mirror of
https://github.com/esphome/esphome.git
synced 2026-02-09 17:21:57 +00:00
Compare commits
85 Commits
no_gen_emp
...
integratio
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
86c1803538 | ||
|
|
eb8bb260e5 | ||
|
|
ef079f9113 | ||
|
|
647f39504a | ||
|
|
b6c98f0586 | ||
|
|
77b46ba90f | ||
|
|
8cc6915558 | ||
|
|
10e71255a0 | ||
|
|
30521f7de6 | ||
|
|
c97ae656e4 | ||
|
|
f09e72766e | ||
|
|
a320e87a17 | ||
|
|
45932fabea | ||
|
|
f62ea6bdc2 | ||
|
|
675625cf25 | ||
|
|
6baeaf5b7b | ||
|
|
ca8617cf10 | ||
|
|
a0bc6a9922 | ||
|
|
d5295a894b | ||
|
|
fb6b96ff58 | ||
|
|
e07144ef74 | ||
|
|
1c4cf1a3e8 | ||
|
|
a198df34ee | ||
|
|
15904ab583 | ||
|
|
9c9e8ac388 | ||
|
|
04f4636d36 | ||
|
|
3cbadfe42a | ||
|
|
277a11f0ea | ||
|
|
08cca414e7 | ||
|
|
4db5835b6f | ||
|
|
527003e16b | ||
|
|
e9a0d06880 | ||
|
|
b2879f7f99 | ||
|
|
44e9346e9c | ||
|
|
6670c2b6c4 | ||
|
|
6013b473ca | ||
|
|
cc1f83ac35 | ||
|
|
1f1405364d | ||
|
|
5d3ae8cbec | ||
|
|
59a2f6f538 | ||
|
|
a9c37cae26 | ||
|
|
c8a93f31e9 | ||
|
|
f79448a09a | ||
|
|
5e096826c3 | ||
|
|
457d68256d | ||
|
|
a9029fb67a | ||
|
|
cd891d4b16 | ||
|
|
2784059a64 | ||
|
|
4827f53156 | ||
|
|
8dff0ee449 | ||
|
|
a7f04a6cf9 | ||
|
|
53bde863f5 | ||
|
|
dfb0c8670d | ||
|
|
7490efedd7 | ||
|
|
c28c97fbaf | ||
|
|
a0f736b7aa | ||
|
|
21f270677b | ||
|
|
d6e692e302 | ||
|
|
991ce396a9 | ||
|
|
68dfb844bd | ||
|
|
9742880bf7 | ||
|
|
13f9726534 | ||
|
|
dd07e25a8f | ||
|
|
a875a2fb9b | ||
|
|
836bfc625d | ||
|
|
2a17592d57 | ||
|
|
04697ac223 | ||
|
|
3f3cf83aab | ||
|
|
39013388dd | ||
|
|
cfbeea9983 | ||
|
|
8f6e1abbce | ||
|
|
c77d70c093 | ||
|
|
25762c62f8 | ||
|
|
441ec35d9f | ||
|
|
33c831dbb8 | ||
|
|
38aeb9be37 | ||
|
|
6b7c52799d | ||
|
|
f19bb2cd0a | ||
|
|
26c98a1e25 | ||
|
|
b544cf2ffe | ||
|
|
6d1281301f | ||
|
|
901192cca1 | ||
|
|
67e7ba4812 | ||
|
|
572376091e | ||
|
|
e7c9808b87 |
@@ -7,7 +7,6 @@ namespace esphome {
|
||||
namespace cse7766 {
|
||||
|
||||
static const char *const TAG = "cse7766";
|
||||
static constexpr size_t CSE7766_RAW_DATA_SIZE = 24;
|
||||
|
||||
void CSE7766Component::loop() {
|
||||
const uint32_t now = App.get_loop_component_start_time();
|
||||
@@ -16,25 +15,39 @@ void CSE7766Component::loop() {
|
||||
this->raw_data_index_ = 0;
|
||||
}
|
||||
|
||||
if (this->available() == 0) {
|
||||
// Early return prevents updating last_transmission_ when no data is available.
|
||||
int avail = this->available();
|
||||
if (avail <= 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
this->last_transmission_ = now;
|
||||
while (this->available() != 0) {
|
||||
this->read_byte(&this->raw_data_[this->raw_data_index_]);
|
||||
if (!this->check_byte_()) {
|
||||
this->raw_data_index_ = 0;
|
||||
this->status_set_warning();
|
||||
continue;
|
||||
}
|
||||
|
||||
if (this->raw_data_index_ == 23) {
|
||||
this->parse_data_();
|
||||
this->status_clear_warning();
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
// At 4800 baud (~480 bytes/sec) with ~122 Hz loop rate, typically ~4 bytes per call.
|
||||
uint8_t buf[CSE7766_RAW_DATA_SIZE];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
this->raw_data_index_ = (this->raw_data_index_ + 1) % 24;
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
this->raw_data_[this->raw_data_index_] = buf[i];
|
||||
if (!this->check_byte_()) {
|
||||
this->raw_data_index_ = 0;
|
||||
this->status_set_warning();
|
||||
continue;
|
||||
}
|
||||
|
||||
if (this->raw_data_index_ == CSE7766_RAW_DATA_SIZE - 1) {
|
||||
this->parse_data_();
|
||||
this->status_clear_warning();
|
||||
}
|
||||
|
||||
this->raw_data_index_ = (this->raw_data_index_ + 1) % CSE7766_RAW_DATA_SIZE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -53,14 +66,15 @@ bool CSE7766Component::check_byte_() {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (index == 23) {
|
||||
if (index == CSE7766_RAW_DATA_SIZE - 1) {
|
||||
uint8_t checksum = 0;
|
||||
for (uint8_t i = 2; i < 23; i++) {
|
||||
for (uint8_t i = 2; i < CSE7766_RAW_DATA_SIZE - 1; i++) {
|
||||
checksum += this->raw_data_[i];
|
||||
}
|
||||
|
||||
if (checksum != this->raw_data_[23]) {
|
||||
ESP_LOGW(TAG, "Invalid checksum from CSE7766: 0x%02X != 0x%02X", checksum, this->raw_data_[23]);
|
||||
if (checksum != this->raw_data_[CSE7766_RAW_DATA_SIZE - 1]) {
|
||||
ESP_LOGW(TAG, "Invalid checksum from CSE7766: 0x%02X != 0x%02X", checksum,
|
||||
this->raw_data_[CSE7766_RAW_DATA_SIZE - 1]);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
|
||||
@@ -8,6 +8,8 @@
|
||||
namespace esphome {
|
||||
namespace cse7766 {
|
||||
|
||||
static constexpr size_t CSE7766_RAW_DATA_SIZE = 24;
|
||||
|
||||
class CSE7766Component : public Component, public uart::UARTDevice {
|
||||
public:
|
||||
void set_voltage_sensor(sensor::Sensor *voltage_sensor) { voltage_sensor_ = voltage_sensor; }
|
||||
@@ -33,7 +35,7 @@ class CSE7766Component : public Component, public uart::UARTDevice {
|
||||
this->raw_data_[start_index + 2]);
|
||||
}
|
||||
|
||||
uint8_t raw_data_[24];
|
||||
uint8_t raw_data_[CSE7766_RAW_DATA_SIZE];
|
||||
uint8_t raw_data_index_{0};
|
||||
uint32_t last_transmission_{0};
|
||||
sensor::Sensor *voltage_sensor_{nullptr};
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
#include "dfplayer.h"
|
||||
#include "esphome/core/helpers.h"
|
||||
#include "esphome/core/log.h"
|
||||
|
||||
namespace esphome {
|
||||
@@ -131,140 +132,149 @@ void DFPlayer::send_cmd_(uint8_t cmd, uint16_t argument) {
|
||||
}
|
||||
|
||||
void DFPlayer::loop() {
|
||||
// Read message
|
||||
while (this->available()) {
|
||||
uint8_t byte;
|
||||
this->read_byte(&byte);
|
||||
|
||||
if (this->read_pos_ == DFPLAYER_READ_BUFFER_LENGTH)
|
||||
this->read_pos_ = 0;
|
||||
|
||||
switch (this->read_pos_) {
|
||||
case 0: // Start mark
|
||||
if (byte != 0x7E)
|
||||
continue;
|
||||
break;
|
||||
case 1: // Version
|
||||
if (byte != 0xFF) {
|
||||
ESP_LOGW(TAG, "Expected Version 0xFF, got %#02x", byte);
|
||||
this->read_pos_ = 0;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
case 2: // Buffer length
|
||||
if (byte != 0x06) {
|
||||
ESP_LOGW(TAG, "Expected Buffer length 0x06, got %#02x", byte);
|
||||
this->read_pos_ = 0;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
case 9: // End byte
|
||||
#ifdef ESPHOME_LOG_HAS_VERY_VERBOSE
|
||||
char byte_sequence[100];
|
||||
byte_sequence[0] = '\0';
|
||||
for (size_t i = 0; i < this->read_pos_ + 1; ++i) {
|
||||
snprintf(byte_sequence + strlen(byte_sequence), sizeof(byte_sequence) - strlen(byte_sequence), "%02X ",
|
||||
this->read_buffer_[i]);
|
||||
}
|
||||
ESP_LOGVV(TAG, "Received byte sequence: %s", byte_sequence);
|
||||
#endif
|
||||
if (byte != 0xEF) {
|
||||
ESP_LOGW(TAG, "Expected end byte 0xEF, got %#02x", byte);
|
||||
this->read_pos_ = 0;
|
||||
continue;
|
||||
}
|
||||
// Parse valid received command
|
||||
uint8_t cmd = this->read_buffer_[3];
|
||||
uint16_t argument = (this->read_buffer_[5] << 8) | this->read_buffer_[6];
|
||||
|
||||
ESP_LOGV(TAG, "Received message cmd: %#02x arg %#04x", cmd, argument);
|
||||
|
||||
switch (cmd) {
|
||||
case 0x3A:
|
||||
if (argument == 1) {
|
||||
ESP_LOGI(TAG, "USB loaded");
|
||||
} else if (argument == 2) {
|
||||
ESP_LOGI(TAG, "TF Card loaded");
|
||||
}
|
||||
break;
|
||||
case 0x3B:
|
||||
if (argument == 1) {
|
||||
ESP_LOGI(TAG, "USB unloaded");
|
||||
} else if (argument == 2) {
|
||||
ESP_LOGI(TAG, "TF Card unloaded");
|
||||
}
|
||||
break;
|
||||
case 0x3F:
|
||||
if (argument == 1) {
|
||||
ESP_LOGI(TAG, "USB available");
|
||||
} else if (argument == 2) {
|
||||
ESP_LOGI(TAG, "TF Card available");
|
||||
} else if (argument == 3) {
|
||||
ESP_LOGI(TAG, "USB, TF Card available");
|
||||
}
|
||||
break;
|
||||
case 0x40:
|
||||
ESP_LOGV(TAG, "Nack");
|
||||
this->ack_set_is_playing_ = false;
|
||||
this->ack_reset_is_playing_ = false;
|
||||
switch (argument) {
|
||||
case 0x01:
|
||||
ESP_LOGE(TAG, "Module is busy or uninitialized");
|
||||
break;
|
||||
case 0x02:
|
||||
ESP_LOGE(TAG, "Module is in sleep mode");
|
||||
break;
|
||||
case 0x03:
|
||||
ESP_LOGE(TAG, "Serial receive error");
|
||||
break;
|
||||
case 0x04:
|
||||
ESP_LOGE(TAG, "Checksum incorrect");
|
||||
break;
|
||||
case 0x05:
|
||||
ESP_LOGE(TAG, "Specified track is out of current track scope");
|
||||
this->is_playing_ = false;
|
||||
break;
|
||||
case 0x06:
|
||||
ESP_LOGE(TAG, "Specified track is not found");
|
||||
this->is_playing_ = false;
|
||||
break;
|
||||
case 0x07:
|
||||
ESP_LOGE(TAG, "Insertion error (an inserting operation only can be done when a track is being played)");
|
||||
break;
|
||||
case 0x08:
|
||||
ESP_LOGE(TAG, "SD card reading failed (SD card pulled out or damaged)");
|
||||
break;
|
||||
case 0x09:
|
||||
ESP_LOGE(TAG, "Entered into sleep mode");
|
||||
this->is_playing_ = false;
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case 0x41:
|
||||
ESP_LOGV(TAG, "Ack ok");
|
||||
this->is_playing_ |= this->ack_set_is_playing_;
|
||||
this->is_playing_ &= !this->ack_reset_is_playing_;
|
||||
this->ack_set_is_playing_ = false;
|
||||
this->ack_reset_is_playing_ = false;
|
||||
break;
|
||||
case 0x3C:
|
||||
ESP_LOGV(TAG, "Playback finished (USB drive)");
|
||||
this->is_playing_ = false;
|
||||
this->on_finished_playback_callback_.call();
|
||||
case 0x3D:
|
||||
ESP_LOGV(TAG, "Playback finished (SD card)");
|
||||
this->is_playing_ = false;
|
||||
this->on_finished_playback_callback_.call();
|
||||
break;
|
||||
default:
|
||||
ESP_LOGE(TAG, "Received unknown cmd %#02x arg %#04x", cmd, argument);
|
||||
}
|
||||
this->sent_cmd_ = 0;
|
||||
this->read_pos_ = 0;
|
||||
continue;
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[64];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
for (size_t bi = 0; bi < to_read; bi++) {
|
||||
uint8_t byte = buf[bi];
|
||||
|
||||
if (this->read_pos_ == DFPLAYER_READ_BUFFER_LENGTH)
|
||||
this->read_pos_ = 0;
|
||||
|
||||
switch (this->read_pos_) {
|
||||
case 0: // Start mark
|
||||
if (byte != 0x7E)
|
||||
continue;
|
||||
break;
|
||||
case 1: // Version
|
||||
if (byte != 0xFF) {
|
||||
ESP_LOGW(TAG, "Expected Version 0xFF, got %#02x", byte);
|
||||
this->read_pos_ = 0;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
case 2: // Buffer length
|
||||
if (byte != 0x06) {
|
||||
ESP_LOGW(TAG, "Expected Buffer length 0x06, got %#02x", byte);
|
||||
this->read_pos_ = 0;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
case 9: // End byte
|
||||
#ifdef ESPHOME_LOG_HAS_VERY_VERBOSE
|
||||
char byte_sequence[100];
|
||||
byte_sequence[0] = '\0';
|
||||
for (size_t i = 0; i < this->read_pos_ + 1; ++i) {
|
||||
snprintf(byte_sequence + strlen(byte_sequence), sizeof(byte_sequence) - strlen(byte_sequence), "%02X ",
|
||||
this->read_buffer_[i]);
|
||||
}
|
||||
ESP_LOGVV(TAG, "Received byte sequence: %s", byte_sequence);
|
||||
#endif
|
||||
if (byte != 0xEF) {
|
||||
ESP_LOGW(TAG, "Expected end byte 0xEF, got %#02x", byte);
|
||||
this->read_pos_ = 0;
|
||||
continue;
|
||||
}
|
||||
// Parse valid received command
|
||||
uint8_t cmd = this->read_buffer_[3];
|
||||
uint16_t argument = (this->read_buffer_[5] << 8) | this->read_buffer_[6];
|
||||
|
||||
ESP_LOGV(TAG, "Received message cmd: %#02x arg %#04x", cmd, argument);
|
||||
|
||||
switch (cmd) {
|
||||
case 0x3A:
|
||||
if (argument == 1) {
|
||||
ESP_LOGI(TAG, "USB loaded");
|
||||
} else if (argument == 2) {
|
||||
ESP_LOGI(TAG, "TF Card loaded");
|
||||
}
|
||||
break;
|
||||
case 0x3B:
|
||||
if (argument == 1) {
|
||||
ESP_LOGI(TAG, "USB unloaded");
|
||||
} else if (argument == 2) {
|
||||
ESP_LOGI(TAG, "TF Card unloaded");
|
||||
}
|
||||
break;
|
||||
case 0x3F:
|
||||
if (argument == 1) {
|
||||
ESP_LOGI(TAG, "USB available");
|
||||
} else if (argument == 2) {
|
||||
ESP_LOGI(TAG, "TF Card available");
|
||||
} else if (argument == 3) {
|
||||
ESP_LOGI(TAG, "USB, TF Card available");
|
||||
}
|
||||
break;
|
||||
case 0x40:
|
||||
ESP_LOGV(TAG, "Nack");
|
||||
this->ack_set_is_playing_ = false;
|
||||
this->ack_reset_is_playing_ = false;
|
||||
switch (argument) {
|
||||
case 0x01:
|
||||
ESP_LOGE(TAG, "Module is busy or uninitialized");
|
||||
break;
|
||||
case 0x02:
|
||||
ESP_LOGE(TAG, "Module is in sleep mode");
|
||||
break;
|
||||
case 0x03:
|
||||
ESP_LOGE(TAG, "Serial receive error");
|
||||
break;
|
||||
case 0x04:
|
||||
ESP_LOGE(TAG, "Checksum incorrect");
|
||||
break;
|
||||
case 0x05:
|
||||
ESP_LOGE(TAG, "Specified track is out of current track scope");
|
||||
this->is_playing_ = false;
|
||||
break;
|
||||
case 0x06:
|
||||
ESP_LOGE(TAG, "Specified track is not found");
|
||||
this->is_playing_ = false;
|
||||
break;
|
||||
case 0x07:
|
||||
ESP_LOGE(TAG,
|
||||
"Insertion error (an inserting operation only can be done when a track is being played)");
|
||||
break;
|
||||
case 0x08:
|
||||
ESP_LOGE(TAG, "SD card reading failed (SD card pulled out or damaged)");
|
||||
break;
|
||||
case 0x09:
|
||||
ESP_LOGE(TAG, "Entered into sleep mode");
|
||||
this->is_playing_ = false;
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case 0x41:
|
||||
ESP_LOGV(TAG, "Ack ok");
|
||||
this->is_playing_ |= this->ack_set_is_playing_;
|
||||
this->is_playing_ &= !this->ack_reset_is_playing_;
|
||||
this->ack_set_is_playing_ = false;
|
||||
this->ack_reset_is_playing_ = false;
|
||||
break;
|
||||
case 0x3C:
|
||||
ESP_LOGV(TAG, "Playback finished (USB drive)");
|
||||
this->is_playing_ = false;
|
||||
this->on_finished_playback_callback_.call();
|
||||
case 0x3D:
|
||||
ESP_LOGV(TAG, "Playback finished (SD card)");
|
||||
this->is_playing_ = false;
|
||||
this->on_finished_playback_callback_.call();
|
||||
break;
|
||||
default:
|
||||
ESP_LOGE(TAG, "Received unknown cmd %#02x arg %#04x", cmd, argument);
|
||||
}
|
||||
this->sent_cmd_ = 0;
|
||||
this->read_pos_ = 0;
|
||||
continue;
|
||||
}
|
||||
this->read_buffer_[this->read_pos_] = byte;
|
||||
this->read_pos_++;
|
||||
}
|
||||
this->read_buffer_[this->read_pos_] = byte;
|
||||
this->read_pos_++;
|
||||
}
|
||||
}
|
||||
void DFPlayer::dump_config() {
|
||||
|
||||
@@ -28,15 +28,28 @@ void DlmsMeterComponent::dump_config() {
|
||||
|
||||
void DlmsMeterComponent::loop() {
|
||||
// Read while data is available, netznoe uses two frames so allow 2x max frame length
|
||||
while (this->available()) {
|
||||
if (this->receive_buffer_.size() >= MBUS_MAX_FRAME_LENGTH * 2) {
|
||||
int avail = this->available();
|
||||
if (avail > 0) {
|
||||
size_t remaining = MBUS_MAX_FRAME_LENGTH * 2 - this->receive_buffer_.size();
|
||||
if (remaining == 0) {
|
||||
ESP_LOGW(TAG, "Receive buffer full, dropping remaining bytes");
|
||||
break;
|
||||
} else {
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
// Cap reads to remaining buffer capacity.
|
||||
if (static_cast<size_t>(avail) > remaining) {
|
||||
avail = remaining;
|
||||
}
|
||||
uint8_t buf[64];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
this->receive_buffer_.insert(this->receive_buffer_.end(), buf, buf + to_read);
|
||||
this->last_read_ = millis();
|
||||
}
|
||||
}
|
||||
uint8_t c;
|
||||
this->read_byte(&c);
|
||||
this->receive_buffer_.push_back(c);
|
||||
this->last_read_ = millis();
|
||||
}
|
||||
|
||||
if (!this->receive_buffer_.empty() && millis() - this->last_read_ > this->read_timeout_) {
|
||||
|
||||
@@ -40,9 +40,7 @@ bool Dsmr::ready_to_request_data_() {
|
||||
this->start_requesting_data_();
|
||||
}
|
||||
if (!this->requesting_data_) {
|
||||
while (this->available()) {
|
||||
this->read();
|
||||
}
|
||||
this->drain_rx_buffer_();
|
||||
}
|
||||
}
|
||||
return this->requesting_data_;
|
||||
@@ -115,13 +113,21 @@ void Dsmr::stop_requesting_data_() {
|
||||
} else {
|
||||
ESP_LOGV(TAG, "Stop reading data from P1 port");
|
||||
}
|
||||
while (this->available()) {
|
||||
this->read();
|
||||
}
|
||||
this->drain_rx_buffer_();
|
||||
this->requesting_data_ = false;
|
||||
}
|
||||
}
|
||||
|
||||
void Dsmr::drain_rx_buffer_() {
|
||||
uint8_t buf[64];
|
||||
int avail;
|
||||
while ((avail = this->available()) > 0) {
|
||||
if (!this->read_array(buf, std::min(static_cast<size_t>(avail), sizeof(buf)))) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Dsmr::reset_telegram_() {
|
||||
this->header_found_ = false;
|
||||
this->footer_found_ = false;
|
||||
@@ -133,120 +139,144 @@ void Dsmr::reset_telegram_() {
|
||||
|
||||
void Dsmr::receive_telegram_() {
|
||||
while (this->available_within_timeout_()) {
|
||||
const char c = this->read();
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
uint8_t buf[64];
|
||||
int avail = this->available();
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read))
|
||||
return;
|
||||
avail -= to_read;
|
||||
|
||||
// Find a new telegram header, i.e. forward slash.
|
||||
if (c == '/') {
|
||||
ESP_LOGV(TAG, "Header of telegram found");
|
||||
this->reset_telegram_();
|
||||
this->header_found_ = true;
|
||||
}
|
||||
if (!this->header_found_)
|
||||
continue;
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
const char c = static_cast<char>(buf[i]);
|
||||
|
||||
// Check for buffer overflow.
|
||||
if (this->bytes_read_ >= this->max_telegram_len_) {
|
||||
this->reset_telegram_();
|
||||
ESP_LOGE(TAG, "Error: telegram larger than buffer (%d bytes)", this->max_telegram_len_);
|
||||
return;
|
||||
}
|
||||
// Find a new telegram header, i.e. forward slash.
|
||||
if (c == '/') {
|
||||
ESP_LOGV(TAG, "Header of telegram found");
|
||||
this->reset_telegram_();
|
||||
this->header_found_ = true;
|
||||
}
|
||||
if (!this->header_found_)
|
||||
continue;
|
||||
|
||||
// Some v2.2 or v3 meters will send a new value which starts with '('
|
||||
// in a new line, while the value belongs to the previous ObisId. For
|
||||
// proper parsing, remove these new line characters.
|
||||
if (c == '(') {
|
||||
while (true) {
|
||||
auto previous_char = this->telegram_[this->bytes_read_ - 1];
|
||||
if (previous_char == '\n' || previous_char == '\r') {
|
||||
this->bytes_read_--;
|
||||
} else {
|
||||
break;
|
||||
// Check for buffer overflow.
|
||||
if (this->bytes_read_ >= this->max_telegram_len_) {
|
||||
this->reset_telegram_();
|
||||
ESP_LOGE(TAG, "Error: telegram larger than buffer (%d bytes)", this->max_telegram_len_);
|
||||
return;
|
||||
}
|
||||
|
||||
// Some v2.2 or v3 meters will send a new value which starts with '('
|
||||
// in a new line, while the value belongs to the previous ObisId. For
|
||||
// proper parsing, remove these new line characters.
|
||||
if (c == '(') {
|
||||
while (true) {
|
||||
auto previous_char = this->telegram_[this->bytes_read_ - 1];
|
||||
if (previous_char == '\n' || previous_char == '\r') {
|
||||
this->bytes_read_--;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Store the byte in the buffer.
|
||||
this->telegram_[this->bytes_read_] = c;
|
||||
this->bytes_read_++;
|
||||
|
||||
// Check for a footer, i.e. exclamation mark, followed by a hex checksum.
|
||||
if (c == '!') {
|
||||
ESP_LOGV(TAG, "Footer of telegram found");
|
||||
this->footer_found_ = true;
|
||||
continue;
|
||||
}
|
||||
// Check for the end of the hex checksum, i.e. a newline.
|
||||
if (this->footer_found_ && c == '\n') {
|
||||
// Parse the telegram and publish sensor values.
|
||||
this->parse_telegram();
|
||||
this->reset_telegram_();
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Store the byte in the buffer.
|
||||
this->telegram_[this->bytes_read_] = c;
|
||||
this->bytes_read_++;
|
||||
|
||||
// Check for a footer, i.e. exclamation mark, followed by a hex checksum.
|
||||
if (c == '!') {
|
||||
ESP_LOGV(TAG, "Footer of telegram found");
|
||||
this->footer_found_ = true;
|
||||
continue;
|
||||
}
|
||||
// Check for the end of the hex checksum, i.e. a newline.
|
||||
if (this->footer_found_ && c == '\n') {
|
||||
// Parse the telegram and publish sensor values.
|
||||
this->parse_telegram();
|
||||
this->reset_telegram_();
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Dsmr::receive_encrypted_telegram_() {
|
||||
while (this->available_within_timeout_()) {
|
||||
const char c = this->read();
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
uint8_t buf[64];
|
||||
int avail = this->available();
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read))
|
||||
return;
|
||||
avail -= to_read;
|
||||
|
||||
// Find a new telegram start byte.
|
||||
if (!this->header_found_) {
|
||||
if ((uint8_t) c != 0xDB) {
|
||||
continue;
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
const char c = static_cast<char>(buf[i]);
|
||||
|
||||
// Find a new telegram start byte.
|
||||
if (!this->header_found_) {
|
||||
if ((uint8_t) c != 0xDB) {
|
||||
continue;
|
||||
}
|
||||
ESP_LOGV(TAG, "Start byte 0xDB of encrypted telegram found");
|
||||
this->reset_telegram_();
|
||||
this->header_found_ = true;
|
||||
}
|
||||
|
||||
// Check for buffer overflow.
|
||||
if (this->crypt_bytes_read_ >= this->max_telegram_len_) {
|
||||
this->reset_telegram_();
|
||||
ESP_LOGE(TAG, "Error: encrypted telegram larger than buffer (%d bytes)", this->max_telegram_len_);
|
||||
return;
|
||||
}
|
||||
|
||||
// Store the byte in the buffer.
|
||||
this->crypt_telegram_[this->crypt_bytes_read_] = c;
|
||||
this->crypt_bytes_read_++;
|
||||
|
||||
// Read the length of the incoming encrypted telegram.
|
||||
if (this->crypt_telegram_len_ == 0 && this->crypt_bytes_read_ > 20) {
|
||||
// Complete header + data bytes
|
||||
this->crypt_telegram_len_ = 13 + (this->crypt_telegram_[11] << 8 | this->crypt_telegram_[12]);
|
||||
ESP_LOGV(TAG, "Encrypted telegram length: %d bytes", this->crypt_telegram_len_);
|
||||
}
|
||||
|
||||
// Check for the end of the encrypted telegram.
|
||||
if (this->crypt_telegram_len_ == 0 || this->crypt_bytes_read_ != this->crypt_telegram_len_) {
|
||||
continue;
|
||||
}
|
||||
ESP_LOGV(TAG, "End of encrypted telegram found");
|
||||
|
||||
// Decrypt the encrypted telegram.
|
||||
GCM<AES128> *gcmaes128{new GCM<AES128>()};
|
||||
gcmaes128->setKey(this->decryption_key_.data(), gcmaes128->keySize());
|
||||
// the iv is 8 bytes of the system title + 4 bytes frame counter
|
||||
// system title is at byte 2 and frame counter at byte 15
|
||||
for (int i = 10; i < 14; i++)
|
||||
this->crypt_telegram_[i] = this->crypt_telegram_[i + 4];
|
||||
constexpr uint16_t iv_size{12};
|
||||
gcmaes128->setIV(&this->crypt_telegram_[2], iv_size);
|
||||
gcmaes128->decrypt(reinterpret_cast<uint8_t *>(this->telegram_),
|
||||
// the ciphertext start at byte 18
|
||||
&this->crypt_telegram_[18],
|
||||
// cipher size
|
||||
this->crypt_bytes_read_ - 17);
|
||||
delete gcmaes128; // NOLINT(cppcoreguidelines-owning-memory)
|
||||
|
||||
this->bytes_read_ = strnlen(this->telegram_, this->max_telegram_len_);
|
||||
ESP_LOGV(TAG, "Decrypted telegram size: %d bytes", this->bytes_read_);
|
||||
ESP_LOGVV(TAG, "Decrypted telegram: %s", this->telegram_);
|
||||
|
||||
// Parse the decrypted telegram and publish sensor values.
|
||||
this->parse_telegram();
|
||||
this->reset_telegram_();
|
||||
return;
|
||||
}
|
||||
ESP_LOGV(TAG, "Start byte 0xDB of encrypted telegram found");
|
||||
this->reset_telegram_();
|
||||
this->header_found_ = true;
|
||||
}
|
||||
|
||||
// Check for buffer overflow.
|
||||
if (this->crypt_bytes_read_ >= this->max_telegram_len_) {
|
||||
this->reset_telegram_();
|
||||
ESP_LOGE(TAG, "Error: encrypted telegram larger than buffer (%d bytes)", this->max_telegram_len_);
|
||||
return;
|
||||
}
|
||||
|
||||
// Store the byte in the buffer.
|
||||
this->crypt_telegram_[this->crypt_bytes_read_] = c;
|
||||
this->crypt_bytes_read_++;
|
||||
|
||||
// Read the length of the incoming encrypted telegram.
|
||||
if (this->crypt_telegram_len_ == 0 && this->crypt_bytes_read_ > 20) {
|
||||
// Complete header + data bytes
|
||||
this->crypt_telegram_len_ = 13 + (this->crypt_telegram_[11] << 8 | this->crypt_telegram_[12]);
|
||||
ESP_LOGV(TAG, "Encrypted telegram length: %d bytes", this->crypt_telegram_len_);
|
||||
}
|
||||
|
||||
// Check for the end of the encrypted telegram.
|
||||
if (this->crypt_telegram_len_ == 0 || this->crypt_bytes_read_ != this->crypt_telegram_len_) {
|
||||
continue;
|
||||
}
|
||||
ESP_LOGV(TAG, "End of encrypted telegram found");
|
||||
|
||||
// Decrypt the encrypted telegram.
|
||||
GCM<AES128> *gcmaes128{new GCM<AES128>()};
|
||||
gcmaes128->setKey(this->decryption_key_.data(), gcmaes128->keySize());
|
||||
// the iv is 8 bytes of the system title + 4 bytes frame counter
|
||||
// system title is at byte 2 and frame counter at byte 15
|
||||
for (int i = 10; i < 14; i++)
|
||||
this->crypt_telegram_[i] = this->crypt_telegram_[i + 4];
|
||||
constexpr uint16_t iv_size{12};
|
||||
gcmaes128->setIV(&this->crypt_telegram_[2], iv_size);
|
||||
gcmaes128->decrypt(reinterpret_cast<uint8_t *>(this->telegram_),
|
||||
// the ciphertext start at byte 18
|
||||
&this->crypt_telegram_[18],
|
||||
// cipher size
|
||||
this->crypt_bytes_read_ - 17);
|
||||
delete gcmaes128; // NOLINT(cppcoreguidelines-owning-memory)
|
||||
|
||||
this->bytes_read_ = strnlen(this->telegram_, this->max_telegram_len_);
|
||||
ESP_LOGV(TAG, "Decrypted telegram size: %d bytes", this->bytes_read_);
|
||||
ESP_LOGVV(TAG, "Decrypted telegram: %s", this->telegram_);
|
||||
|
||||
// Parse the decrypted telegram and publish sensor values.
|
||||
this->parse_telegram();
|
||||
this->reset_telegram_();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -85,6 +85,7 @@ class Dsmr : public Component, public uart::UARTDevice {
|
||||
void receive_telegram_();
|
||||
void receive_encrypted_telegram_();
|
||||
void reset_telegram_();
|
||||
void drain_rx_buffer_();
|
||||
|
||||
/// Wait for UART data to become available within the read timeout.
|
||||
///
|
||||
|
||||
@@ -275,8 +275,19 @@ void LD2410Component::restart_and_read_all_info() {
|
||||
}
|
||||
|
||||
void LD2410Component::loop() {
|
||||
while (this->available()) {
|
||||
this->readline_(this->read());
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[MAX_LINE_LENGTH];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
this->readline_(buf[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -310,8 +310,19 @@ void LD2412Component::restart_and_read_all_info() {
|
||||
}
|
||||
|
||||
void LD2412Component::loop() {
|
||||
while (this->available()) {
|
||||
this->readline_(this->read());
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[MAX_LINE_LENGTH];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
this->readline_(buf[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -335,9 +335,10 @@ void LD2420Component::revert_config_action() {
|
||||
|
||||
void LD2420Component::loop() {
|
||||
// If there is a active send command do not process it here, the send command call will handle it.
|
||||
while (!this->cmd_active_ && this->available()) {
|
||||
this->readline_(this->read(), this->buffer_data_, MAX_LINE_LENGTH);
|
||||
if (this->cmd_active_) {
|
||||
return;
|
||||
}
|
||||
this->read_batch_(this->buffer_data_);
|
||||
}
|
||||
|
||||
void LD2420Component::update_radar_data(uint16_t const *gate_energy, uint8_t sample_number) {
|
||||
@@ -539,6 +540,23 @@ void LD2420Component::handle_simple_mode_(const uint8_t *inbuf, int len) {
|
||||
}
|
||||
}
|
||||
|
||||
void LD2420Component::read_batch_(std::span<uint8_t, MAX_LINE_LENGTH> buffer) {
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[MAX_LINE_LENGTH];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
this->readline_(buf[i], buffer.data(), buffer.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void LD2420Component::handle_ack_data_(uint8_t *buffer, int len) {
|
||||
this->cmd_reply_.command = buffer[CMD_FRAME_COMMAND];
|
||||
this->cmd_reply_.length = buffer[CMD_FRAME_DATA_LENGTH];
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
#include "esphome/components/uart/uart.h"
|
||||
#include "esphome/core/automation.h"
|
||||
#include "esphome/core/helpers.h"
|
||||
#include <span>
|
||||
#ifdef USE_TEXT_SENSOR
|
||||
#include "esphome/components/text_sensor/text_sensor.h"
|
||||
#endif
|
||||
@@ -165,6 +166,7 @@ class LD2420Component : public Component, public uart::UARTDevice {
|
||||
void handle_energy_mode_(uint8_t *buffer, int len);
|
||||
void handle_ack_data_(uint8_t *buffer, int len);
|
||||
void readline_(int rx_data, uint8_t *buffer, int len);
|
||||
void read_batch_(std::span<uint8_t, MAX_LINE_LENGTH> buffer);
|
||||
void set_calibration_(bool state) { this->calibration_ = state; };
|
||||
bool get_calibration_() { return this->calibration_; };
|
||||
|
||||
|
||||
@@ -276,8 +276,19 @@ void LD2450Component::dump_config() {
|
||||
}
|
||||
|
||||
void LD2450Component::loop() {
|
||||
while (this->available()) {
|
||||
this->readline_(this->read());
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[MAX_LINE_LENGTH];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
this->readline_(buf[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from esphome import automation
|
||||
import esphome.codegen as cg
|
||||
from esphome.components import audio, esp32, speaker
|
||||
from esphome.components import audio, esp32, socket, speaker
|
||||
import esphome.config_validation as cv
|
||||
from esphome.const import (
|
||||
CONF_BITS_PER_SAMPLE,
|
||||
@@ -61,7 +61,7 @@ def _set_stream_limits(config):
|
||||
def _validate_source_speaker(config):
|
||||
fconf = fv.full_config.get()
|
||||
|
||||
# Get ID for the output speaker and add it to the source speakrs config to easily inherit properties
|
||||
# Get ID for the output speaker and add it to the source speakers config to easily inherit properties
|
||||
path = fconf.get_path_for_id(config[CONF_ID])[:-3]
|
||||
path.append(CONF_OUTPUT_SPEAKER)
|
||||
output_speaker_id = fconf.get_config_for_path(path)
|
||||
@@ -111,6 +111,9 @@ FINAL_VALIDATE_SCHEMA = cv.All(
|
||||
|
||||
|
||||
async def to_code(config):
|
||||
# Enable wake_loop_threadsafe for immediate command processing from other tasks
|
||||
socket.require_wake_loop_threadsafe()
|
||||
|
||||
var = cg.new_Pvariable(config[CONF_ID])
|
||||
await cg.register_component(var, config)
|
||||
|
||||
@@ -127,6 +130,9 @@ async def to_code(config):
|
||||
"CONFIG_SPIRAM_ALLOW_STACK_EXTERNAL_MEMORY", True
|
||||
)
|
||||
|
||||
# Initialize FixedVector with exact count of source speakers
|
||||
cg.add(var.init_source_speakers(len(config[CONF_SOURCE_SPEAKERS])))
|
||||
|
||||
for speaker_config in config[CONF_SOURCE_SPEAKERS]:
|
||||
source_speaker = cg.new_Pvariable(speaker_config[CONF_ID])
|
||||
|
||||
|
||||
@@ -8,8 +8,8 @@
|
||||
namespace esphome {
|
||||
namespace mixer_speaker {
|
||||
template<typename... Ts> class DuckingApplyAction : public Action<Ts...>, public Parented<SourceSpeaker> {
|
||||
TEMPLATABLE_VALUE(uint8_t, decibel_reduction)
|
||||
TEMPLATABLE_VALUE(uint32_t, duration)
|
||||
TEMPLATABLE_VALUE(uint8_t, decibel_reduction);
|
||||
TEMPLATABLE_VALUE(uint32_t, duration);
|
||||
void play(const Ts &...x) override {
|
||||
this->parent_->apply_ducking(this->decibel_reduction_.value(x...), this->duration_.value(x...));
|
||||
}
|
||||
|
||||
@@ -2,11 +2,13 @@
|
||||
|
||||
#ifdef USE_ESP32
|
||||
|
||||
#include "esphome/core/application.h"
|
||||
#include "esphome/core/hal.h"
|
||||
#include "esphome/core/helpers.h"
|
||||
#include "esphome/core/log.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstring>
|
||||
|
||||
namespace esphome {
|
||||
@@ -14,6 +16,7 @@ namespace mixer_speaker {
|
||||
|
||||
static const UBaseType_t MIXER_TASK_PRIORITY = 10;
|
||||
|
||||
static const uint32_t STOPPING_TIMEOUT_MS = 5000;
|
||||
static const uint32_t TRANSFER_BUFFER_DURATION_MS = 50;
|
||||
static const uint32_t TASK_DELAY_MS = 25;
|
||||
|
||||
@@ -27,21 +30,53 @@ static const char *const TAG = "speaker_mixer";
|
||||
// Gives the Q15 fixed point scaling factor to reduce by 0 dB, 1dB, ..., 50 dB
|
||||
// dB to PCM scaling factor formula: floating_point_scale_factor = 2^(-db/6.014)
|
||||
// float to Q15 fixed point formula: q15_scale_factor = floating_point_scale_factor * 2^(15)
|
||||
static const std::vector<int16_t> DECIBEL_REDUCTION_TABLE = {
|
||||
static const std::array<int16_t, 51> DECIBEL_REDUCTION_TABLE = {
|
||||
32767, 29201, 26022, 23189, 20665, 18415, 16410, 14624, 13032, 11613, 10349, 9222, 8218, 7324, 6527, 5816, 5183,
|
||||
4619, 4116, 3668, 3269, 2913, 2596, 2313, 2061, 1837, 1637, 1459, 1300, 1158, 1032, 920, 820, 731,
|
||||
651, 580, 517, 461, 411, 366, 326, 291, 259, 231, 206, 183, 163, 146, 130, 116, 103};
|
||||
|
||||
enum MixerEventGroupBits : uint32_t {
|
||||
COMMAND_STOP = (1 << 0), // stops the mixer task
|
||||
STATE_STARTING = (1 << 10),
|
||||
STATE_RUNNING = (1 << 11),
|
||||
STATE_STOPPING = (1 << 12),
|
||||
STATE_STOPPED = (1 << 13),
|
||||
ERR_ESP_NO_MEM = (1 << 19),
|
||||
ALL_BITS = 0x00FFFFFF, // All valid FreeRTOS event group bits
|
||||
// Event bits for SourceSpeaker command processing
|
||||
enum SourceSpeakerEventBits : uint32_t {
|
||||
SOURCE_SPEAKER_COMMAND_START = (1 << 0),
|
||||
SOURCE_SPEAKER_COMMAND_STOP = (1 << 1),
|
||||
SOURCE_SPEAKER_COMMAND_FINISH = (1 << 2),
|
||||
};
|
||||
|
||||
// Event bits for mixer task control and state
|
||||
enum MixerTaskEventBits : uint32_t {
|
||||
MIXER_TASK_COMMAND_START = (1 << 0),
|
||||
MIXER_TASK_COMMAND_STOP = (1 << 1),
|
||||
MIXER_TASK_STATE_STARTING = (1 << 10),
|
||||
MIXER_TASK_STATE_RUNNING = (1 << 11),
|
||||
MIXER_TASK_STATE_STOPPING = (1 << 12),
|
||||
MIXER_TASK_STATE_STOPPED = (1 << 13),
|
||||
MIXER_TASK_ERR_ESP_NO_MEM = (1 << 19),
|
||||
MIXER_TASK_ALL_BITS = 0x00FFFFFF, // All valid FreeRTOS event group bits
|
||||
};
|
||||
|
||||
static inline uint32_t atomic_subtract_clamped(std::atomic<uint32_t> &var, uint32_t amount) {
|
||||
uint32_t current = var.load(std::memory_order_acquire);
|
||||
uint32_t subtracted = 0;
|
||||
if (current > 0) {
|
||||
uint32_t new_value;
|
||||
do {
|
||||
subtracted = std::min(amount, current);
|
||||
new_value = current - subtracted;
|
||||
} while (!var.compare_exchange_weak(current, new_value, std::memory_order_release, std::memory_order_acquire));
|
||||
}
|
||||
return subtracted;
|
||||
}
|
||||
|
||||
static bool create_event_group(EventGroupHandle_t &event_group, Component *component) {
|
||||
event_group = xEventGroupCreate();
|
||||
if (event_group == nullptr) {
|
||||
ESP_LOGE(TAG, "Failed to create event group");
|
||||
component->mark_failed();
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void SourceSpeaker::dump_config() {
|
||||
ESP_LOGCONFIG(TAG,
|
||||
"Mixer Source Speaker\n"
|
||||
@@ -55,22 +90,70 @@ void SourceSpeaker::dump_config() {
|
||||
}
|
||||
|
||||
void SourceSpeaker::setup() {
|
||||
this->parent_->get_output_speaker()->add_audio_output_callback([this](uint32_t new_frames, int64_t write_timestamp) {
|
||||
// The SourceSpeaker may not have included any audio in the mixed output, so verify there were pending frames
|
||||
uint32_t speakers_playback_frames = std::min(new_frames, this->pending_playback_frames_);
|
||||
this->pending_playback_frames_ -= speakers_playback_frames;
|
||||
if (!create_event_group(this->event_group_, this)) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (speakers_playback_frames > 0) {
|
||||
this->audio_output_callback_(speakers_playback_frames, write_timestamp);
|
||||
// Start with loop disabled since we begin in STATE_STOPPED with no pending commands
|
||||
this->disable_loop();
|
||||
|
||||
this->parent_->get_output_speaker()->add_audio_output_callback([this](uint32_t new_frames, int64_t write_timestamp) {
|
||||
// First, drain the playback delay (frames in pipeline before this source started contributing)
|
||||
uint32_t delay_to_drain = atomic_subtract_clamped(this->playback_delay_frames_, new_frames);
|
||||
uint32_t remaining_frames = new_frames - delay_to_drain;
|
||||
|
||||
// Then, count towards this source's pending playback frames
|
||||
if (remaining_frames > 0) {
|
||||
uint32_t speakers_playback_frames = atomic_subtract_clamped(this->pending_playback_frames_, remaining_frames);
|
||||
if (speakers_playback_frames > 0) {
|
||||
this->audio_output_callback_(speakers_playback_frames, write_timestamp);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void SourceSpeaker::loop() {
|
||||
uint32_t event_bits = xEventGroupGetBits(this->event_group_);
|
||||
|
||||
// Process commands with priority: STOP > FINISH > START
|
||||
// This ensures stop commands take precedence over conflicting start commands
|
||||
if (event_bits & SOURCE_SPEAKER_COMMAND_STOP) {
|
||||
if (this->state_ == speaker::STATE_RUNNING) {
|
||||
// Clear both STOP and START bits - stop takes precedence
|
||||
xEventGroupClearBits(this->event_group_, SOURCE_SPEAKER_COMMAND_STOP | SOURCE_SPEAKER_COMMAND_START);
|
||||
this->enter_stopping_state_();
|
||||
} else if (this->state_ == speaker::STATE_STOPPED) {
|
||||
// Already stopped, just clear the command bits
|
||||
xEventGroupClearBits(this->event_group_, SOURCE_SPEAKER_COMMAND_STOP | SOURCE_SPEAKER_COMMAND_START);
|
||||
}
|
||||
// Leave bits set if transitioning states (STARTING/STOPPING) - will be processed once state allows
|
||||
} else if (event_bits & SOURCE_SPEAKER_COMMAND_FINISH) {
|
||||
if (this->state_ == speaker::STATE_RUNNING) {
|
||||
xEventGroupClearBits(this->event_group_, SOURCE_SPEAKER_COMMAND_FINISH);
|
||||
this->stop_gracefully_ = true;
|
||||
} else if (this->state_ == speaker::STATE_STOPPED) {
|
||||
// Already stopped, just clear the command bit
|
||||
xEventGroupClearBits(this->event_group_, SOURCE_SPEAKER_COMMAND_FINISH);
|
||||
}
|
||||
// Leave bit set if transitioning states - will be processed once state allows
|
||||
} else if (event_bits & SOURCE_SPEAKER_COMMAND_START) {
|
||||
if (this->state_ == speaker::STATE_STOPPED) {
|
||||
xEventGroupClearBits(this->event_group_, SOURCE_SPEAKER_COMMAND_START);
|
||||
this->state_ = speaker::STATE_STARTING;
|
||||
} else if (this->state_ == speaker::STATE_RUNNING) {
|
||||
// Already running, just clear the command bit
|
||||
xEventGroupClearBits(this->event_group_, SOURCE_SPEAKER_COMMAND_START);
|
||||
}
|
||||
// Leave bit set if transitioning states - will be processed once state allows
|
||||
}
|
||||
// Process state machine
|
||||
switch (this->state_) {
|
||||
case speaker::STATE_STARTING: {
|
||||
esp_err_t err = this->start_();
|
||||
if (err == ESP_OK) {
|
||||
this->pending_playback_frames_.store(0, std::memory_order_release); // reset pending playback frames
|
||||
this->playback_delay_frames_.store(0, std::memory_order_release); // reset playback delay
|
||||
this->has_contributed_.store(false, std::memory_order_release); // reset contribution tracking
|
||||
this->state_ = speaker::STATE_RUNNING;
|
||||
this->stop_gracefully_ = false;
|
||||
this->last_seen_data_ms_ = millis();
|
||||
@@ -78,41 +161,62 @@ void SourceSpeaker::loop() {
|
||||
} else {
|
||||
switch (err) {
|
||||
case ESP_ERR_NO_MEM:
|
||||
this->status_set_error(LOG_STR("Failed to start mixer: not enough memory"));
|
||||
this->status_set_error(LOG_STR("Not enough memory"));
|
||||
break;
|
||||
case ESP_ERR_NOT_SUPPORTED:
|
||||
this->status_set_error(LOG_STR("Failed to start mixer: unsupported bits per sample"));
|
||||
this->status_set_error(LOG_STR("Unsupported bit depth"));
|
||||
break;
|
||||
case ESP_ERR_INVALID_ARG:
|
||||
this->status_set_error(
|
||||
LOG_STR("Failed to start mixer: audio stream isn't compatible with the other audio stream."));
|
||||
this->status_set_error(LOG_STR("Incompatible audio streams"));
|
||||
break;
|
||||
case ESP_ERR_INVALID_STATE:
|
||||
this->status_set_error(LOG_STR("Failed to start mixer: mixer task failed to start"));
|
||||
this->status_set_error(LOG_STR("Task failed"));
|
||||
break;
|
||||
default:
|
||||
this->status_set_error(LOG_STR("Failed to start mixer"));
|
||||
this->status_set_error(LOG_STR("Failed"));
|
||||
break;
|
||||
}
|
||||
|
||||
this->state_ = speaker::STATE_STOPPING;
|
||||
this->enter_stopping_state_();
|
||||
}
|
||||
break;
|
||||
}
|
||||
case speaker::STATE_RUNNING:
|
||||
if (!this->transfer_buffer_->has_buffered_data()) {
|
||||
if (!this->transfer_buffer_->has_buffered_data() &&
|
||||
(this->pending_playback_frames_.load(std::memory_order_acquire) == 0)) {
|
||||
// No audio data in buffer waiting to get mixed and no frames are pending playback
|
||||
if ((this->timeout_ms_.has_value() && ((millis() - this->last_seen_data_ms_) > this->timeout_ms_.value())) ||
|
||||
this->stop_gracefully_) {
|
||||
this->state_ = speaker::STATE_STOPPING;
|
||||
// Timeout exceeded or graceful stop requested
|
||||
this->enter_stopping_state_();
|
||||
}
|
||||
}
|
||||
break;
|
||||
case speaker::STATE_STOPPING:
|
||||
this->stop_();
|
||||
this->stop_gracefully_ = false;
|
||||
this->state_ = speaker::STATE_STOPPED;
|
||||
case speaker::STATE_STOPPING: {
|
||||
if ((this->parent_->get_output_speaker()->get_pause_state()) ||
|
||||
((millis() - this->stopping_start_ms_) > STOPPING_TIMEOUT_MS)) {
|
||||
// If parent speaker is paused or if the stopping timeout is exceeded, force stop the output speaker
|
||||
this->parent_->get_output_speaker()->stop();
|
||||
}
|
||||
|
||||
if (this->parent_->get_output_speaker()->is_stopped() ||
|
||||
(this->pending_playback_frames_.load(std::memory_order_acquire) == 0)) {
|
||||
// Output speaker is stopped OR all pending playback frames have played
|
||||
this->pending_playback_frames_.store(0, std::memory_order_release);
|
||||
this->stop_gracefully_ = false;
|
||||
|
||||
this->state_ = speaker::STATE_STOPPED;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case speaker::STATE_STOPPED:
|
||||
// Re-check event bits for any new commands that may have arrived
|
||||
event_bits = xEventGroupGetBits(this->event_group_);
|
||||
if (!(event_bits &
|
||||
(SOURCE_SPEAKER_COMMAND_START | SOURCE_SPEAKER_COMMAND_STOP | SOURCE_SPEAKER_COMMAND_FINISH))) {
|
||||
// No pending commands, disable loop to save CPU cycles
|
||||
this->disable_loop();
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -122,17 +226,34 @@ size_t SourceSpeaker::play(const uint8_t *data, size_t length, TickType_t ticks_
|
||||
this->start();
|
||||
}
|
||||
size_t bytes_written = 0;
|
||||
if (this->ring_buffer_.use_count() == 1) {
|
||||
std::shared_ptr<RingBuffer> temp_ring_buffer = this->ring_buffer_.lock();
|
||||
std::shared_ptr<RingBuffer> temp_ring_buffer = this->ring_buffer_.lock();
|
||||
if (temp_ring_buffer.use_count() > 0) {
|
||||
// Only write to the ring buffer if the reference is valid
|
||||
bytes_written = temp_ring_buffer->write_without_replacement(data, length, ticks_to_wait);
|
||||
if (bytes_written > 0) {
|
||||
this->last_seen_data_ms_ = millis();
|
||||
}
|
||||
} else {
|
||||
// Delay to avoid repeatedly hammering while waiting for the speaker to start
|
||||
vTaskDelay(ticks_to_wait);
|
||||
}
|
||||
return bytes_written;
|
||||
}
|
||||
|
||||
void SourceSpeaker::start() { this->state_ = speaker::STATE_STARTING; }
|
||||
void SourceSpeaker::send_command_(uint32_t command_bit, bool wake_loop) {
|
||||
this->enable_loop_soon_any_context();
|
||||
uint32_t event_bits = xEventGroupGetBits(this->event_group_);
|
||||
if (!(event_bits & command_bit)) {
|
||||
xEventGroupSetBits(this->event_group_, command_bit);
|
||||
#if defined(USE_SOCKET_SELECT_SUPPORT) && defined(USE_WAKE_LOOP_THREADSAFE)
|
||||
if (wake_loop) {
|
||||
App.wake_loop_threadsafe();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void SourceSpeaker::start() { this->send_command_(SOURCE_SPEAKER_COMMAND_START, true); }
|
||||
|
||||
esp_err_t SourceSpeaker::start_() {
|
||||
const size_t ring_buffer_size = this->audio_stream_info_.ms_to_bytes(this->buffer_duration_ms_);
|
||||
@@ -143,35 +264,26 @@ esp_err_t SourceSpeaker::start_() {
|
||||
if (this->transfer_buffer_ == nullptr) {
|
||||
return ESP_ERR_NO_MEM;
|
||||
}
|
||||
std::shared_ptr<RingBuffer> temp_ring_buffer;
|
||||
|
||||
if (!this->ring_buffer_.use_count()) {
|
||||
std::shared_ptr<RingBuffer> temp_ring_buffer = this->ring_buffer_.lock();
|
||||
if (!temp_ring_buffer) {
|
||||
temp_ring_buffer = RingBuffer::create(ring_buffer_size);
|
||||
this->ring_buffer_ = temp_ring_buffer;
|
||||
}
|
||||
|
||||
if (!this->ring_buffer_.use_count()) {
|
||||
if (!temp_ring_buffer) {
|
||||
return ESP_ERR_NO_MEM;
|
||||
} else {
|
||||
this->transfer_buffer_->set_source(temp_ring_buffer);
|
||||
}
|
||||
}
|
||||
|
||||
this->pending_playback_frames_ = 0; // reset
|
||||
return this->parent_->start(this->audio_stream_info_);
|
||||
}
|
||||
|
||||
void SourceSpeaker::stop() {
|
||||
if (this->state_ != speaker::STATE_STOPPED) {
|
||||
this->state_ = speaker::STATE_STOPPING;
|
||||
}
|
||||
}
|
||||
void SourceSpeaker::stop() { this->send_command_(SOURCE_SPEAKER_COMMAND_STOP); }
|
||||
|
||||
void SourceSpeaker::stop_() {
|
||||
this->transfer_buffer_.reset(); // deallocates the transfer buffer
|
||||
}
|
||||
|
||||
void SourceSpeaker::finish() { this->stop_gracefully_ = true; }
|
||||
void SourceSpeaker::finish() { this->send_command_(SOURCE_SPEAKER_COMMAND_FINISH); }
|
||||
|
||||
bool SourceSpeaker::has_buffered_data() const {
|
||||
return ((this->transfer_buffer_.use_count() > 0) && this->transfer_buffer_->has_buffered_data());
|
||||
@@ -191,19 +303,16 @@ void SourceSpeaker::set_volume(float volume) {
|
||||
|
||||
float SourceSpeaker::get_volume() { return this->parent_->get_output_speaker()->get_volume(); }
|
||||
|
||||
size_t SourceSpeaker::process_data_from_source(TickType_t ticks_to_wait) {
|
||||
if (!this->transfer_buffer_.use_count()) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
size_t SourceSpeaker::process_data_from_source(std::shared_ptr<audio::AudioSourceTransferBuffer> &transfer_buffer,
|
||||
TickType_t ticks_to_wait) {
|
||||
// Store current offset, as these samples are already ducked
|
||||
const size_t current_length = this->transfer_buffer_->available();
|
||||
const size_t current_length = transfer_buffer->available();
|
||||
|
||||
size_t bytes_read = this->transfer_buffer_->transfer_data_from_source(ticks_to_wait);
|
||||
size_t bytes_read = transfer_buffer->transfer_data_from_source(ticks_to_wait);
|
||||
|
||||
uint32_t samples_to_duck = this->audio_stream_info_.bytes_to_samples(bytes_read);
|
||||
if (samples_to_duck > 0) {
|
||||
int16_t *current_buffer = reinterpret_cast<int16_t *>(this->transfer_buffer_->get_buffer_start() + current_length);
|
||||
int16_t *current_buffer = reinterpret_cast<int16_t *>(transfer_buffer->get_buffer_start() + current_length);
|
||||
|
||||
duck_samples(current_buffer, samples_to_duck, &this->current_ducking_db_reduction_,
|
||||
&this->ducking_transition_samples_remaining_, this->samples_per_ducking_step_,
|
||||
@@ -215,10 +324,13 @@ size_t SourceSpeaker::process_data_from_source(TickType_t ticks_to_wait) {
|
||||
|
||||
void SourceSpeaker::apply_ducking(uint8_t decibel_reduction, uint32_t duration) {
|
||||
if (this->target_ducking_db_reduction_ != decibel_reduction) {
|
||||
// Start transition from the previous target (which becomes the new current level)
|
||||
this->current_ducking_db_reduction_ = this->target_ducking_db_reduction_;
|
||||
|
||||
this->target_ducking_db_reduction_ = decibel_reduction;
|
||||
|
||||
// Calculate the number of intermediate dB steps for the transition timing.
|
||||
// Subtract 1 because the first step is taken immediately after this calculation.
|
||||
uint8_t total_ducking_steps = 0;
|
||||
if (this->target_ducking_db_reduction_ > this->current_ducking_db_reduction_) {
|
||||
// The dB reduction level is increasing (which results in quieter audio)
|
||||
@@ -234,7 +346,7 @@ void SourceSpeaker::apply_ducking(uint8_t decibel_reduction, uint32_t duration)
|
||||
|
||||
this->samples_per_ducking_step_ = this->ducking_transition_samples_remaining_ / total_ducking_steps;
|
||||
this->ducking_transition_samples_remaining_ =
|
||||
this->samples_per_ducking_step_ * total_ducking_steps; // Adjust for integer division rounding
|
||||
this->samples_per_ducking_step_ * total_ducking_steps; // adjust for integer division rounding
|
||||
|
||||
this->current_ducking_db_reduction_ += this->db_change_per_ducking_step_;
|
||||
} else {
|
||||
@@ -293,6 +405,12 @@ void SourceSpeaker::duck_samples(int16_t *input_buffer, uint32_t input_samples_t
|
||||
}
|
||||
}
|
||||
|
||||
void SourceSpeaker::enter_stopping_state_() {
|
||||
this->state_ = speaker::STATE_STOPPING;
|
||||
this->stopping_start_ms_ = millis();
|
||||
this->transfer_buffer_.reset();
|
||||
}
|
||||
|
||||
void MixerSpeaker::dump_config() {
|
||||
ESP_LOGCONFIG(TAG,
|
||||
"Speaker Mixer:\n"
|
||||
@@ -301,42 +419,74 @@ void MixerSpeaker::dump_config() {
|
||||
}
|
||||
|
||||
void MixerSpeaker::setup() {
|
||||
this->event_group_ = xEventGroupCreate();
|
||||
|
||||
if (this->event_group_ == nullptr) {
|
||||
ESP_LOGE(TAG, "Failed to create event group");
|
||||
this->mark_failed();
|
||||
if (!create_event_group(this->event_group_, this)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Register callback to track frames in the output pipeline
|
||||
this->output_speaker_->add_audio_output_callback([this](uint32_t new_frames, int64_t write_timestamp) {
|
||||
atomic_subtract_clamped(this->frames_in_pipeline_, new_frames);
|
||||
});
|
||||
|
||||
// Start with loop disabled since no task is running and no commands are pending
|
||||
this->disable_loop();
|
||||
}
|
||||
|
||||
void MixerSpeaker::loop() {
|
||||
uint32_t event_group_bits = xEventGroupGetBits(this->event_group_);
|
||||
|
||||
if (event_group_bits & MixerEventGroupBits::STATE_STARTING) {
|
||||
ESP_LOGD(TAG, "Starting speaker mixer");
|
||||
xEventGroupClearBits(this->event_group_, MixerEventGroupBits::STATE_STARTING);
|
||||
// Handle pending start request
|
||||
if (event_group_bits & MIXER_TASK_COMMAND_START) {
|
||||
// Only start the task if it's fully stopped and cleaned up
|
||||
if (!this->status_has_error() && (this->task_handle_ == nullptr) && (this->task_stack_buffer_ == nullptr)) {
|
||||
esp_err_t err = this->start_task_();
|
||||
switch (err) {
|
||||
case ESP_OK:
|
||||
xEventGroupClearBits(this->event_group_, MIXER_TASK_COMMAND_START);
|
||||
break;
|
||||
case ESP_ERR_NO_MEM:
|
||||
ESP_LOGE(TAG, "Failed to start; retrying in 1 second");
|
||||
this->status_momentary_error("memory-failure", 1000);
|
||||
return;
|
||||
case ESP_ERR_INVALID_STATE:
|
||||
ESP_LOGE(TAG, "Failed to start; retrying in 1 second");
|
||||
this->status_momentary_error("task-failure", 1000);
|
||||
return;
|
||||
default:
|
||||
ESP_LOGE(TAG, "Failed to start; retrying in 1 second");
|
||||
this->status_momentary_error("failure", 1000);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (event_group_bits & MixerEventGroupBits::ERR_ESP_NO_MEM) {
|
||||
this->status_set_error(LOG_STR("Failed to allocate the mixer's internal buffer"));
|
||||
xEventGroupClearBits(this->event_group_, MixerEventGroupBits::ERR_ESP_NO_MEM);
|
||||
|
||||
if (event_group_bits & MIXER_TASK_STATE_STARTING) {
|
||||
ESP_LOGD(TAG, "Starting");
|
||||
xEventGroupClearBits(this->event_group_, MIXER_TASK_STATE_STARTING);
|
||||
}
|
||||
if (event_group_bits & MixerEventGroupBits::STATE_RUNNING) {
|
||||
ESP_LOGD(TAG, "Started speaker mixer");
|
||||
if (event_group_bits & MIXER_TASK_ERR_ESP_NO_MEM) {
|
||||
this->status_set_error(LOG_STR("Not enough memory"));
|
||||
xEventGroupClearBits(this->event_group_, MIXER_TASK_ERR_ESP_NO_MEM);
|
||||
}
|
||||
if (event_group_bits & MIXER_TASK_STATE_RUNNING) {
|
||||
ESP_LOGV(TAG, "Started");
|
||||
this->status_clear_error();
|
||||
xEventGroupClearBits(this->event_group_, MixerEventGroupBits::STATE_RUNNING);
|
||||
xEventGroupClearBits(this->event_group_, MIXER_TASK_STATE_RUNNING);
|
||||
}
|
||||
if (event_group_bits & MixerEventGroupBits::STATE_STOPPING) {
|
||||
ESP_LOGD(TAG, "Stopping speaker mixer");
|
||||
xEventGroupClearBits(this->event_group_, MixerEventGroupBits::STATE_STOPPING);
|
||||
if (event_group_bits & MIXER_TASK_STATE_STOPPING) {
|
||||
ESP_LOGV(TAG, "Stopping");
|
||||
xEventGroupClearBits(this->event_group_, MIXER_TASK_STATE_STOPPING);
|
||||
}
|
||||
if (event_group_bits & MixerEventGroupBits::STATE_STOPPED) {
|
||||
if (event_group_bits & MIXER_TASK_STATE_STOPPED) {
|
||||
if (this->delete_task_() == ESP_OK) {
|
||||
xEventGroupClearBits(this->event_group_, MixerEventGroupBits::ALL_BITS);
|
||||
ESP_LOGD(TAG, "Stopped");
|
||||
xEventGroupClearBits(this->event_group_, MIXER_TASK_ALL_BITS);
|
||||
}
|
||||
}
|
||||
|
||||
if (this->task_handle_ != nullptr) {
|
||||
// If the mixer task is running, check if all source speakers are stopped
|
||||
|
||||
bool all_stopped = true;
|
||||
|
||||
for (auto &speaker : this->source_speakers_) {
|
||||
@@ -344,7 +494,15 @@ void MixerSpeaker::loop() {
|
||||
}
|
||||
|
||||
if (all_stopped) {
|
||||
this->stop();
|
||||
// Send stop command signal to the mixer task since no source speakers are active
|
||||
xEventGroupSetBits(this->event_group_, MIXER_TASK_COMMAND_STOP);
|
||||
}
|
||||
} else if (this->task_stack_buffer_ == nullptr) {
|
||||
// Task is fully stopped and cleaned up, check if we can disable loop
|
||||
event_group_bits = xEventGroupGetBits(this->event_group_);
|
||||
if (event_group_bits == 0) {
|
||||
// No pending events, disable loop to save CPU cycles
|
||||
this->disable_loop();
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -366,7 +524,18 @@ esp_err_t MixerSpeaker::start(audio::AudioStreamInfo &stream_info) {
|
||||
}
|
||||
}
|
||||
|
||||
return this->start_task_();
|
||||
this->enable_loop_soon_any_context(); // ensure loop processes command
|
||||
|
||||
uint32_t event_bits = xEventGroupGetBits(this->event_group_);
|
||||
if (!(event_bits & MIXER_TASK_COMMAND_START)) {
|
||||
// Set MIXER_TASK_COMMAND_START bit if not already set, and then immediately wake for low latency
|
||||
xEventGroupSetBits(this->event_group_, MIXER_TASK_COMMAND_START);
|
||||
#if defined(USE_SOCKET_SELECT_SUPPORT) && defined(USE_WAKE_LOOP_THREADSAFE)
|
||||
App.wake_loop_threadsafe();
|
||||
#endif
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t MixerSpeaker::start_task_() {
|
||||
@@ -397,28 +566,31 @@ esp_err_t MixerSpeaker::start_task_() {
|
||||
}
|
||||
|
||||
esp_err_t MixerSpeaker::delete_task_() {
|
||||
if (!this->task_created_) {
|
||||
if (this->task_handle_ != nullptr) {
|
||||
// Delete the task
|
||||
vTaskDelete(this->task_handle_);
|
||||
this->task_handle_ = nullptr;
|
||||
|
||||
if (this->task_stack_buffer_ != nullptr) {
|
||||
if (this->task_stack_in_psram_) {
|
||||
RAMAllocator<StackType_t> stack_allocator(RAMAllocator<StackType_t>::ALLOC_EXTERNAL);
|
||||
stack_allocator.deallocate(this->task_stack_buffer_, TASK_STACK_SIZE);
|
||||
} else {
|
||||
RAMAllocator<StackType_t> stack_allocator(RAMAllocator<StackType_t>::ALLOC_INTERNAL);
|
||||
stack_allocator.deallocate(this->task_stack_buffer_, TASK_STACK_SIZE);
|
||||
}
|
||||
|
||||
this->task_stack_buffer_ = nullptr;
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
if ((this->task_handle_ == nullptr) && (this->task_stack_buffer_ != nullptr)) {
|
||||
// Deallocate the task stack buffer
|
||||
if (this->task_stack_in_psram_) {
|
||||
RAMAllocator<StackType_t> stack_allocator(RAMAllocator<StackType_t>::ALLOC_EXTERNAL);
|
||||
stack_allocator.deallocate(this->task_stack_buffer_, TASK_STACK_SIZE);
|
||||
} else {
|
||||
RAMAllocator<StackType_t> stack_allocator(RAMAllocator<StackType_t>::ALLOC_INTERNAL);
|
||||
stack_allocator.deallocate(this->task_stack_buffer_, TASK_STACK_SIZE);
|
||||
}
|
||||
|
||||
void MixerSpeaker::stop() { xEventGroupSetBits(this->event_group_, MixerEventGroupBits::COMMAND_STOP); }
|
||||
this->task_stack_buffer_ = nullptr;
|
||||
}
|
||||
|
||||
if ((this->task_handle_ != nullptr) || (this->task_stack_buffer_ != nullptr)) {
|
||||
return ESP_ERR_INVALID_STATE;
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
void MixerSpeaker::copy_frames(const int16_t *input_buffer, audio::AudioStreamInfo input_stream_info,
|
||||
int16_t *output_buffer, audio::AudioStreamInfo output_stream_info,
|
||||
@@ -472,32 +644,34 @@ void MixerSpeaker::mix_audio_samples(const int16_t *primary_buffer, audio::Audio
|
||||
}
|
||||
|
||||
void MixerSpeaker::audio_mixer_task(void *params) {
|
||||
MixerSpeaker *this_mixer = (MixerSpeaker *) params;
|
||||
MixerSpeaker *this_mixer = static_cast<MixerSpeaker *>(params);
|
||||
|
||||
xEventGroupSetBits(this_mixer->event_group_, MixerEventGroupBits::STATE_STARTING);
|
||||
|
||||
this_mixer->task_created_ = true;
|
||||
xEventGroupSetBits(this_mixer->event_group_, MIXER_TASK_STATE_STARTING);
|
||||
|
||||
std::unique_ptr<audio::AudioSinkTransferBuffer> output_transfer_buffer = audio::AudioSinkTransferBuffer::create(
|
||||
this_mixer->audio_stream_info_.value().ms_to_bytes(TRANSFER_BUFFER_DURATION_MS));
|
||||
|
||||
if (output_transfer_buffer == nullptr) {
|
||||
xEventGroupSetBits(this_mixer->event_group_,
|
||||
MixerEventGroupBits::STATE_STOPPED | MixerEventGroupBits::ERR_ESP_NO_MEM);
|
||||
xEventGroupSetBits(this_mixer->event_group_, MIXER_TASK_STATE_STOPPED | MIXER_TASK_ERR_ESP_NO_MEM);
|
||||
|
||||
this_mixer->task_created_ = false;
|
||||
vTaskDelete(nullptr);
|
||||
vTaskSuspend(nullptr); // Suspend this task indefinitely until the loop method deletes it
|
||||
}
|
||||
|
||||
output_transfer_buffer->set_sink(this_mixer->output_speaker_);
|
||||
|
||||
xEventGroupSetBits(this_mixer->event_group_, MixerEventGroupBits::STATE_RUNNING);
|
||||
xEventGroupSetBits(this_mixer->event_group_, MIXER_TASK_STATE_RUNNING);
|
||||
|
||||
bool sent_finished = false;
|
||||
|
||||
// Pre-allocate vectors to avoid heap allocation in the loop (max 8 source speakers per schema)
|
||||
FixedVector<SourceSpeaker *> speakers_with_data;
|
||||
FixedVector<std::shared_ptr<audio::AudioSourceTransferBuffer>> transfer_buffers_with_data;
|
||||
speakers_with_data.init(this_mixer->source_speakers_.size());
|
||||
transfer_buffers_with_data.init(this_mixer->source_speakers_.size());
|
||||
|
||||
while (true) {
|
||||
uint32_t event_group_bits = xEventGroupGetBits(this_mixer->event_group_);
|
||||
if (event_group_bits & MixerEventGroupBits::COMMAND_STOP) {
|
||||
if (event_group_bits & MIXER_TASK_COMMAND_STOP) {
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -507,15 +681,20 @@ void MixerSpeaker::audio_mixer_task(void *params) {
|
||||
const uint32_t output_frames_free =
|
||||
this_mixer->audio_stream_info_.value().bytes_to_frames(output_transfer_buffer->free());
|
||||
|
||||
std::vector<SourceSpeaker *> speakers_with_data;
|
||||
std::vector<std::shared_ptr<audio::AudioSourceTransferBuffer>> transfer_buffers_with_data;
|
||||
speakers_with_data.clear();
|
||||
transfer_buffers_with_data.clear();
|
||||
|
||||
for (auto &speaker : this_mixer->source_speakers_) {
|
||||
if (speaker->get_transfer_buffer().use_count() > 0) {
|
||||
if (speaker->is_running() && !speaker->get_pause_state()) {
|
||||
// Speaker is running and not paused, so it possibly can provide audio data
|
||||
std::shared_ptr<audio::AudioSourceTransferBuffer> transfer_buffer = speaker->get_transfer_buffer().lock();
|
||||
speaker->process_data_from_source(0); // Transfers and ducks audio from source ring buffers
|
||||
if (transfer_buffer.use_count() == 0) {
|
||||
// No transfer buffer allocated, so skip processing this speaker
|
||||
continue;
|
||||
}
|
||||
speaker->process_data_from_source(transfer_buffer, 0); // Transfers and ducks audio from source ring buffers
|
||||
|
||||
if ((transfer_buffer->available() > 0) && !speaker->get_pause_state()) {
|
||||
if (transfer_buffer->available() > 0) {
|
||||
// Store the locked transfer buffers in their own vector to avoid releasing ownership until after the loop
|
||||
transfer_buffers_with_data.push_back(transfer_buffer);
|
||||
speakers_with_data.push_back(speaker);
|
||||
@@ -547,13 +726,21 @@ void MixerSpeaker::audio_mixer_task(void *params) {
|
||||
reinterpret_cast<int16_t *>(output_transfer_buffer->get_buffer_end()),
|
||||
this_mixer->audio_stream_info_.value(), frames_to_mix);
|
||||
|
||||
// Update source speaker buffer length
|
||||
transfer_buffers_with_data[0]->decrease_buffer_length(active_stream_info.frames_to_bytes(frames_to_mix));
|
||||
speakers_with_data[0]->pending_playback_frames_ += frames_to_mix;
|
||||
// Set playback delay for newly contributing source
|
||||
if (!speakers_with_data[0]->has_contributed_.load(std::memory_order_acquire)) {
|
||||
speakers_with_data[0]->playback_delay_frames_.store(
|
||||
this_mixer->frames_in_pipeline_.load(std::memory_order_acquire), std::memory_order_release);
|
||||
speakers_with_data[0]->has_contributed_.store(true, std::memory_order_release);
|
||||
}
|
||||
|
||||
// Update output transfer buffer length
|
||||
// Update source speaker pending frames
|
||||
speakers_with_data[0]->pending_playback_frames_.fetch_add(frames_to_mix, std::memory_order_release);
|
||||
transfer_buffers_with_data[0]->decrease_buffer_length(active_stream_info.frames_to_bytes(frames_to_mix));
|
||||
|
||||
// Update output transfer buffer length and pipeline frame count
|
||||
output_transfer_buffer->increase_buffer_length(
|
||||
this_mixer->audio_stream_info_.value().frames_to_bytes(frames_to_mix));
|
||||
this_mixer->frames_in_pipeline_.fetch_add(frames_to_mix, std::memory_order_release);
|
||||
} else {
|
||||
// Speaker's stream info doesn't match the output speaker's, so it's a new source speaker
|
||||
if (!this_mixer->output_speaker_->is_stopped()) {
|
||||
@@ -568,6 +755,8 @@ void MixerSpeaker::audio_mixer_task(void *params) {
|
||||
active_stream_info.get_sample_rate());
|
||||
this_mixer->output_speaker_->set_audio_stream_info(this_mixer->audio_stream_info_.value());
|
||||
this_mixer->output_speaker_->start();
|
||||
// Reset pipeline frame count since we're starting fresh with a new sample rate
|
||||
this_mixer->frames_in_pipeline_.store(0, std::memory_order_release);
|
||||
sent_finished = false;
|
||||
}
|
||||
}
|
||||
@@ -596,26 +785,39 @@ void MixerSpeaker::audio_mixer_task(void *params) {
|
||||
}
|
||||
}
|
||||
|
||||
// Get current pipeline depth for delay calculation (before incrementing)
|
||||
uint32_t current_pipeline_frames = this_mixer->frames_in_pipeline_.load(std::memory_order_acquire);
|
||||
|
||||
// Update source transfer buffer lengths and add new audio durations to the source speaker pending playbacks
|
||||
for (size_t i = 0; i < transfer_buffers_with_data.size(); ++i) {
|
||||
// Set playback delay for newly contributing sources
|
||||
if (!speakers_with_data[i]->has_contributed_.load(std::memory_order_acquire)) {
|
||||
speakers_with_data[i]->playback_delay_frames_.store(current_pipeline_frames, std::memory_order_release);
|
||||
speakers_with_data[i]->has_contributed_.store(true, std::memory_order_release);
|
||||
}
|
||||
|
||||
speakers_with_data[i]->pending_playback_frames_.fetch_add(frames_to_mix, std::memory_order_release);
|
||||
transfer_buffers_with_data[i]->decrease_buffer_length(
|
||||
speakers_with_data[i]->get_audio_stream_info().frames_to_bytes(frames_to_mix));
|
||||
speakers_with_data[i]->pending_playback_frames_ += frames_to_mix;
|
||||
}
|
||||
|
||||
// Update output transfer buffer length
|
||||
// Update output transfer buffer length and pipeline frame count (once, not per source)
|
||||
output_transfer_buffer->increase_buffer_length(
|
||||
this_mixer->audio_stream_info_.value().frames_to_bytes(frames_to_mix));
|
||||
this_mixer->frames_in_pipeline_.fetch_add(frames_to_mix, std::memory_order_release);
|
||||
}
|
||||
}
|
||||
|
||||
xEventGroupSetBits(this_mixer->event_group_, MixerEventGroupBits::STATE_STOPPING);
|
||||
xEventGroupSetBits(this_mixer->event_group_, MIXER_TASK_STATE_STOPPING);
|
||||
|
||||
// Reset pipeline frame count since the task is stopping
|
||||
this_mixer->frames_in_pipeline_.store(0, std::memory_order_release);
|
||||
|
||||
output_transfer_buffer.reset();
|
||||
|
||||
xEventGroupSetBits(this_mixer->event_group_, MixerEventGroupBits::STATE_STOPPED);
|
||||
this_mixer->task_created_ = false;
|
||||
vTaskDelete(nullptr);
|
||||
xEventGroupSetBits(this_mixer->event_group_, MIXER_TASK_STATE_STOPPED);
|
||||
|
||||
vTaskSuspend(nullptr); // Suspend this task indefinitely until the loop method deletes it
|
||||
}
|
||||
|
||||
} // namespace mixer_speaker
|
||||
|
||||
@@ -7,26 +7,31 @@
|
||||
#include "esphome/components/speaker/speaker.h"
|
||||
|
||||
#include "esphome/core/component.h"
|
||||
#include "esphome/core/helpers.h"
|
||||
|
||||
#include <freertos/event_groups.h>
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/event_groups.h>
|
||||
|
||||
#include <atomic>
|
||||
|
||||
namespace esphome {
|
||||
namespace mixer_speaker {
|
||||
|
||||
/* Classes for mixing several source speaker audio streams and writing it to another speaker component.
|
||||
* - Volume controls are passed through to the output speaker
|
||||
* - Source speaker commands are signaled via event group bits and processed in its loop function to ensure thread
|
||||
* safety
|
||||
* - Directly handles pausing at the SourceSpeaker level; pause state is not passed through to the output speaker.
|
||||
* - Audio sent to the SourceSpeaker's must have 16 bits per sample.
|
||||
* - Audio sent to the SourceSpeaker must have 16 bits per sample.
|
||||
* - Audio sent to the SourceSpeaker can have any number of channels. They are duplicated or ignored as needed to match
|
||||
* the number of channels required for the output speaker.
|
||||
* - In queue mode, the audio sent to the SoureSpeakers can have different sample rates.
|
||||
* - In queue mode, the audio sent to the SourceSpeakers can have different sample rates.
|
||||
* - In non-queue mode, the audio sent to the SourceSpeakers must have the same sample rates.
|
||||
* - SourceSpeaker has an internal ring buffer. It also allocates a shared_ptr for an AudioTranserBuffer object.
|
||||
* - Audio Data Flow:
|
||||
* - Audio data played on a SourceSpeaker first writes to its internal ring buffer.
|
||||
* - MixerSpeaker task temporarily takes shared ownership of each SourceSpeaker's AudioTransferBuffer.
|
||||
* - MixerSpeaker calls SourceSpeaker's `process_data_from_source`, which tranfers audio from the SourceSpeaker's
|
||||
* - MixerSpeaker calls SourceSpeaker's `process_data_from_source`, which transfers audio from the SourceSpeaker's
|
||||
* ring buffer to its AudioTransferBuffer. Audio ducking is applied at this step.
|
||||
* - In queue mode, MixerSpeaker prioritizes the earliest configured SourceSpeaker with audio data. Audio data is
|
||||
* sent to the output speaker.
|
||||
@@ -63,13 +68,15 @@ class SourceSpeaker : public speaker::Speaker, public Component {
|
||||
bool get_pause_state() const override { return this->pause_state_; }
|
||||
|
||||
/// @brief Transfers audio from the ring buffer into the transfer buffer. Ducks audio while transferring.
|
||||
/// @param transfer_buffer Locked shared_ptr to the transfer buffer (must be valid, not null)
|
||||
/// @param ticks_to_wait FreeRTOS ticks to wait while waiting to read from the ring buffer.
|
||||
/// @return Number of bytes transferred from the ring buffer.
|
||||
size_t process_data_from_source(TickType_t ticks_to_wait);
|
||||
size_t process_data_from_source(std::shared_ptr<audio::AudioSourceTransferBuffer> &transfer_buffer,
|
||||
TickType_t ticks_to_wait);
|
||||
|
||||
/// @brief Sets the ducking level for the source speaker.
|
||||
/// @param decibel_reduction (uint8_t) The dB reduction level. For example, 0 is no change, 10 is a reduction by 10 dB
|
||||
/// @param duration (uint32_t) The number of milliseconds to transition from the current level to the new level
|
||||
/// @param decibel_reduction The dB reduction level. For example, 0 is no change, 10 is a reduction by 10 dB
|
||||
/// @param duration The number of milliseconds to transition from the current level to the new level
|
||||
void apply_ducking(uint8_t decibel_reduction, uint32_t duration);
|
||||
|
||||
void set_buffer_duration(uint32_t buffer_duration_ms) { this->buffer_duration_ms_ = buffer_duration_ms; }
|
||||
@@ -81,14 +88,15 @@ class SourceSpeaker : public speaker::Speaker, public Component {
|
||||
protected:
|
||||
friend class MixerSpeaker;
|
||||
esp_err_t start_();
|
||||
void stop_();
|
||||
void enter_stopping_state_();
|
||||
void send_command_(uint32_t command_bit, bool wake_loop = false);
|
||||
|
||||
/// @brief Ducks audio samples by a specified amount. When changing the ducking amount, it can transition gradually
|
||||
/// over a specified amount of samples.
|
||||
/// @param input_buffer buffer with audio samples to be ducked in place
|
||||
/// @param input_samples_to_duck number of samples to process in ``input_buffer``
|
||||
/// @param current_ducking_db_reduction pointer to the current dB reduction
|
||||
/// @param ducking_transition_samples_remaining pointer to the total number of samples left before the the
|
||||
/// @param ducking_transition_samples_remaining pointer to the total number of samples left before the
|
||||
/// transition is finished
|
||||
/// @param samples_per_ducking_step total number of samples per ducking step for the transition
|
||||
/// @param db_change_per_ducking_step the change in dB reduction per step
|
||||
@@ -114,7 +122,12 @@ class SourceSpeaker : public speaker::Speaker, public Component {
|
||||
uint32_t ducking_transition_samples_remaining_{0};
|
||||
uint32_t samples_per_ducking_step_{0};
|
||||
|
||||
uint32_t pending_playback_frames_{0};
|
||||
std::atomic<uint32_t> pending_playback_frames_{0};
|
||||
std::atomic<uint32_t> playback_delay_frames_{0}; // Frames in output pipeline when this source started contributing
|
||||
std::atomic<bool> has_contributed_{false}; // Tracks if source has contributed during this session
|
||||
|
||||
EventGroupHandle_t event_group_{nullptr};
|
||||
uint32_t stopping_start_ms_{0};
|
||||
};
|
||||
|
||||
class MixerSpeaker : public Component {
|
||||
@@ -123,10 +136,11 @@ class MixerSpeaker : public Component {
|
||||
void setup() override;
|
||||
void loop() override;
|
||||
|
||||
void init_source_speakers(size_t count) { this->source_speakers_.init(count); }
|
||||
void add_source_speaker(SourceSpeaker *source_speaker) { this->source_speakers_.push_back(source_speaker); }
|
||||
|
||||
/// @brief Starts the mixer task. Called by a source speaker giving the current audio stream information
|
||||
/// @param stream_info The calling source speakers audio stream information
|
||||
/// @param stream_info The calling source speaker's audio stream information
|
||||
/// @return ESP_ERR_NOT_SUPPORTED if the incoming stream is incompatible due to unsupported bits per sample
|
||||
/// ESP_ERR_INVALID_ARG if the incoming stream is incompatible to be mixed with the other input audio stream
|
||||
/// ESP_ERR_NO_MEM if there isn't enough memory for the task's stack
|
||||
@@ -134,8 +148,6 @@ class MixerSpeaker : public Component {
|
||||
/// ESP_OK if the incoming stream is compatible and the mixer task starts
|
||||
esp_err_t start(audio::AudioStreamInfo &stream_info);
|
||||
|
||||
void stop();
|
||||
|
||||
void set_output_channels(uint8_t output_channels) { this->output_channels_ = output_channels; }
|
||||
void set_output_speaker(speaker::Speaker *speaker) { this->output_speaker_ = speaker; }
|
||||
void set_queue_mode(bool queue_mode) { this->queue_mode_ = queue_mode; }
|
||||
@@ -143,6 +155,9 @@ class MixerSpeaker : public Component {
|
||||
|
||||
speaker::Speaker *get_output_speaker() const { return this->output_speaker_; }
|
||||
|
||||
/// @brief Returns the current number of frames in the output pipeline (written but not yet played)
|
||||
uint32_t get_frames_in_pipeline() const { return this->frames_in_pipeline_.load(std::memory_order_acquire); }
|
||||
|
||||
protected:
|
||||
/// @brief Copies audio frames from the input buffer to the output buffer taking into account the number of channels
|
||||
/// in each stream. If the output stream has more channels, the input samples are duplicated. If the output stream has
|
||||
@@ -159,11 +174,11 @@ class MixerSpeaker : public Component {
|
||||
/// and secondary samples are duplicated or dropped as necessary to ensure the output stream has the configured number
|
||||
/// of channels. Output samples are clamped to the corresponding int16 min or max values if the mixed sample
|
||||
/// overflows.
|
||||
/// @param primary_buffer (int16_t *) samples buffer for the primary stream
|
||||
/// @param primary_buffer samples buffer for the primary stream
|
||||
/// @param primary_stream_info stream info for the primary stream
|
||||
/// @param secondary_buffer (int16_t *) samples buffer for secondary stream
|
||||
/// @param secondary_buffer samples buffer for secondary stream
|
||||
/// @param secondary_stream_info stream info for the secondary stream
|
||||
/// @param output_buffer (int16_t *) buffer for the mixed samples
|
||||
/// @param output_buffer buffer for the mixed samples
|
||||
/// @param output_stream_info stream info for the output buffer
|
||||
/// @param frames_to_mix number of frames in the primary and secondary buffers to mix together
|
||||
static void mix_audio_samples(const int16_t *primary_buffer, audio::AudioStreamInfo primary_stream_info,
|
||||
@@ -185,20 +200,20 @@ class MixerSpeaker : public Component {
|
||||
|
||||
EventGroupHandle_t event_group_{nullptr};
|
||||
|
||||
std::vector<SourceSpeaker *> source_speakers_;
|
||||
FixedVector<SourceSpeaker *> source_speakers_;
|
||||
speaker::Speaker *output_speaker_{nullptr};
|
||||
|
||||
uint8_t output_channels_;
|
||||
bool queue_mode_;
|
||||
bool task_stack_in_psram_{false};
|
||||
|
||||
bool task_created_{false};
|
||||
|
||||
TaskHandle_t task_handle_{nullptr};
|
||||
StaticTask_t task_stack_;
|
||||
StackType_t *task_stack_buffer_{nullptr};
|
||||
|
||||
optional<audio::AudioStreamInfo> audio_stream_info_;
|
||||
|
||||
std::atomic<uint32_t> frames_in_pipeline_{0}; // Frames written to output but not yet played
|
||||
};
|
||||
|
||||
} // namespace mixer_speaker
|
||||
|
||||
@@ -19,16 +19,25 @@ void Modbus::setup() {
|
||||
void Modbus::loop() {
|
||||
const uint32_t now = App.get_loop_component_start_time();
|
||||
|
||||
while (this->available()) {
|
||||
uint8_t byte;
|
||||
this->read_byte(&byte);
|
||||
if (this->parse_modbus_byte_(byte)) {
|
||||
this->last_modbus_byte_ = now;
|
||||
} else {
|
||||
size_t at = this->rx_buffer_.size();
|
||||
if (at > 0) {
|
||||
ESP_LOGV(TAG, "Clearing buffer of %d bytes - parse failed", at);
|
||||
this->rx_buffer_.clear();
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[64];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
if (this->parse_modbus_byte_(buf[i])) {
|
||||
this->last_modbus_byte_ = now;
|
||||
} else {
|
||||
size_t at = this->rx_buffer_.size();
|
||||
if (at > 0) {
|
||||
ESP_LOGV(TAG, "Clearing buffer of %d bytes - parse failed", at);
|
||||
this->rx_buffer_.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -397,11 +397,17 @@ bool Nextion::remove_from_q_(bool report_empty) {
|
||||
}
|
||||
|
||||
void Nextion::process_serial_() {
|
||||
uint8_t d;
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[64];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
while (this->available()) {
|
||||
read_byte(&d);
|
||||
this->command_data_ += d;
|
||||
this->command_data_.append(reinterpret_cast<const char *>(buf), to_read);
|
||||
}
|
||||
}
|
||||
// nextion.tech/instruction-set/
|
||||
|
||||
@@ -13,9 +13,12 @@ void Pipsolar::setup() {
|
||||
}
|
||||
|
||||
void Pipsolar::empty_uart_buffer_() {
|
||||
uint8_t byte;
|
||||
while (this->available()) {
|
||||
this->read_byte(&byte);
|
||||
uint8_t buf[64];
|
||||
int avail;
|
||||
while ((avail = this->available()) > 0) {
|
||||
if (!this->read_array(buf, std::min(static_cast<size_t>(avail), sizeof(buf)))) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -94,32 +97,47 @@ void Pipsolar::loop() {
|
||||
}
|
||||
|
||||
if (this->state_ == STATE_COMMAND || this->state_ == STATE_POLL) {
|
||||
while (this->available()) {
|
||||
uint8_t byte;
|
||||
this->read_byte(&byte);
|
||||
|
||||
// make sure data and null terminator fit in buffer
|
||||
if (this->read_pos_ >= PIPSOLAR_READ_BUFFER_LENGTH - 1) {
|
||||
this->read_pos_ = 0;
|
||||
this->empty_uart_buffer_();
|
||||
ESP_LOGW(TAG, "response data too long, discarding.");
|
||||
int avail = this->available();
|
||||
while (avail > 0) {
|
||||
uint8_t buf[64];
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
this->read_buffer_[this->read_pos_] = byte;
|
||||
this->read_pos_++;
|
||||
avail -= to_read;
|
||||
bool done = false;
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
uint8_t byte = buf[i];
|
||||
|
||||
// end of answer
|
||||
if (byte == 0x0D) {
|
||||
this->read_buffer_[this->read_pos_] = 0;
|
||||
this->empty_uart_buffer_();
|
||||
if (this->state_ == STATE_POLL) {
|
||||
this->state_ = STATE_POLL_COMPLETE;
|
||||
// make sure data and null terminator fit in buffer
|
||||
if (this->read_pos_ >= PIPSOLAR_READ_BUFFER_LENGTH - 1) {
|
||||
this->read_pos_ = 0;
|
||||
this->empty_uart_buffer_();
|
||||
ESP_LOGW(TAG, "response data too long, discarding.");
|
||||
done = true;
|
||||
break;
|
||||
}
|
||||
if (this->state_ == STATE_COMMAND) {
|
||||
this->state_ = STATE_COMMAND_COMPLETE;
|
||||
this->read_buffer_[this->read_pos_] = byte;
|
||||
this->read_pos_++;
|
||||
|
||||
// end of answer
|
||||
if (byte == 0x0D) {
|
||||
this->read_buffer_[this->read_pos_] = 0;
|
||||
this->empty_uart_buffer_();
|
||||
if (this->state_ == STATE_POLL) {
|
||||
this->state_ = STATE_POLL_COMPLETE;
|
||||
}
|
||||
if (this->state_ == STATE_COMMAND) {
|
||||
this->state_ = STATE_COMMAND_COMPLETE;
|
||||
}
|
||||
done = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} // available
|
||||
if (done) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (this->state_ == STATE_COMMAND) {
|
||||
if (millis() - this->command_start_millis_ > esphome::pipsolar::Pipsolar::COMMAND_TIMEOUT) {
|
||||
|
||||
@@ -56,17 +56,23 @@ void PylontechComponent::setup() {
|
||||
void PylontechComponent::update() { this->write_str("pwr\n"); }
|
||||
|
||||
void PylontechComponent::loop() {
|
||||
if (this->available() > 0) {
|
||||
int avail = this->available();
|
||||
if (avail > 0) {
|
||||
// pylontech sends a lot of data very suddenly
|
||||
// we need to quickly put it all into our own buffer, otherwise the uart's buffer will overflow
|
||||
uint8_t data;
|
||||
int recv = 0;
|
||||
while (this->available() > 0) {
|
||||
if (this->read_byte(&data)) {
|
||||
buffer_[buffer_index_write_] += (char) data;
|
||||
recv++;
|
||||
if (buffer_[buffer_index_write_].back() == static_cast<char>(ASCII_LF) ||
|
||||
buffer_[buffer_index_write_].length() >= MAX_DATA_LENGTH_BYTES) {
|
||||
uint8_t buf[64];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
recv += to_read;
|
||||
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
buffer_[buffer_index_write_] += (char) buf[i];
|
||||
if (buf[i] == ASCII_LF || buffer_[buffer_index_write_].length() >= MAX_DATA_LENGTH_BYTES) {
|
||||
// complete line received
|
||||
buffer_index_write_ = (buffer_index_write_ + 1) % NUM_BUFFERS;
|
||||
}
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
#include "rd03d.h"
|
||||
#include "esphome/core/helpers.h"
|
||||
#include "esphome/core/log.h"
|
||||
#include <cmath>
|
||||
|
||||
@@ -80,37 +81,47 @@ void RD03DComponent::dump_config() {
|
||||
}
|
||||
|
||||
void RD03DComponent::loop() {
|
||||
while (this->available()) {
|
||||
uint8_t byte = this->read();
|
||||
ESP_LOGVV(TAG, "Received byte: 0x%02X, buffer_pos: %d", byte, this->buffer_pos_);
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[64];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
uint8_t byte = buf[i];
|
||||
ESP_LOGVV(TAG, "Received byte: 0x%02X, buffer_pos: %d", byte, this->buffer_pos_);
|
||||
|
||||
// Check if we're looking for frame header
|
||||
if (this->buffer_pos_ < FRAME_HEADER_SIZE) {
|
||||
if (byte == FRAME_HEADER[this->buffer_pos_]) {
|
||||
this->buffer_[this->buffer_pos_++] = byte;
|
||||
} else if (byte == FRAME_HEADER[0]) {
|
||||
// Start over if we see a potential new header
|
||||
this->buffer_[0] = byte;
|
||||
this->buffer_pos_ = 1;
|
||||
} else {
|
||||
// Check if we're looking for frame header
|
||||
if (this->buffer_pos_ < FRAME_HEADER_SIZE) {
|
||||
if (byte == FRAME_HEADER[this->buffer_pos_]) {
|
||||
this->buffer_[this->buffer_pos_++] = byte;
|
||||
} else if (byte == FRAME_HEADER[0]) {
|
||||
// Start over if we see a potential new header
|
||||
this->buffer_[0] = byte;
|
||||
this->buffer_pos_ = 1;
|
||||
} else {
|
||||
this->buffer_pos_ = 0;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// Accumulate data bytes
|
||||
this->buffer_[this->buffer_pos_++] = byte;
|
||||
|
||||
// Check if we have a complete frame
|
||||
if (this->buffer_pos_ == FRAME_SIZE) {
|
||||
// Validate footer
|
||||
if (this->buffer_[FRAME_SIZE - 2] == FRAME_FOOTER[0] && this->buffer_[FRAME_SIZE - 1] == FRAME_FOOTER[1]) {
|
||||
this->process_frame_();
|
||||
} else {
|
||||
ESP_LOGW(TAG, "Invalid frame footer: 0x%02X 0x%02X (expected 0x55 0xCC)", this->buffer_[FRAME_SIZE - 2],
|
||||
this->buffer_[FRAME_SIZE - 1]);
|
||||
}
|
||||
this->buffer_pos_ = 0;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// Accumulate data bytes
|
||||
this->buffer_[this->buffer_pos_++] = byte;
|
||||
|
||||
// Check if we have a complete frame
|
||||
if (this->buffer_pos_ == FRAME_SIZE) {
|
||||
// Validate footer
|
||||
if (this->buffer_[FRAME_SIZE - 2] == FRAME_FOOTER[0] && this->buffer_[FRAME_SIZE - 1] == FRAME_FOOTER[1]) {
|
||||
this->process_frame_();
|
||||
} else {
|
||||
ESP_LOGW(TAG, "Invalid frame footer: 0x%02X 0x%02X (expected 0x55 0xCC)", this->buffer_[FRAME_SIZE - 2],
|
||||
this->buffer_[FRAME_SIZE - 1]);
|
||||
}
|
||||
this->buffer_pos_ = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -136,14 +136,21 @@ void RFBridgeComponent::loop() {
|
||||
this->last_bridge_byte_ = now;
|
||||
}
|
||||
|
||||
while (this->available()) {
|
||||
uint8_t byte;
|
||||
this->read_byte(&byte);
|
||||
if (this->parse_bridge_byte_(byte)) {
|
||||
ESP_LOGVV(TAG, "Parsed: 0x%02X", byte);
|
||||
this->last_bridge_byte_ = now;
|
||||
} else {
|
||||
this->rx_buffer_.clear();
|
||||
int avail = this->available();
|
||||
while (avail > 0) {
|
||||
uint8_t buf[64];
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
if (this->parse_bridge_byte_(buf[i])) {
|
||||
ESP_LOGVV(TAG, "Parsed: 0x%02X", buf[i]);
|
||||
this->last_bridge_byte_ = now;
|
||||
} else {
|
||||
this->rx_buffer_.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -106,12 +106,19 @@ void MR24HPC1Component::update_() {
|
||||
|
||||
// main loop
|
||||
void MR24HPC1Component::loop() {
|
||||
uint8_t byte;
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[64];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
// Is there data on the serial port
|
||||
while (this->available()) {
|
||||
this->read_byte(&byte);
|
||||
this->r24_split_data_frame_(byte); // split data frame
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
this->r24_split_data_frame_(buf[i]); // split data frame
|
||||
}
|
||||
}
|
||||
|
||||
if ((this->s_output_info_switch_flag_ == OUTPUT_SWTICH_OFF) &&
|
||||
|
||||
@@ -30,14 +30,21 @@ void MR60BHA2Component::dump_config() {
|
||||
|
||||
// main loop
|
||||
void MR60BHA2Component::loop() {
|
||||
uint8_t byte;
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[64];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
// Is there data on the serial port
|
||||
while (this->available()) {
|
||||
this->read_byte(&byte);
|
||||
this->rx_message_.push_back(byte);
|
||||
if (!this->validate_message_()) {
|
||||
this->rx_message_.clear();
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
this->rx_message_.push_back(buf[i]);
|
||||
if (!this->validate_message_()) {
|
||||
this->rx_message_.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -49,12 +49,19 @@ void MR60FDA2Component::setup() {
|
||||
|
||||
// main loop
|
||||
void MR60FDA2Component::loop() {
|
||||
uint8_t byte;
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[64];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
// Is there data on the serial port
|
||||
while (this->available()) {
|
||||
this->read_byte(&byte);
|
||||
this->split_frame_(byte); // split data frame
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
this->split_frame_(buf[i]); // split data frame
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -31,10 +31,19 @@ void Tuya::setup() {
|
||||
}
|
||||
|
||||
void Tuya::loop() {
|
||||
while (this->available()) {
|
||||
uint8_t c;
|
||||
this->read_byte(&c);
|
||||
this->handle_char_(c);
|
||||
// Read all available bytes in batches to reduce UART call overhead.
|
||||
int avail = this->available();
|
||||
uint8_t buf[64];
|
||||
while (avail > 0) {
|
||||
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
|
||||
if (!this->read_array(buf, to_read)) {
|
||||
break;
|
||||
}
|
||||
avail -= to_read;
|
||||
|
||||
for (size_t i = 0; i < to_read; i++) {
|
||||
this->handle_char_(buf[i]);
|
||||
}
|
||||
}
|
||||
process_command_queue_();
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user