOME_F("position"), call, &decltype(call)::set_position);
|
||||
|
||||
DEFER_ACTION(call, call.perform());
|
||||
request->send(200);
|
||||
@@ -1878,12 +1870,12 @@ void WebServer::handle_water_heater_request(AsyncWebServerRequest *request, cons
|
||||
parse_string_param_(request, ESPHOME_F("mode"), base_call, &water_heater::WaterHeaterCall::set_mode);
|
||||
|
||||
// Parse temperature parameters
|
||||
parse_num_param_(request, ESPHOME_F("target_temperature"), base_call,
|
||||
&water_heater::WaterHeaterCall::set_target_temperature);
|
||||
parse_num_param_(request, ESPHOME_F("target_temperature_low"), base_call,
|
||||
&water_heater::WaterHeaterCall::set_target_temperature_low);
|
||||
parse_num_param_(request, ESPHOME_F("target_temperature_high"), base_call,
|
||||
&water_heater::WaterHeaterCall::set_target_temperature_high);
|
||||
parse_float_param_(request, ESPHOME_F("target_temperature"), base_call,
|
||||
&water_heater::WaterHeaterCall::set_target_temperature);
|
||||
parse_float_param_(request, ESPHOME_F("target_temperature_low"), base_call,
|
||||
&water_heater::WaterHeaterCall::set_target_temperature_low);
|
||||
parse_float_param_(request, ESPHOME_F("target_temperature_high"), base_call,
|
||||
&water_heater::WaterHeaterCall::set_target_temperature_high);
|
||||
|
||||
// Parse away mode parameter
|
||||
parse_bool_param_(request, ESPHOME_F("away"), base_call, &water_heater::WaterHeaterCall::set_away);
|
||||
@@ -1987,16 +1979,16 @@ void WebServer::handle_infrared_request(AsyncWebServerRequest *request, const Ur
|
||||
auto call = obj->make_call();
|
||||
|
||||
// Parse carrier frequency (optional)
|
||||
{
|
||||
auto value = parse_number<uint32_t>(request->arg(ESPHOME_F("carrier_frequency")).c_str());
|
||||
if (request->hasParam(ESPHOME_F("carrier_frequency"))) {
|
||||
auto value = parse_number<uint32_t>(request->getParam(ESPHOME_F("carrier_frequency"))->value().c_str());
|
||||
if (value.has_value()) {
|
||||
call.set_carrier_frequency(*value);
|
||||
}
|
||||
}
|
||||
|
||||
// Parse repeat count (optional, defaults to 1)
|
||||
{
|
||||
auto value = parse_number<uint32_t>(request->arg(ESPHOME_F("repeat_count")).c_str());
|
||||
if (request->hasParam(ESPHOME_F("repeat_count"))) {
|
||||
auto value = parse_number<uint32_t>(request->getParam(ESPHOME_F("repeat_count"))->value().c_str());
|
||||
if (value.has_value()) {
|
||||
call.set_repeat_count(*value);
|
||||
}
|
||||
@@ -2004,12 +1996,18 @@ void WebServer::handle_infrared_request(AsyncWebServerRequest *request, const Ur
|
||||
|
||||
// Parse base64url-encoded raw timings (required)
|
||||
// Base64url is URL-safe: uses A-Za-z0-9-_ (no special characters needing escaping)
|
||||
const auto &data_arg = request->arg(ESPHOME_F("data"));
|
||||
if (!request->hasParam(ESPHOME_F("data"))) {
|
||||
request->send(400, ESPHOME_F("text/plain"), ESPHOME_F("Missing 'data' parameter"));
|
||||
return;
|
||||
}
|
||||
|
||||
// Validate base64url is not empty (also catches missing parameter since arg() returns empty string)
|
||||
// Arduino String has isEmpty() not empty(), use length() for cross-platform compatibility
|
||||
if (data_arg.length() == 0) { // NOLINT(readability-container-size-empty)
|
||||
request->send(400, ESPHOME_F("text/plain"), ESPHOME_F("Missing or empty 'data' parameter"));
|
||||
// .c_str() is required for Arduino framework where value() returns Arduino String instead of std::string
|
||||
std::string encoded =
|
||||
request->getParam(ESPHOME_F("data"))->value().c_str(); // NOLINT(readability-redundant-string-cstr)
|
||||
|
||||
// Validate base64url is not empty
|
||||
if (encoded.empty()) {
|
||||
request->send(400, ESPHOME_F("text/plain"), ESPHOME_F("Empty 'data' parameter"));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -2017,7 +2015,7 @@ void WebServer::handle_infrared_request(AsyncWebServerRequest *request, const Ur
|
||||
// it outlives the call - set_raw_timings_base64url stores a pointer, so the string
|
||||
// must remain valid until perform() completes.
|
||||
// ESP8266 also needs this because ESPAsyncWebServer callbacks run in "sys" context.
|
||||
this->defer([call, encoded = std::string(data_arg.c_str(), data_arg.length())]() mutable {
|
||||
this->defer([call, encoded = std::move(encoded)]() mutable {
|
||||
call.set_raw_timings_base64url(encoded);
|
||||
call.perform();
|
||||
});
|
||||
|
||||
@@ -513,9 +513,11 @@ class WebServer : public Controller,
|
||||
template<typename T, typename Ret>
|
||||
void parse_light_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call, Ret (T::*setter)(float),
|
||||
float scale = 1.0f) {
|
||||
auto value = parse_number<float>(request->arg(param_name).c_str());
|
||||
if (value.has_value()) {
|
||||
(call.*setter)(*value / scale);
|
||||
if (request->hasParam(param_name)) {
|
||||
auto value = parse_number<float>(request->getParam(param_name)->value().c_str());
|
||||
if (value.has_value()) {
|
||||
(call.*setter)(*value / scale);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -523,19 +525,34 @@ class WebServer : public Controller,
|
||||
template<typename T, typename Ret>
|
||||
void parse_light_param_uint_(AsyncWebServerRequest *request, ParamNameType param_name, T &call,
|
||||
Ret (T::*setter)(uint32_t), uint32_t scale = 1) {
|
||||
auto value = parse_number<uint32_t>(request->arg(param_name).c_str());
|
||||
if (value.has_value()) {
|
||||
(call.*setter)(*value * scale);
|
||||
if (request->hasParam(param_name)) {
|
||||
auto value = parse_number<uint32_t>(request->getParam(param_name)->value().c_str());
|
||||
if (value.has_value()) {
|
||||
(call.*setter)(*value * scale);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Generic helper to parse and apply a numeric parameter
|
||||
template<typename NumT, typename T, typename Ret>
|
||||
void parse_num_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call, Ret (T::*setter)(NumT)) {
|
||||
auto value = parse_number<NumT>(request->arg(param_name).c_str());
|
||||
if (value.has_value()) {
|
||||
(call.*setter)(*value);
|
||||
// Generic helper to parse and apply a float parameter
|
||||
template<typename T, typename Ret>
|
||||
void parse_float_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call, Ret (T::*setter)(float)) {
|
||||
if (request->hasParam(param_name)) {
|
||||
auto value = parse_number<float>(request->getParam(param_name)->value().c_str());
|
||||
if (value.has_value()) {
|
||||
(call.*setter)(*value);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Generic helper to parse and apply an int parameter
|
||||
template<typename T, typename Ret>
|
||||
void parse_int_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call, Ret (T::*setter)(int)) {
|
||||
if (request->hasParam(param_name)) {
|
||||
auto value = parse_number<int>(request->getParam(param_name)->value().c_str());
|
||||
if (value.has_value()) {
|
||||
(call.*setter)(*value);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -543,9 +560,10 @@ class WebServer : public Controller,
|
||||
template<typename T, typename Ret>
|
||||
void parse_string_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call,
|
||||
Ret (T::*setter)(const std::string &)) {
|
||||
if (request->hasArg(param_name)) {
|
||||
const auto &value = request->arg(param_name);
|
||||
(call.*setter)(std::string(value.c_str(), value.length()));
|
||||
if (request->hasParam(param_name)) {
|
||||
// .c_str() is required for Arduino framework where value() returns Arduino String instead of std::string
|
||||
std::string value = request->getParam(param_name)->value().c_str(); // NOLINT(readability-redundant-string-cstr)
|
||||
(call.*setter)(value);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -555,9 +573,8 @@ class WebServer : public Controller,
|
||||
// Invalid values are ignored (setter not called)
|
||||
template<typename T, typename Ret>
|
||||
void parse_bool_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call, Ret (T::*setter)(bool)) {
|
||||
const auto ¶m_value = request->arg(param_name);
|
||||
// Arduino String has isEmpty() not empty(), use length() for cross-platform compatibility
|
||||
if (param_value.length() > 0) { // NOLINT(readability-container-size-empty)
|
||||
if (request->hasParam(param_name)) {
|
||||
auto param_value = request->getParam(param_name)->value();
|
||||
// First check on/off (default), then true/false (custom)
|
||||
auto val = parse_on_off(param_value.c_str());
|
||||
if (val == PARSE_NONE) {
|
||||
|
||||
@@ -1,13 +1,17 @@
|
||||
#ifdef USE_ESP32
|
||||
#include <memory>
|
||||
#include <cstring>
|
||||
#include <cctype>
|
||||
#include "esphome/core/helpers.h"
|
||||
#include "esphome/core/log.h"
|
||||
#include "http_parser.h"
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
namespace esphome::web_server_idf {
|
||||
|
||||
static const char *const TAG = "web_server_idf_utils";
|
||||
|
||||
size_t url_decode(char *str) {
|
||||
char *start = str;
|
||||
char *ptr = str, buf;
|
||||
@@ -50,15 +54,32 @@ optional<std::string> request_get_header(httpd_req_t *req, const char *name) {
|
||||
return {str};
|
||||
}
|
||||
|
||||
optional<std::string> request_get_url_query(httpd_req_t *req) {
|
||||
auto len = httpd_req_get_url_query_len(req);
|
||||
if (len == 0) {
|
||||
return {};
|
||||
}
|
||||
|
||||
std::string str;
|
||||
str.resize(len);
|
||||
|
||||
auto res = httpd_req_get_url_query_str(req, &str[0], len + 1);
|
||||
if (res != ESP_OK) {
|
||||
ESP_LOGW(TAG, "Can't get query for request: %s", esp_err_to_name(res));
|
||||
return {};
|
||||
}
|
||||
|
||||
return {str};
|
||||
}
|
||||
|
||||
optional<std::string> query_key_value(const char *query_url, size_t query_len, const char *key) {
|
||||
if (query_url == nullptr || query_len == 0) {
|
||||
return {};
|
||||
}
|
||||
|
||||
// Value can't exceed query_len. Use small stack buffer for typical values,
|
||||
// heap fallback for long ones (e.g. base64 IR data) to limit stack usage
|
||||
// since callers may also have stack buffers for the query string.
|
||||
SmallBufferWithHeapFallback<128, char> val(query_len);
|
||||
// Use stack buffer for typical query strings, heap fallback for large ones
|
||||
SmallBufferWithHeapFallback<256, char> val(query_len);
|
||||
|
||||
if (httpd_query_key_value(query_url, key, val.get(), query_len) != ESP_OK) {
|
||||
return {};
|
||||
}
|
||||
@@ -67,18 +88,6 @@ optional<std::string> query_key_value(const char *query_url, size_t query_len, c
|
||||
return {val.get()};
|
||||
}
|
||||
|
||||
bool query_has_key(const char *query_url, size_t query_len, const char *key) {
|
||||
if (query_url == nullptr || query_len == 0) {
|
||||
return false;
|
||||
}
|
||||
// Minimal buffer — we only care if the key exists, not the value
|
||||
char buf[1];
|
||||
// httpd_query_key_value returns ESP_OK if found, ESP_ERR_HTTPD_RESULT_TRUNC if found
|
||||
// but value truncated (expected with 1-byte buffer), or other errors for invalid input
|
||||
auto err = httpd_query_key_value(query_url, key, buf, sizeof(buf));
|
||||
return err == ESP_OK || err == ESP_ERR_HTTPD_RESULT_TRUNC;
|
||||
}
|
||||
|
||||
// Helper function for case-insensitive string region comparison
|
||||
bool str_ncmp_ci(const char *s1, const char *s2, size_t n) {
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
|
||||
@@ -13,8 +13,11 @@ size_t url_decode(char *str);
|
||||
|
||||
bool request_has_header(httpd_req_t *req, const char *name);
|
||||
optional<std::string> request_get_header(httpd_req_t *req, const char *name);
|
||||
optional<std::string> request_get_url_query(httpd_req_t *req);
|
||||
optional<std::string> query_key_value(const char *query_url, size_t query_len, const char *key);
|
||||
bool query_has_key(const char *query_url, size_t query_len, const char *key);
|
||||
inline optional<std::string> query_key_value(const std::string &query_url, const std::string &key) {
|
||||
return query_key_value(query_url.c_str(), query_url.size(), key.c_str());
|
||||
}
|
||||
|
||||
// Helper function for case-insensitive character comparison
|
||||
inline bool char_equals_ci(char a, char b) { return ::tolower(a) == ::tolower(b); }
|
||||
|
||||
@@ -393,7 +393,13 @@ AsyncWebParameter *AsyncWebServerRequest::getParam(const char *name) {
|
||||
}
|
||||
|
||||
// Look up value from query strings
|
||||
auto val = this->find_query_value_(name);
|
||||
optional<std::string> val = query_key_value(this->post_query_.c_str(), this->post_query_.size(), name);
|
||||
if (!val.has_value()) {
|
||||
auto url_query = request_get_url_query(*this);
|
||||
if (url_query.has_value()) {
|
||||
val = query_key_value(url_query.value().c_str(), url_query.value().size(), name);
|
||||
}
|
||||
}
|
||||
|
||||
// Don't cache misses to avoid wasting memory when handlers check for
|
||||
// optional parameters that don't exist in the request
|
||||
@@ -406,50 +412,6 @@ AsyncWebParameter *AsyncWebServerRequest::getParam(const char *name) {
|
||||
return param;
|
||||
}
|
||||
|
||||
/// Search post_query then URL query with a callback.
|
||||
/// Returns first truthy result, or value-initialized default.
|
||||
/// URL query is accessed directly from req->uri (same pattern as url_to()).
|
||||
template<typename Func>
|
||||
static auto search_query_sources(httpd_req_t *req, const std::string &post_query, const char *name, Func func)
|
||||
-> decltype(func(nullptr, size_t{0}, name)) {
|
||||
if (!post_query.empty()) {
|
||||
auto result = func(post_query.c_str(), post_query.size(), name);
|
||||
if (result) {
|
||||
return result;
|
||||
}
|
||||
}
|
||||
// Use httpd API for query length, then access string directly from URI.
|
||||
// http_parser identifies components by offset/length without modifying the URI string.
|
||||
// This is the same pattern used by url_to().
|
||||
auto len = httpd_req_get_url_query_len(req);
|
||||
if (len == 0) {
|
||||
return {};
|
||||
}
|
||||
const char *query = strchr(req->uri, '?');
|
||||
if (query == nullptr) {
|
||||
return {};
|
||||
}
|
||||
query++; // skip '?'
|
||||
return func(query, len, name);
|
||||
}
|
||||
|
||||
optional<std::string> AsyncWebServerRequest::find_query_value_(const char *name) const {
|
||||
return search_query_sources(this->req_, this->post_query_, name,
|
||||
[](const char *q, size_t len, const char *k) { return query_key_value(q, len, k); });
|
||||
}
|
||||
|
||||
bool AsyncWebServerRequest::hasArg(const char *name) {
|
||||
return search_query_sources(this->req_, this->post_query_, name, query_has_key);
|
||||
}
|
||||
|
||||
std::string AsyncWebServerRequest::arg(const char *name) {
|
||||
auto val = this->find_query_value_(name);
|
||||
if (val.has_value()) {
|
||||
return std::move(val.value());
|
||||
}
|
||||
return {};
|
||||
}
|
||||
|
||||
void AsyncWebServerResponse::addHeader(const char *name, const char *value) {
|
||||
httpd_resp_set_hdr(*this->req_, name, value);
|
||||
}
|
||||
|
||||
@@ -116,8 +116,7 @@ class AsyncWebServerRequest {
|
||||
/// Write URL (without query string) to buffer, returns StringRef pointing to buffer.
|
||||
/// URL is decoded (e.g., %20 -> space).
|
||||
StringRef url_to(std::span<char, URL_BUF_SIZE> buffer) const;
|
||||
// Remove before 2026.9.0
|
||||
ESPDEPRECATED("Use url_to() instead. Removed in 2026.9.0", "2026.3.0")
|
||||
/// Get URL as std::string. Prefer url_to() to avoid heap allocation.
|
||||
std::string url() const {
|
||||
char buffer[URL_BUF_SIZE];
|
||||
return std::string(this->url_to(buffer));
|
||||
@@ -171,8 +170,14 @@ class AsyncWebServerRequest {
|
||||
AsyncWebParameter *getParam(const std::string &name) { return this->getParam(name.c_str()); }
|
||||
|
||||
// NOLINTNEXTLINE(readability-identifier-naming)
|
||||
bool hasArg(const char *name);
|
||||
std::string arg(const char *name);
|
||||
bool hasArg(const char *name) { return this->hasParam(name); }
|
||||
std::string arg(const char *name) {
|
||||
auto *param = this->getParam(name);
|
||||
if (param) {
|
||||
return param->value();
|
||||
}
|
||||
return {};
|
||||
}
|
||||
std::string arg(const std::string &name) { return this->arg(name.c_str()); }
|
||||
|
||||
operator httpd_req_t *() const { return this->req_; }
|
||||
@@ -187,7 +192,6 @@ class AsyncWebServerRequest {
|
||||
// is faster than tree/hash overhead. AsyncWebParameter stores both name and value to avoid
|
||||
// duplicate storage. Only successful lookups are cached to prevent cache pollution when
|
||||
// handlers check for optional parameters that don't exist.
|
||||
optional<std::string> find_query_value_(const char *name) const;
|
||||
std::vector<AsyncWebParameter *> params_;
|
||||
std::string post_query_;
|
||||
AsyncWebServerRequest(httpd_req_t *req) : req_(req) {}
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <type_traits>
|
||||
|
||||
#ifdef USE_ESP32
|
||||
#if (ESP_IDF_VERSION_MAJOR >= 5 && ESP_IDF_VERSION_MINOR >= 1)
|
||||
@@ -1320,61 +1319,20 @@ void WiFiComponent::start_scanning() {
|
||||
// Using insertion sort instead of std::stable_sort saves flash memory
|
||||
// by avoiding template instantiations (std::rotate, std::stable_sort, lambdas)
|
||||
// IMPORTANT: This sort is stable (preserves relative order of equal elements)
|
||||
//
|
||||
// Uses raw memcpy instead of copy assignment to avoid CompactString's
|
||||
// destructor/constructor overhead (heap delete[]/new[] for long SSIDs).
|
||||
// Copy assignment calls ~CompactString() then placement-new for every shift,
|
||||
// which means delete[]/new[] per shift for heap-allocated SSIDs. With 70+
|
||||
// networks (e.g., captive portal showing full scan results), this caused
|
||||
// event loop blocking from hundreds of heap operations in a tight loop.
|
||||
//
|
||||
// This is safe because we're permuting elements within the same array —
|
||||
// each slot is overwritten exactly once, so no ownership duplication occurs.
|
||||
// All members of WiFiScanResult are either trivially copyable (bssid, channel,
|
||||
// rssi, priority, flags) or CompactString, which stores either inline data or
|
||||
// a heap pointer — never a self-referential pointer (unlike std::string's SSO
|
||||
// on some implementations). This was not possible before PR#13472 replaced
|
||||
// std::string with CompactString, since std::string's internal layout is
|
||||
// implementation-defined and may use self-referential pointers.
|
||||
//
|
||||
// TODO: If C++ standardizes std::trivially_relocatable, add the assertion for
|
||||
// WiFiScanResult/CompactString here to formally express the memcpy safety guarantee.
|
||||
template<typename VectorType> static void insertion_sort_scan_results(VectorType &results) {
|
||||
// memcpy-based sort requires no self-referential pointers or virtual dispatch.
|
||||
// These static_asserts guard the assumptions. If any fire, the memcpy sort
|
||||
// must be reviewed for safety before updating the expected values.
|
||||
//
|
||||
// No vtable pointers (memcpy would corrupt vptr)
|
||||
static_assert(!std::is_polymorphic<WiFiScanResult>::value, "WiFiScanResult must not have vtable");
|
||||
static_assert(!std::is_polymorphic<CompactString>::value, "CompactString must not have vtable");
|
||||
// Standard layout ensures predictable memory layout with no virtual bases
|
||||
// and no mixed-access-specifier reordering
|
||||
static_assert(std::is_standard_layout<WiFiScanResult>::value, "WiFiScanResult must be standard layout");
|
||||
static_assert(std::is_standard_layout<CompactString>::value, "CompactString must be standard layout");
|
||||
// Size checks catch added/removed fields that may need safety review
|
||||
static_assert(sizeof(WiFiScanResult) == 32, "WiFiScanResult size changed - verify memcpy sort is still safe");
|
||||
static_assert(sizeof(CompactString) == 20, "CompactString size changed - verify memcpy sort is still safe");
|
||||
// Alignment must match for reinterpret_cast of key_buf to be valid
|
||||
static_assert(alignof(WiFiScanResult) <= alignof(std::max_align_t), "WiFiScanResult alignment exceeds max_align_t");
|
||||
const size_t size = results.size();
|
||||
constexpr size_t elem_size = sizeof(WiFiScanResult);
|
||||
// Suppress warnings for intentional memcpy on non-trivially-copyable type.
|
||||
// Safety is guaranteed by the static_asserts above and the permutation invariant.
|
||||
// NOLINTNEXTLINE(bugprone-undefined-memory-manipulation)
|
||||
auto *memcpy_fn = &memcpy;
|
||||
for (size_t i = 1; i < size; i++) {
|
||||
alignas(WiFiScanResult) uint8_t key_buf[elem_size];
|
||||
memcpy_fn(key_buf, &results[i], elem_size);
|
||||
const auto &key = *reinterpret_cast<const WiFiScanResult *>(key_buf);
|
||||
// Make a copy to avoid issues with move semantics during comparison
|
||||
WiFiScanResult key = results[i];
|
||||
int32_t j = i - 1;
|
||||
|
||||
// Move elements that are worse than key to the right
|
||||
// For stability, we only move if key is strictly better than results[j]
|
||||
while (j >= 0 && wifi_scan_result_is_better(key, results[j])) {
|
||||
memcpy_fn(&results[j + 1], &results[j], elem_size);
|
||||
results[j + 1] = results[j];
|
||||
j--;
|
||||
}
|
||||
memcpy_fn(&results[j + 1], key_buf, elem_size);
|
||||
results[j + 1] = key;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -10,7 +10,6 @@
|
||||
|
||||
#include <span>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
#include <vector>
|
||||
|
||||
#ifdef USE_LIBRETINY
|
||||
@@ -220,14 +219,6 @@ class CompactString {
|
||||
};
|
||||
|
||||
static_assert(sizeof(CompactString) == 20, "CompactString must be exactly 20 bytes");
|
||||
// CompactString is not trivially copyable (non-trivial destructor/copy for heap case).
|
||||
// However, its layout has no self-referential pointers: storage_[] contains either inline
|
||||
// data or an external heap pointer — never a pointer to itself. This is unlike libstdc++
|
||||
// std::string SSO where _M_p points to _M_local_buf within the same object.
|
||||
// This property allows memcpy-based permutation sorting where each element ends up in
|
||||
// exactly one slot (no ownership duplication). These asserts document that layout property.
|
||||
static_assert(std::is_standard_layout<CompactString>::value, "CompactString must be standard layout");
|
||||
static_assert(!std::is_polymorphic<CompactString>::value, "CompactString must not have vtable");
|
||||
|
||||
class WiFiAP {
|
||||
friend class WiFiComponent;
|
||||
@@ -511,8 +502,6 @@ class WiFiComponent : public Component {
|
||||
}
|
||||
|
||||
network::IPAddresses wifi_sta_ip_addresses();
|
||||
// Remove before 2026.9.0
|
||||
ESPDEPRECATED("Use wifi_ssid_to() instead. Removed in 2026.9.0", "2026.3.0")
|
||||
std::string wifi_ssid();
|
||||
/// Write SSID to buffer without heap allocation.
|
||||
/// Returns pointer to buffer, or empty string if not connected.
|
||||
|
||||
@@ -1083,9 +1083,6 @@ template<std::size_t N> std::string format_hex(const std::array<uint8_t, N> &dat
|
||||
* Each byte is displayed as a two-digit uppercase hex value, separated by the specified separator.
|
||||
* Optionally includes the total byte count in parentheses at the end.
|
||||
*
|
||||
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
|
||||
* Causes heap fragmentation on long-running devices.
|
||||
*
|
||||
* @param data Pointer to the byte array to format.
|
||||
* @param length Number of bytes in the array.
|
||||
* @param separator Character to use between hex bytes (default: '.').
|
||||
@@ -1111,9 +1108,6 @@ std::string format_hex_pretty(const uint8_t *data, size_t length, char separator
|
||||
*
|
||||
* Similar to the byte array version, but formats 16-bit words as 4-digit hex values.
|
||||
*
|
||||
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
|
||||
* Causes heap fragmentation on long-running devices.
|
||||
*
|
||||
* @param data Pointer to the 16-bit word array to format.
|
||||
* @param length Number of 16-bit words in the array.
|
||||
* @param separator Character to use between hex words (default: '.').
|
||||
@@ -1137,9 +1131,6 @@ std::string format_hex_pretty(const uint16_t *data, size_t length, char separato
|
||||
* Convenience overload for std::vector<uint8_t>. Formats each byte as a two-digit
|
||||
* uppercase hex value with customizable separator.
|
||||
*
|
||||
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
|
||||
* Causes heap fragmentation on long-running devices.
|
||||
*
|
||||
* @param data Vector of bytes to format.
|
||||
* @param separator Character to use between hex bytes (default: '.').
|
||||
* @param show_length Whether to append the byte count in parentheses (default: true).
|
||||
@@ -1163,9 +1154,6 @@ std::string format_hex_pretty(const std::vector<uint8_t> &data, char separator =
|
||||
* Convenience overload for std::vector<uint16_t>. Each 16-bit word is formatted
|
||||
* as a 4-digit uppercase hex value in big-endian order.
|
||||
*
|
||||
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
|
||||
* Causes heap fragmentation on long-running devices.
|
||||
*
|
||||
* @param data Vector of 16-bit words to format.
|
||||
* @param separator Character to use between hex words (default: '.').
|
||||
* @param show_length Whether to append the word count in parentheses (default: true).
|
||||
@@ -1188,9 +1176,6 @@ std::string format_hex_pretty(const std::vector<uint16_t> &data, char separator
|
||||
* Treats each character in the string as a byte and formats it in hex.
|
||||
* Useful for debugging binary data stored in std::string containers.
|
||||
*
|
||||
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
|
||||
* Causes heap fragmentation on long-running devices.
|
||||
*
|
||||
* @param data String whose bytes should be formatted as hex.
|
||||
* @param separator Character to use between hex bytes (default: '.').
|
||||
* @param show_length Whether to append the byte count in parentheses (default: true).
|
||||
@@ -1213,9 +1198,6 @@ std::string format_hex_pretty(const std::string &data, char separator = '.', boo
|
||||
* Converts the integer to big-endian byte order and formats each byte as hex.
|
||||
* The most significant byte appears first in the output string.
|
||||
*
|
||||
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
|
||||
* Causes heap fragmentation on long-running devices.
|
||||
*
|
||||
* @tparam T Unsigned integer type (uint8_t, uint16_t, uint32_t, uint64_t, etc.).
|
||||
* @param val The unsigned integer value to format.
|
||||
* @param separator Character to use between hex bytes (default: '.').
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
#include "helpers.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
|
||||
namespace esphome {
|
||||
|
||||
@@ -67,58 +66,123 @@ std::string ESPTime::strftime(const char *format) {
|
||||
|
||||
std::string ESPTime::strftime(const std::string &format) { return this->strftime(format.c_str()); }
|
||||
|
||||
bool ESPTime::strptime(const char *time_to_parse, size_t len, ESPTime &esp_time) {
|
||||
uint16_t year;
|
||||
uint8_t month;
|
||||
uint8_t day;
|
||||
uint8_t hour;
|
||||
uint8_t minute;
|
||||
uint8_t second;
|
||||
int num;
|
||||
const int ilen = static_cast<int>(len);
|
||||
|
||||
if (sscanf(time_to_parse, "%04hu-%02hhu-%02hhu %02hhu:%02hhu:%02hhu %n", &year, &month, &day, // NOLINT
|
||||
&hour, // NOLINT
|
||||
&minute, // NOLINT
|
||||
&second, &num) == 6 && // NOLINT
|
||||
num == ilen) {
|
||||
esp_time.year = year;
|
||||
esp_time.month = month;
|
||||
esp_time.day_of_month = day;
|
||||
esp_time.hour = hour;
|
||||
esp_time.minute = minute;
|
||||
esp_time.second = second;
|
||||
} else if (sscanf(time_to_parse, "%04hu-%02hhu-%02hhu %02hhu:%02hhu %n", &year, &month, &day, // NOLINT
|
||||
&hour, // NOLINT
|
||||
&minute, &num) == 5 && // NOLINT
|
||||
num == ilen) {
|
||||
esp_time.year = year;
|
||||
esp_time.month = month;
|
||||
esp_time.day_of_month = day;
|
||||
esp_time.hour = hour;
|
||||
esp_time.minute = minute;
|
||||
esp_time.second = 0;
|
||||
} else if (sscanf(time_to_parse, "%02hhu:%02hhu:%02hhu %n", &hour, &minute, &second, &num) == 3 && // NOLINT
|
||||
num == ilen) {
|
||||
esp_time.hour = hour;
|
||||
esp_time.minute = minute;
|
||||
esp_time.second = second;
|
||||
} else if (sscanf(time_to_parse, "%02hhu:%02hhu %n", &hour, &minute, &num) == 2 && // NOLINT
|
||||
num == ilen) {
|
||||
esp_time.hour = hour;
|
||||
esp_time.minute = minute;
|
||||
esp_time.second = 0;
|
||||
} else if (sscanf(time_to_parse, "%04hu-%02hhu-%02hhu %n", &year, &month, &day, &num) == 3 && // NOLINT
|
||||
num == ilen) {
|
||||
esp_time.year = year;
|
||||
esp_time.month = month;
|
||||
esp_time.day_of_month = day;
|
||||
} else {
|
||||
return false;
|
||||
// Helper to parse exactly N digits, returns false if not enough digits
|
||||
static bool parse_digits(const char *&p, const char *end, int count, uint16_t &value) {
|
||||
value = 0;
|
||||
for (int i = 0; i < count; i++) {
|
||||
if (p >= end || *p < '0' || *p > '9')
|
||||
return false;
|
||||
value = value * 10 + (*p - '0');
|
||||
p++;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Helper to check for expected character
|
||||
static bool expect_char(const char *&p, const char *end, char expected) {
|
||||
if (p >= end || *p != expected)
|
||||
return false;
|
||||
p++;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ESPTime::strptime(const char *time_to_parse, size_t len, ESPTime &esp_time) {
|
||||
// Supported formats:
|
||||
// YYYY-MM-DD HH:MM:SS (19 chars)
|
||||
// YYYY-MM-DD HH:MM (16 chars)
|
||||
// YYYY-MM-DD (10 chars)
|
||||
// HH:MM:SS (8 chars)
|
||||
// HH:MM (5 chars)
|
||||
|
||||
if (time_to_parse == nullptr || len == 0)
|
||||
return false;
|
||||
|
||||
const char *p = time_to_parse;
|
||||
const char *end = time_to_parse + len;
|
||||
uint16_t v1, v2, v3, v4, v5, v6;
|
||||
|
||||
// Try date formats first (start with 4-digit year)
|
||||
if (len >= 10 && time_to_parse[4] == '-') {
|
||||
// YYYY-MM-DD...
|
||||
if (!parse_digits(p, end, 4, v1))
|
||||
return false;
|
||||
if (!expect_char(p, end, '-'))
|
||||
return false;
|
||||
if (!parse_digits(p, end, 2, v2))
|
||||
return false;
|
||||
if (!expect_char(p, end, '-'))
|
||||
return false;
|
||||
if (!parse_digits(p, end, 2, v3))
|
||||
return false;
|
||||
|
||||
esp_time.year = v1;
|
||||
esp_time.month = v2;
|
||||
esp_time.day_of_month = v3;
|
||||
|
||||
if (p == end) {
|
||||
// YYYY-MM-DD (date only)
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!expect_char(p, end, ' '))
|
||||
return false;
|
||||
|
||||
// Continue with time part: HH:MM[:SS]
|
||||
if (!parse_digits(p, end, 2, v4))
|
||||
return false;
|
||||
if (!expect_char(p, end, ':'))
|
||||
return false;
|
||||
if (!parse_digits(p, end, 2, v5))
|
||||
return false;
|
||||
|
||||
esp_time.hour = v4;
|
||||
esp_time.minute = v5;
|
||||
|
||||
if (p == end) {
|
||||
// YYYY-MM-DD HH:MM
|
||||
esp_time.second = 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!expect_char(p, end, ':'))
|
||||
return false;
|
||||
if (!parse_digits(p, end, 2, v6))
|
||||
return false;
|
||||
|
||||
esp_time.second = v6;
|
||||
return p == end; // YYYY-MM-DD HH:MM:SS
|
||||
}
|
||||
|
||||
// Try time-only formats (HH:MM[:SS])
|
||||
if (len >= 5 && time_to_parse[2] == ':') {
|
||||
if (!parse_digits(p, end, 2, v1))
|
||||
return false;
|
||||
if (!expect_char(p, end, ':'))
|
||||
return false;
|
||||
if (!parse_digits(p, end, 2, v2))
|
||||
return false;
|
||||
|
||||
esp_time.hour = v1;
|
||||
esp_time.minute = v2;
|
||||
|
||||
if (p == end) {
|
||||
// HH:MM
|
||||
esp_time.second = 0;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!expect_char(p, end, ':'))
|
||||
return false;
|
||||
if (!parse_digits(p, end, 2, v3))
|
||||
return false;
|
||||
|
||||
esp_time.second = v3;
|
||||
return p == end; // HH:MM:SS
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void ESPTime::increment_second() {
|
||||
this->timestamp++;
|
||||
if (!increment_time_value(this->second, 0, 60))
|
||||
@@ -193,27 +257,67 @@ void ESPTime::recalc_timestamp_utc(bool use_day_of_year) {
|
||||
}
|
||||
|
||||
void ESPTime::recalc_timestamp_local() {
|
||||
struct tm tm;
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
// Calculate timestamp as if fields were UTC
|
||||
this->recalc_timestamp_utc(false);
|
||||
if (this->timestamp == -1) {
|
||||
return; // Invalid time
|
||||
}
|
||||
|
||||
tm.tm_year = this->year - 1900;
|
||||
tm.tm_mon = this->month - 1;
|
||||
tm.tm_mday = this->day_of_month;
|
||||
tm.tm_hour = this->hour;
|
||||
tm.tm_min = this->minute;
|
||||
tm.tm_sec = this->second;
|
||||
tm.tm_isdst = -1;
|
||||
// Now convert from local to UTC by adding the offset
|
||||
// POSIX: local = utc - offset, so utc = local + offset
|
||||
const auto &tz = time::get_global_tz();
|
||||
|
||||
this->timestamp = mktime(&tm);
|
||||
if (!tz.has_dst()) {
|
||||
// No DST - just apply standard offset
|
||||
this->timestamp += tz.std_offset_seconds;
|
||||
return;
|
||||
}
|
||||
|
||||
// Try both interpretations to match libc mktime() with tm_isdst=-1
|
||||
// For ambiguous times (fall-back repeated hour), prefer standard time
|
||||
// For invalid times (spring-forward skipped hour), libc normalizes forward
|
||||
time_t utc_if_dst = this->timestamp + tz.dst_offset_seconds;
|
||||
time_t utc_if_std = this->timestamp + tz.std_offset_seconds;
|
||||
|
||||
bool dst_valid = time::is_in_dst(utc_if_dst, tz);
|
||||
bool std_valid = !time::is_in_dst(utc_if_std, tz);
|
||||
|
||||
if (dst_valid && std_valid) {
|
||||
// Ambiguous time (repeated hour during fall-back) - prefer standard time
|
||||
this->timestamp = utc_if_std;
|
||||
} else if (dst_valid) {
|
||||
// Only DST interpretation is valid
|
||||
this->timestamp = utc_if_dst;
|
||||
} else if (std_valid) {
|
||||
// Only standard interpretation is valid
|
||||
this->timestamp = utc_if_std;
|
||||
} else {
|
||||
// Invalid time (skipped hour during spring-forward)
|
||||
// libc normalizes forward: 02:30 CST -> 08:30 UTC -> 03:30 CDT
|
||||
// Using std offset achieves this since the UTC result falls during DST
|
||||
this->timestamp = utc_if_std;
|
||||
}
|
||||
#else
|
||||
// No timezone support - treat as UTC
|
||||
this->recalc_timestamp_utc(false);
|
||||
#endif
|
||||
}
|
||||
|
||||
int32_t ESPTime::timezone_offset() {
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
time_t now = ::time(nullptr);
|
||||
struct tm local_tm = *::localtime(&now);
|
||||
local_tm.tm_isdst = 0; // Cause mktime to ignore daylight saving time because we want to include it in the offset.
|
||||
time_t local_time = mktime(&local_tm);
|
||||
struct tm utc_tm = *::gmtime(&now);
|
||||
time_t utc_time = mktime(&utc_tm);
|
||||
return static_cast<int32_t>(local_time - utc_time);
|
||||
const auto &tz = time::get_global_tz();
|
||||
// POSIX offset is positive west, but we return offset to add to UTC to get local
|
||||
// So we negate the POSIX offset
|
||||
if (time::is_in_dst(now, tz)) {
|
||||
return -tz.dst_offset_seconds;
|
||||
}
|
||||
return -tz.std_offset_seconds;
|
||||
#else
|
||||
// No timezone support - no offset
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool ESPTime::operator<(const ESPTime &other) const { return this->timestamp < other.timestamp; }
|
||||
|
||||
@@ -7,6 +7,10 @@
|
||||
#include <span>
|
||||
#include <string>
|
||||
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
#include "esphome/components/time/posix_tz.h"
|
||||
#endif
|
||||
|
||||
namespace esphome {
|
||||
|
||||
template<typename T> bool increment_time_value(T ¤t, uint16_t begin, uint16_t end);
|
||||
@@ -105,11 +109,17 @@ struct ESPTime {
|
||||
* @return The generated ESPTime
|
||||
*/
|
||||
static ESPTime from_epoch_local(time_t epoch) {
|
||||
struct tm *c_tm = ::localtime(&epoch);
|
||||
if (c_tm == nullptr) {
|
||||
return ESPTime{}; // Return an invalid ESPTime
|
||||
#ifdef USE_TIME_TIMEZONE
|
||||
struct tm local_tm;
|
||||
if (time::epoch_to_local_tm(epoch, time::get_global_tz(), &local_tm)) {
|
||||
return ESPTime::from_c_tm(&local_tm, epoch);
|
||||
}
|
||||
return ESPTime::from_c_tm(c_tm, epoch);
|
||||
// Fallback to UTC if conversion failed
|
||||
return ESPTime::from_epoch_utc(epoch);
|
||||
#else
|
||||
// No timezone support - return UTC (no TZ configured, localtime would return UTC anyway)
|
||||
return ESPTime::from_epoch_utc(epoch);
|
||||
#endif
|
||||
}
|
||||
/** Convert an UTC epoch timestamp to a UTC time ESPTime instance.
|
||||
*
|
||||
|
||||
@@ -369,7 +369,7 @@ def get_logger_tags():
|
||||
"api.service",
|
||||
]
|
||||
for file in CORE_COMPONENTS_PATH.rglob("*.cpp"):
|
||||
data = file.read_text(encoding="utf-8")
|
||||
data = file.read_text()
|
||||
match = pattern.search(data)
|
||||
if match:
|
||||
tags.append(match.group(1))
|
||||
|
||||
@@ -66,6 +66,7 @@ def create_test_config(config_name: str, includes: list[str]) -> dict:
|
||||
],
|
||||
"build_flags": [
|
||||
"-Og", # optimize for debug
|
||||
"-DUSE_TIME_TIMEZONE", # enable timezone code paths for testing
|
||||
],
|
||||
"debug_build_flags": [ # only for debug builds
|
||||
"-g3", # max debug info
|
||||
|
||||
@@ -3,15 +3,9 @@ display:
|
||||
spi_16: true
|
||||
pixel_mode: 18bit
|
||||
model: ili9488
|
||||
dc_pin:
|
||||
allow_other_uses: true
|
||||
number: ${dc_pin}
|
||||
cs_pin:
|
||||
allow_other_uses: true
|
||||
number: ${cs_pin}
|
||||
reset_pin:
|
||||
allow_other_uses: true
|
||||
number: ${reset_pin}
|
||||
dc_pin: ${dc_pin}
|
||||
cs_pin: ${cs_pin}
|
||||
reset_pin: ${reset_pin}
|
||||
data_rate: 20MHz
|
||||
invert_colors: true
|
||||
show_test_card: true
|
||||
@@ -30,15 +24,3 @@ display:
|
||||
height: 200
|
||||
enable_pin: ${enable_pin}
|
||||
bus_mode: single
|
||||
|
||||
- platform: mipi_spi
|
||||
model: WAVESHARE-1.83-V2
|
||||
dc_pin:
|
||||
allow_other_uses: true
|
||||
number: ${dc_pin}
|
||||
cs_pin:
|
||||
allow_other_uses: true
|
||||
number: ${cs_pin}
|
||||
reset_pin:
|
||||
allow_other_uses: true
|
||||
number: ${reset_pin}
|
||||
|
||||
1266
tests/components/time/posix_tz_parser.cpp
Normal file
1266
tests/components/time/posix_tz_parser.cpp
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user