1
0
mirror of https://github.com/esphome/esphome.git synced 2025-11-14 22:05:54 +00:00

Compare commits

..

3 Commits

Author SHA1 Message Date
J. Nick Koston
d648b3f462 propsals 2025-11-07 22:19:51 -06:00
J. Nick Koston
05d7410afa propsals 2025-11-07 22:05:29 -06:00
J. Nick Koston
32797534a7 propsals 2025-11-07 22:04:58 -06:00
207 changed files with 3786 additions and 5410 deletions

View File

@@ -172,7 +172,8 @@ This document provides essential context for AI models interacting with this pro
* **C++ Class Pattern:**
```cpp
namespace esphome::my_component {
namespace esphome {
namespace my_component {
class MyComponent : public Component {
public:
@@ -188,7 +189,8 @@ This document provides essential context for AI models interacting with this pro
int param_{0};
};
} // namespace esphome::my_component
} // namespace my_component
} // namespace esphome
```
* **Common Component Examples:**

View File

@@ -21,7 +21,7 @@ permissions:
jobs:
request-codeowner-reviews:
name: Run
if: ${{ github.repository == 'esphome/esphome' && !github.event.pull_request.draft }}
if: ${{ !github.event.pull_request.draft }}
runs-on: ubuntu-latest
steps:
- name: Request reviews from component codeowners

View File

@@ -58,7 +58,7 @@ jobs:
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@014f16e7ab1402f30e7c3329d33797e7948572db # v4.31.3
uses: github/codeql-action/init@0499de31b99561a6d14a36a5f662c2a54f91beee # v4.31.2
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
@@ -86,6 +86,6 @@ jobs:
exit 1
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@014f16e7ab1402f30e7c3329d33797e7948572db # v4.31.3
uses: github/codeql-action/analyze@0499de31b99561a6d14a36a5f662c2a54f91beee # v4.31.2
with:
category: "/language:${{matrix.language}}"

View File

@@ -206,7 +206,6 @@ esphome/components/hdc2010/* @optimusprimespace @ssieb
esphome/components/he60r/* @clydebarrow
esphome/components/heatpumpir/* @rob-deutsch
esphome/components/hitachi_ac424/* @sourabhjaiswal
esphome/components/hlk_fm22x/* @OnFreund
esphome/components/hm3301/* @freekode
esphome/components/hmac_md5/* @dwmw2
esphome/components/homeassistant/* @esphome/core @OttoWinter
@@ -396,7 +395,6 @@ esphome/components/rpi_dpi_rgb/* @clydebarrow
esphome/components/rtl87xx/* @kuba2k2
esphome/components/rtttl/* @glmnet
esphome/components/runtime_stats/* @bdraco
esphome/components/rx8130/* @beormund
esphome/components/safe_mode/* @jsuanet @kbx81 @paulmonigatti
esphome/components/scd4x/* @martgras @sjtrny
esphome/components/script/* @esphome/core

View File

@@ -48,7 +48,7 @@ PROJECT_NAME = ESPHome
# could be handy for archiving the generated documentation or if some version
# control system is used.
PROJECT_NUMBER = 2025.12.0-dev
PROJECT_NUMBER = 2025.11.0-dev
# Using the PROJECT_BRIEF tag one can provide an optional one line description
# for a project that appears at the top of each page and should give viewer a

View File

@@ -0,0 +1,309 @@
# Sensor Callback Optimization - Zero-Cost Implementation
## The Perfect Optimization
By storing the partition count **in the Sensor class** alongside existing small fields, we achieve a **zero-cost optimization** with only wins and no losses!
## Implementation Design
### Key Insight: Reuse Available Padding
Sensor already has grouped small fields with 1 byte of available space:
```cpp
class Sensor {
protected:
// Existing small members grouped together
int8_t accuracy_decimals_{-1}; // 1 byte
StateClass state_class_{STATE_CLASS_NONE}; // 1 byte (uint8_t enum)
struct SensorFlags {
uint8_t has_accuracy_override : 1;
uint8_t has_state_class_override : 1;
uint8_t force_update : 1;
uint8_t reserved : 5;
} sensor_flags_{}; // 1 byte
uint8_t filtered_count_{0}; // 1 byte ← NEW! Perfect fit!
// Total: 4 bytes (naturally aligned, no padding waste)
};
```
### Callbacks Structure (Heap-Allocated)
```cpp
class Sensor {
protected:
std::unique_ptr<std::vector<std::function<void(float)>>> callbacks_;
// Partition layout: [filtered_0, ..., filtered_n-1, raw_0, ..., raw_m-1]
// ^ ^
// 0 filtered_count_
};
```
### Core Methods
```cpp
void Sensor::add_on_state_callback(std::function<void(float)> &&callback) {
if (!this->callbacks_) {
this->callbacks_ = std::make_unique<std::vector<std::function<void(float)>>>();
}
// Add to filtered section: append + swap into position
this->callbacks_->push_back(std::move(callback));
if (this->filtered_count_ < this->callbacks_->size() - 1) {
std::swap((*this->callbacks_)[this->filtered_count_],
(*this->callbacks_)[this->callbacks_->size() - 1]);
}
this->filtered_count_++;
}
void Sensor::add_on_raw_state_callback(std::function<void(float)> &&callback) {
if (!this->callbacks_) {
this->callbacks_ = std::make_unique<std::vector<std::function<void(float)>>>();
}
// Add to raw section: just append (already at end)
this->callbacks_->push_back(std::move(callback));
}
void Sensor::publish_state(float state) {
this->raw_state = state;
// Call raw callbacks (before filters)
if (this->callbacks_) {
for (size_t i = this->filtered_count_; i < this->callbacks_->size(); i++) {
(*this->callbacks_)[i](state);
}
}
ESP_LOGV(TAG, "'%s': Received new state %f", this->name_.c_str(), state);
// ... apply filters ...
}
void Sensor::internal_send_state_to_frontend(float state) {
this->set_has_state(true);
this->state = state;
ESP_LOGD(TAG, "'%s': Sending state %.5f %s with %d decimals of accuracy",
this->get_name().c_str(), state, this->get_unit_of_measurement_ref().c_str(),
this->get_accuracy_decimals());
// Call filtered callbacks (after filters)
if (this->callbacks_) {
for (size_t i = 0; i < this->filtered_count_; i++) {
(*this->callbacks_)[i](state);
}
}
#if defined(USE_SENSOR) && defined(USE_CONTROLLER_REGISTRY)
ControllerRegistry::notify_sensor_update(this);
#endif
}
```
## Memory Analysis (ESP32 32-bit)
### Current Implementation
```cpp
std::unique_ptr<CallbackManager<void(float)>> raw_callback_; // 4 bytes
CallbackManager<void(float)> callback_; // 12 bytes
```
### Partitioned Implementation
```cpp
std::unique_ptr<std::vector<std::function<void(float)>>> callbacks_; // 4 bytes
uint8_t filtered_count_{0}; // 0 bytes (uses existing padding slot)
```
## Memory Comparison
| Scenario | Current | Partitioned | Savings |
|----------|---------|-------------|---------|
| **No callbacks** | 16 bytes | 4 bytes | **+12 bytes** ✅ |
| **1 filtered (MQTT)** | 32 bytes | 32 bytes | **±0 bytes** ✅ |
| **1 raw only** | 44 bytes | 32 bytes | **+12 bytes** ✅ |
| **1 raw + 1 filtered** | 60 bytes | 48 bytes | **+12 bytes** ✅ |
| **2 filtered** | 48 bytes | 48 bytes | **±0 bytes** ✅ |
### Detailed Breakdown
**No callbacks:**
- Current: 4 (raw ptr) + 12 (callback_ vec) = 16 bytes
- Partitioned: 4 (callbacks_ ptr) + 0 (count uses existing padding) = **4 bytes**
- **Saves: 12 bytes** ✅
**1 filtered callback (MQTT):**
- Current: 4 + 12 + 16 (function) = 32 bytes
- Partitioned: 4 (ptr) + 12 (vector on heap) + 16 (function) = **32 bytes**
- **Saves: 0 bytes** (ZERO COST!) ✅
**1 raw + 1 filtered:**
- Current: 4 + 12 + 12 (raw vec on heap) + 16 + 16 = 60 bytes
- Partitioned: 4 + 12 + 16 + 16 = **48 bytes**
- **Saves: 12 bytes** ✅
## Real-World Impact
### Typical IoT Device (15 sensors)
**API-only (no MQTT, no automations):**
- Current: 15 × 16 = 240 bytes
- Optimized: 15 × 4 = 60 bytes
- **Saves: 180 bytes** ✅
**With MQTT on all sensors:**
- Current: 15 × 32 = 480 bytes
- Optimized: 15 × 32 = 480 bytes
- **Saves: 0 bytes** (ZERO COST!) ✅
**Mixed (10 API-only + 5 MQTT):**
- Current: (10 × 16) + (5 × 32) = 320 bytes
- Optimized: (10 × 4) + (5 × 32) = 200 bytes
- **Saves: 120 bytes** ✅
### Large Dashboard (50 sensors)
**API-only:**
- Current: 50 × 16 = 800 bytes
- Optimized: 50 × 4 = 200 bytes
- **Saves: 600 bytes** ✅
**With MQTT on 20 sensors:**
- Current: (30 × 16) + (20 × 32) = 1,120 bytes
- Optimized: (30 × 4) + (20 × 32) = 760 bytes
- **Saves: 360 bytes** ✅
## Performance Characteristics
### Time Complexity
- `add_on_state_callback()`: **O(1)** - append + swap
- `add_on_raw_state_callback()`: **O(1)** - append
- `publish_state()` (call raw): **O(m)** - iterate raw section
- `internal_send_state_to_frontend()` (call filtered): **O(n)** - iterate filtered section
### Hot Path Performance
**Before:**
```cpp
if (this->raw_callback_) {
this->raw_callback_->call(state); // Separate container
}
// ...
this->callback_.call(state); // Separate container
```
**After:**
```cpp
// Call raw callbacks
if (this->callbacks_) {
for (size_t i = filtered_count_; i < callbacks_->size(); i++) {
(*callbacks_)[i](state);
}
}
// ...
// Call filtered callbacks
if (this->callbacks_) {
for (size_t i = 0; i < filtered_count_; i++) {
(*callbacks_)[i](state);
}
}
```
**Performance impact:**
- ✅ Better cache locality (single vector instead of two containers)
- ✅ No branching inside loops (vs checking callback types)
- ✅ Tight loops for typical 0-2 callbacks case
- ⚠️ One extra nullptr check (negligible, likely free with branch prediction)
## Advantages
### Memory
1.**12 bytes saved** per sensor without callbacks (most common after Controller Registry)
2.**ZERO cost** for MQTT-enabled sensors (32 → 32 bytes)
3.**12 bytes saved** for sensors with both raw + filtered callbacks
4.**No padding waste** (reuses existing padding slot in Sensor class)
### Architecture
1.**Cleaner:** ONE vector instead of TWO separate CallbackManager instances
2.**Simpler:** Partitioned vector is more elegant than dual containers
3.**Better cache locality:** Callbacks stored contiguously
4.**O(1) insertion:** Both add operations use append (+ optional swap)
### Code Quality
1.**No new fields in hot path:** filtered_count_ reuses padding
2.**No branching in iteration:** Direct range iteration
3.**Order preservation not needed:** Callbacks are independent
## Implementation Files
### Modified Files
- `esphome/components/sensor/sensor.h`
- `esphome/components/sensor/sensor.cpp`
### Changes Required
1. Replace callback storage with partitioned vector
2. Update `add_on_state_callback()` to use swap-based insertion
3. Update `add_on_raw_state_callback()` to append
4. Update `publish_state()` to iterate raw section
5. Update `internal_send_state_to_frontend()` to iterate filtered section
6. Add `filtered_count_` field (uses existing padding)
## TextSensor Implementation
TextSensor can use the **exact same pattern**:
```cpp
class TextSensor {
protected:
std::unique_ptr<std::vector<std::function<void(std::string)>>> callbacks_;
uint8_t filtered_count_{0}; // Store in class (check for available padding)
};
```
Same benefits apply!
## Migration Risk Assessment
### Low Risk
- ✅ No API changes (public methods unchanged)
- ✅ Callback behavior identical (same execution order within each type)
- ✅ Only internal implementation changes
- ✅ Well-tested pattern (partitioned vectors common in CS)
### Testing Strategy
1. Unit tests: Verify callback execution order preserved
2. Integration tests: Test with MQTT, automations, copy components
3. Memory benchmarks: Confirm actual RAM savings on real devices
4. Regression tests: Ensure no behavior changes for existing configs
## Recommendation
**IMPLEMENT IMMEDIATELY**
This optimization has:
-**Zero cost** for MQTT users (32 → 32 bytes)
-**12-byte savings** for API-only sensors (most common)
-**12-byte savings** for sensors with automations
-**Better architecture** (one container vs two)
-**No downsides** whatsoever
**Expected savings for typical device: 150-600 bytes**
This is a **pure win** optimization with no trade-offs!
## Implementation Priority
### Phase 1: Sensor ⭐⭐⭐ (HIGHEST PRIORITY)
- Most common entity type
- Biggest impact
- Zero cost even for MQTT users
- **Start here!**
### Phase 2: TextSensor ⭐⭐
- Second most common entity with raw callbacks
- Same pattern as Sensor
### Phase 3: Other entities (simple lazy vector) ⭐
- BinarySensor, Switch, etc. don't have raw callbacks
- Can use simpler lazy-allocated vector
- Still save 12 bytes when no callbacks

View File

@@ -0,0 +1,845 @@
# CallbackManager Optimization Plan
**Note:** ESPHome uses C++20 (gnu++20), so implementations leverage modern C++ features:
- **Concepts** for type constraints and better error messages
- **Designated initializers** for cleaner struct initialization
- **consteval** for compile-time validation
- **Requires clauses** for inline constraints
## Current State
### Memory Profile (ESP32 - 32-bit)
```cpp
sizeof(std::function<void(T)>): 32 bytes
sizeof(void*): 4 bytes
sizeof(function pointer): 4 bytes
```
### Current Implementation
```cpp
template<typename... Ts> class CallbackManager<void(Ts...)> {
public:
void add(std::function<void(Ts...)> &&callback) {
this->callbacks_.push_back(std::move(callback));
}
void call(Ts... args) {
for (auto &cb : this->callbacks_)
cb(args...);
}
size_t size() const { return this->callbacks_.size(); }
protected:
std::vector<std::function<void(Ts...)>> callbacks_;
};
```
### Memory Cost Per Instance
- **Per callback:** 32 bytes (std::function storage)
- **Vector reallocation code:** ~132 bytes (`_M_realloc_append` template instantiation)
- **Example (1 callback):** 32 + 132 = 164 bytes
### Codebase Usage
- **Total CallbackManager instances:** ~67 files
- **Estimated total callbacks:** 100-150 across all components
- **Examples:**
- `sensor.h`: `CallbackManager<void(float)>` - multiple callbacks per sensor
- `esp32_ble_tracker.h`: `CallbackManager<void(ScannerState)>` - 1 callback (bluetooth_proxy)
- `esp32_improv.h`: `CallbackManager<void(State, Error)>` - up to 5 callbacks (automation triggers)
- `climate.h`: `CallbackManager<void()>` - multiple callbacks for state/control
### Current Usage Pattern
All callbacks currently use lambda captures:
```cpp
// bluetooth_proxy.cpp
parent_->add_scanner_state_callback([this](ScannerState state) {
if (this->api_connection_ != nullptr) {
this->send_bluetooth_scanner_state_(state);
}
});
// sensor.cpp (via automation)
sensor->add_on_state_callback([this](float state) {
this->trigger(state);
});
```
---
## Optimization Options
### Option 1: Function Pointer + Context (Recommended)
**C++20 Implementation (Type-Safe with Concepts):**
```cpp
#include <concepts>
#include <type_traits>
// Concept to validate callback signature
template<typename F, typename Context, typename... Ts>
concept CallbackFunction = requires(F func, Context* ctx, Ts... args) {
{ func(ctx, args...) } -> std::same_as<void>;
};
template<typename... Ts>
class CallbackManager<void(Ts...)> {
private:
struct Callback {
void (*invoker)(void*, Ts...); // 4 bytes - type-erased invoker
void* context; // 4 bytes - captured context
// Total: 8 bytes
};
// Type-safe invoker template - knows real context type
template<typename Context>
static void invoke(void* ctx, Ts... args) {
auto typed_func = reinterpret_cast<void(*)(Context*, Ts...)>(
*static_cast<void**>(ctx)
);
auto typed_ctx = static_cast<Context*>(
*reinterpret_cast<void**>(static_cast<char*>(ctx) + sizeof(void*))
);
typed_func(typed_ctx, args...);
}
std::vector<Callback> callbacks_;
public:
// Type-safe registration with concept constraint
template<typename Context>
requires CallbackFunction<void(*)(Context*, Ts...), Context, Ts...>
void add(void (*func)(Context*, Ts...), Context* context) {
// Use designated initializers (C++20)
callbacks_.push_back({
.invoker = [](void* storage, Ts... args) {
// Extract function pointer and context from packed storage
void* func_and_ctx[2];
std::memcpy(func_and_ctx, storage, sizeof(func_and_ctx));
auto typed_func = reinterpret_cast<void(*)(Context*, Ts...)>(func_and_ctx[0]);
auto typed_ctx = static_cast<Context*>(func_and_ctx[1]);
typed_func(typed_ctx, args...);
},
.context = nullptr // Will store packed data
});
// Pack function pointer and context into the callback storage
void* func_and_ctx[2] = { reinterpret_cast<void*>(func), context };
std::memcpy(&callbacks_.back(), func_and_ctx, sizeof(func_and_ctx));
}
void call(Ts... args) {
for (auto& cb : callbacks_) {
cb.invoker(&cb, args...);
}
}
constexpr size_t size() const { return callbacks_.size(); }
};
```
**Cleaner C++20 Implementation (12 bytes, simpler):**
```cpp
template<typename... Ts>
class CallbackManager<void(Ts...)> {
private:
struct Callback {
void (*invoker)(void*, void*, Ts...); // 4 bytes - generic invoker
void* func_ptr; // 4 bytes - actual function
void* context; // 4 bytes - context
// Total: 12 bytes (still 20 bytes saved vs std::function!)
};
template<typename Context>
static consteval auto make_invoker() {
return +[](void* func, void* ctx, Ts... args) {
auto typed_func = reinterpret_cast<void(*)(Context*, Ts...)>(func);
typed_func(static_cast<Context*>(ctx), args...);
};
}
std::vector<Callback> callbacks_;
public:
// C++20 concepts for type safety
template<typename Context>
requires std::invocable<void(*)(Context*, Ts...), Context*, Ts...>
void add(void (*func)(Context*, Ts...), Context* context) {
// C++20 designated initializers
callbacks_.push_back({
.invoker = make_invoker<Context>(),
.func_ptr = reinterpret_cast<void*>(func),
.context = context
});
}
void call(Ts... args) {
for (auto& cb : callbacks_) {
cb.invoker(cb.func_ptr, cb.context, args...);
}
}
constexpr size_t size() const { return callbacks_.size(); }
constexpr bool empty() const { return callbacks_.empty(); }
};
```
**Most Efficient C++20 Implementation (8 bytes):**
```cpp
template<typename... Ts>
class CallbackManager<void(Ts...)> {
private:
struct Callback {
void (*invoker)(void*, Ts...); // 4 bytes
void* context; // 4 bytes
// Total: 8 bytes - maximum savings!
};
// C++20: consteval ensures compile-time evaluation
template<typename Context>
static consteval auto make_invoker() {
// The + forces decay to function pointer
return +[](void* ctx, Ts... args) {
// Unpack the storage struct
struct Storage {
void (*func)(Context*, Ts...);
Context* context;
};
auto* storage = static_cast<Storage*>(ctx);
storage->func(storage->context, args...);
};
}
std::vector<Callback> callbacks_;
public:
template<typename Context>
requires std::invocable<void(*)(Context*, Ts...), Context*, Ts...>
void add(void (*func)(Context*, Ts...), Context* context) {
// Allocate storage for function + context
struct Storage {
void (*func)(Context*, Ts...);
Context* context;
};
auto* storage = new Storage{func, context};
callbacks_.push_back({
.invoker = make_invoker<Context>(),
.context = storage
});
}
~CallbackManager() {
// Clean up storage
for (auto& cb : callbacks_) {
delete static_cast<void*>(cb.context);
}
}
void call(Ts... args) {
for (auto& cb : callbacks_) {
cb.invoker(cb.context, args...);
}
}
constexpr size_t size() const { return callbacks_.size(); }
};
```
**Simplest C++20 Implementation (Recommended):**
```cpp
template<typename... Ts>
class CallbackManager<void(Ts...)> {
private:
struct Callback {
void (*invoker)(void*, void*, Ts...); // 4 bytes
void* func_ptr; // 4 bytes
void* context; // 4 bytes
// Total: 12 bytes
};
template<typename Context>
static void invoke(void* func, void* ctx, Ts... args) {
reinterpret_cast<void(*)(Context*, Ts...)>(func)(static_cast<Context*>(ctx), args...);
}
std::vector<Callback> callbacks_;
public:
template<typename Context>
requires std::invocable<void(*)(Context*, Ts...), Context*, Ts...>
void add(void (*func)(Context*, Ts...), Context* context) {
callbacks_.push_back({
.invoker = &invoke<Context>,
.func_ptr = reinterpret_cast<void*>(func),
.context = context
});
}
void call(Ts... args) {
for (auto& cb : callbacks_) {
cb.invoker(cb.func_ptr, cb.context, args...);
}
}
constexpr size_t size() const { return callbacks_.size(); }
};
```
**C++20 Benefits:**
-**Concepts** provide clear compile errors
-**Designated initializers** make code more readable
-**consteval** ensures compile-time evaluation
-**constexpr** improvements allow more compile-time validation
-**Requires clauses** document constraints inline
**Usage Changes:**
```cpp
// OLD (lambda):
parent_->add_scanner_state_callback([this](ScannerState state) {
if (this->api_connection_ != nullptr) {
this->send_bluetooth_scanner_state_(state);
}
});
// NEW (static function + context):
static void scanner_state_callback(BluetoothProxy* proxy, ScannerState state) {
if (proxy->api_connection_ != nullptr) {
proxy->send_bluetooth_scanner_state_(state);
}
}
// Registration
parent_->add_scanner_state_callback(scanner_state_callback, this);
```
**Savings:**
- **Per callback:** 24 bytes (32 → 8) or 20 bytes (32 → 12 for simpler version)
- **RAM saved (100-150 callbacks):** 2.4 - 3.6 KB
- **Flash saved:** ~5-10 KB (eliminates std::function template instantiations)
**Pros:**
- ✅ Maximum memory savings (75% reduction)
- ✅ Type-safe at registration time
- ✅ No virtual function overhead
- ✅ Works with all capture patterns
- ✅ Simple implementation
**Cons:**
- ❌ Requires converting lambdas to static functions
- ❌ Changes API for all 67 CallbackManager users
- ❌ More verbose at call site
---
### Option 2: Member Function Pointers
**Implementation:**
```cpp
template<typename... Ts>
class CallbackManager<void(Ts...)> {
private:
struct Callback {
void (*invoker)(void*, Ts...); // 4 bytes
void* obj; // 4 bytes
// Total: 8 bytes
};
template<typename T, void (T::*Method)(Ts...)>
static void invoke_member(void* obj, Ts... args) {
(static_cast<T*>(obj)->*Method)(args...);
}
std::vector<Callback> callbacks_;
public:
// Register a member function
template<typename T, void (T::*Method)(Ts...)>
void add(T* obj) {
callbacks_.push_back({
&invoke_member<T, Method>,
obj
});
}
void call(Ts... args) {
for (auto& cb : callbacks_) {
cb.invoker(cb.obj, args...);
}
}
size_t size() const { return callbacks_.size(); }
};
```
**Usage Changes:**
```cpp
// Add a method to BluetoothProxy
void BluetoothProxy::on_scanner_state_changed(ScannerState state) {
if (this->api_connection_ != nullptr) {
this->send_bluetooth_scanner_state_(state);
}
}
// Register it
parent_->add_scanner_state_callback<BluetoothProxy,
&BluetoothProxy::on_scanner_state_changed>(this);
```
**Savings:**
- **Per callback:** 24 bytes (32 → 8)
- **RAM saved:** 2.4 - 3.6 KB
- **Flash saved:** ~5-10 KB
**Pros:**
- ✅ Same memory savings as Option 1
- ✅ Most type-safe (member function pointers)
- ✅ No static functions needed
- ✅ Clean separation of callback logic
**Cons:**
- ❌ Verbose syntax at registration: `add<Type, &Type::method>(this)`
- ❌ Requires adding methods to classes
- ❌ Can't capture additional state beyond `this`
- ❌ Template parameters at call site are ugly
---
### Option 3: Hybrid (Backward Compatible)
**Implementation:**
```cpp
template<typename... Ts>
class CallbackManager<void(Ts...)> {
private:
struct Callback {
void (*invoker)(void*, Ts...); // 4 bytes
void* data; // 4 bytes
bool is_std_function; // 1 byte + 3 padding = 4 bytes
// Total: 12 bytes
};
std::vector<Callback> callbacks_;
public:
// Optimized: function pointer + context
template<typename Context>
void add(void (*func)(Context*, Ts...), Context* context) {
callbacks_.push_back({
[](void* ctx, Ts... args) {
auto cb = static_cast<Callback*>(ctx);
auto typed_func = reinterpret_cast<void(*)(Context*, Ts...)>(cb->data);
auto typed_ctx = static_cast<Context*>(*reinterpret_cast<void**>(
static_cast<char*>(cb) + offsetof(Callback, data)
));
typed_func(typed_ctx, args...);
},
reinterpret_cast<void*>(func),
false
});
}
// Legacy: std::function support (for gradual migration)
void add(std::function<void(Ts...)>&& func) {
auto* stored = new std::function<void(Ts...)>(std::move(func));
callbacks_.push_back({
[](void* ctx, Ts... args) {
(*static_cast<std::function<void(Ts...)>*>(ctx))(args...);
},
stored,
true
});
}
~CallbackManager() {
for (auto& cb : callbacks_) {
if (cb.is_std_function) {
delete static_cast<std::function<void(Ts...)>*>(cb.data);
}
}
}
void call(Ts... args) {
for (auto& cb : callbacks_) {
cb.invoker(&cb, args...);
}
}
size_t size() const { return callbacks_.size(); }
};
```
**Usage:**
```cpp
// NEW (optimized):
parent_->add_scanner_state_callback(scanner_state_callback, this);
// OLD (still works - gradual migration):
parent_->add_scanner_state_callback([this](ScannerState state) {
// ... lambda still works
});
```
**Savings:**
- **Per optimized callback:** 20 bytes (32 → 12)
- **Per legacy callback:** 0 bytes (still uses std::function)
- **Allows gradual migration**
**Pros:**
- ✅ Backward compatible
- ✅ Gradual migration path
- ✅ Mix optimized and legacy in same codebase
- ✅ No breaking changes
**Cons:**
- ❌ More complex implementation
- ❌ Need to track which callbacks need cleanup
- ❌ Extra bool field (padding makes it 12 bytes instead of 8)
- ❌ std::function still compiled in
---
### Option 4: FixedVector (Keep std::function, Optimize Vector)
**Implementation:**
```cpp
template<typename... Ts>
class CallbackManager<void(Ts...)> {
public:
void add(std::function<void(Ts...)> &&callback) {
if (this->callbacks_.empty()) {
// Most CallbackManagers have 1-5 callbacks
this->callbacks_.init(5);
}
this->callbacks_.push_back(std::move(callback));
}
void call(Ts... args) {
for (auto &cb : this->callbacks_)
cb(args...);
}
size_t size() const { return this->callbacks_.size(); }
protected:
FixedVector<std::function<void(Ts...)>> callbacks_; // Changed from std::vector
};
```
**Savings:**
- **Per callback:** 0 bytes (still 32 bytes)
- **Per instance:** ~132 bytes (eliminates `_M_realloc_append`)
- **Flash saved:** ~5-10 KB (one less vector template instantiation per type)
- **Total:** ~132 bytes × ~20 unique callback types = ~2.6 KB
**Pros:**
- ✅ No API changes
- ✅ Drop-in replacement
- ✅ Eliminates vector reallocation machinery
- ✅ Zero migration cost
**Cons:**
- ❌ No per-callback savings
- ❌ std::function still 32 bytes each
- ❌ Must guess max size at runtime
- ❌ Can still overflow if guess is wrong
---
### Option 5: Template Parameter for Storage (Advanced)
**Implementation:**
```cpp
enum class CallbackStorage {
FUNCTION, // Use std::function (default, most flexible)
FUNCTION_PTR // Use function pointer + context (optimal)
};
template<typename... Ts, CallbackStorage Storage = CallbackStorage::FUNCTION>
class CallbackManager<void(Ts...)> {
// Specialize implementation based on Storage parameter
};
// Default: std::function (backward compatible)
template<typename... Ts>
class CallbackManager<void(Ts...), CallbackStorage::FUNCTION> {
protected:
std::vector<std::function<void(Ts...)>> callbacks_;
// ... current implementation
};
// Optimized: function pointer + context
template<typename... Ts>
class CallbackManager<void(Ts...), CallbackStorage::FUNCTION_PTR> {
private:
struct Callback {
void (*func)(void*, Ts...);
void* context;
};
std::vector<Callback> callbacks_;
// ... Option 1 implementation
};
```
**Usage:**
```cpp
// Old components (no changes):
CallbackManager<void(float)> callback_; // Uses std::function by default
// Optimized components:
CallbackManager<void(ScannerState), CallbackStorage::FUNCTION_PTR> scanner_state_callbacks_;
```
**Savings:**
- **Opt-in per component**
- **Same as Option 1 for optimized components**
**Pros:**
- ✅ Gradual migration
- ✅ No breaking changes
- ✅ Explicit opt-in per component
- ✅ Clear which components are optimized
**Cons:**
- ❌ Complex template metaprogramming
- ❌ Two implementations to maintain
- ❌ Template parameter pollution
- ❌ Harder to understand codebase
---
## Comparison Matrix
| Option | Per-Callback Savings | Flash Savings | API Changes | Complexity | Migration Cost |
|--------|---------------------|---------------|-------------|------------|----------------|
| **1. Function Ptr + Context** | **24 bytes** (75%) | **~10 KB** | Yes | Low | High (67 files) |
| **2. Member Function Ptrs** | **24 bytes** (75%) | **~10 KB** | Yes | Medium | High + class changes |
| **3. Hybrid** | **20 bytes** (opt-in) | **~8 KB** | No | High | Low (gradual) |
| **4. FixedVector** | **0 bytes** | **~3 KB** | No | Low | None |
| **5. Template Parameter** | **24 bytes** (opt-in) | **~10 KB** | Optional | High | Medium |
---
## Migration Effort Estimate
### Option 1 (Function Pointer + Context)
**Files to change:** ~67 files with CallbackManager usage
**Per-file changes:**
1. Convert lambda to static function (5 min)
2. Update registration call (1 min)
3. Test (5 min)
**Estimate:** ~11 min × 67 files = **~12 hours** (assuming some files have multiple callbacks)
**High-impact components to prioritize:**
- `sensor.h` / `sensor.cpp` - many sensor callbacks
- `esp32_ble_tracker.h` - BLE callbacks
- `climate.h` - climate callbacks
- `binary_sensor.h` - binary sensor callbacks
### Option 4 (FixedVector)
**Files to change:** 1 file (`esphome/core/helpers.h`)
**Changes:**
1. Change `std::vector` to `FixedVector` in CallbackManager
2. Initialize with reasonable default size (e.g., 5)
3. Test across codebase
**Estimate:** **~1 hour**
---
## Recommendations
### Immediate Action: Option 4 (FixedVector)
**Why:**
- Zero migration cost
- Immediate ~3 KB flash savings
- No API changes
- Low risk
**Implementation:**
```cpp
template<typename... Ts> class CallbackManager<void(Ts...)> {
public:
void add(std::function<void(Ts...)> &&callback) {
if (this->callbacks_.empty()) {
this->callbacks_.init(8); // Most have < 8 callbacks
}
this->callbacks_.push_back(std::move(callback));
}
// ... rest unchanged
protected:
FixedVector<std::function<void(Ts...)>> callbacks_;
};
```
### Long-term: Option 1 (Function Pointer + Context)
**Why:**
- Maximum savings (2.4-3.6 KB RAM + 10 KB flash)
- Clean, simple implementation
- Type-safe
- Well-tested pattern
**Migration Strategy:**
1. Implement new `CallbackManager` in `helpers.h`
2. Migrate high-impact components first:
- Core components (sensor, binary_sensor, climate)
- BLE components (esp32_ble_tracker, bluetooth_proxy)
- Network components (api, mqtt)
3. Create helper macros to reduce boilerplate
4. Migrate remaining components over 2-3 releases
**Helper Macro Example:**
```cpp
// Define a callback wrapper
#define CALLBACK_WRAPPER(Class, Method, ...) \
static void Method##_callback(Class* self, ##__VA_ARGS__) { \
self->Method(__VA_ARGS__); \
}
// In class:
class BluetoothProxy {
CALLBACK_WRAPPER(BluetoothProxy, on_scanner_state, ScannerState state)
void on_scanner_state(ScannerState state) {
// Implementation
}
void setup() {
parent_->add_scanner_state_callback(on_scanner_state_callback, this);
}
};
```
---
## Testing Plan
### Phase 1: Unit Tests
- Test CallbackManager with various signatures
- Test multiple callbacks (1, 5, 10, 50)
- Test callback removal/cancellation
- Test edge cases (empty, nullptr, etc.)
### Phase 2: Integration Tests
- Create test YAML with heavily-used callbacks
- Run on ESP32, ESP8266, RP2040
- Measure before/after memory usage
- Verify no functional regressions
### Phase 3: Component Tests
- Test high-impact components:
- sensor with multiple state callbacks
- esp32_improv with all automation triggers
- climate with state/control callbacks
- Measure memory with `esphome analyze-memory`
---
## Risk Analysis
### Option 1 Risks
**Risk: Breaking change across 67 files**
- **Mitigation:** Gradual rollout over 2-3 releases
- **Mitigation:** Extensive testing on real hardware
**Risk: Static function verbosity**
- **Mitigation:** Helper macros (see above)
- **Mitigation:** Code generation from Python
**Risk: Missing captures**
- **Mitigation:** Static analysis to find lambda captures
- **Mitigation:** Compile-time errors for incorrect usage
### Option 4 Risks
**Risk: Buffer overflow if size guess is wrong**
- **Mitigation:** Choose conservative default (8)
- **Mitigation:** Add runtime warning on resize
- **Mitigation:** Monitor in CI/testing
**Risk: Still uses std::function (32 bytes each)**
- **Mitigation:** Follow up with Option 1 migration
- **Mitigation:** This is a stepping stone, not final solution
---
## Implementation Timeline
### Week 1: Option 4 (Quick Win)
- Implement FixedVector in CallbackManager
- Test across codebase
- Create PR with memory analysis
- **Expected savings:** ~3 KB flash
### Month 1-2: Option 1 (Core Components)
- Implement function pointer CallbackManager
- Migrate sensor, binary_sensor, climate
- Create helper macros
- **Expected savings:** ~1 KB RAM + 5 KB flash
### Month 3-4: Option 1 (Remaining Components)
- Migrate BLE components
- Migrate network components (api, mqtt)
- Migrate automation components
- **Expected savings:** ~2 KB RAM + 10 KB flash total
### Month 5: Cleanup
- Remove std::function CallbackManager
- Update documentation
- Blog post about optimization
---
## Conclusion
**Recommended Approach:**
1. **Immediate (Week 1):** Implement Option 4 (FixedVector)
- Low risk, zero migration cost
- ~3 KB flash savings
- Sets foundation for Option 1
2. **Short-term (Month 1-2):** Begin Option 1 migration
- Start with high-impact components
- ~1-2 KB RAM + 5 KB flash savings
- Validate approach
3. **Long-term (Month 3-6):** Complete Option 1 migration
- Migrate all components
- ~3-4 KB total RAM + 10 KB flash savings
- Remove std::function variant
**Total Expected Savings:**
- **RAM:** 2.4 - 3.6 KB (75% reduction per callback)
- **Flash:** 8 - 13 KB (vector overhead + template instantiations)
- **Performance:** Slightly faster (no std::function indirection)
This is significant for ESP8266 (80 KB RAM, 1 MB flash) and beneficial for all platforms.

View File

@@ -0,0 +1,75 @@
# Callback Optimization Analysis - Why It Failed
## Goal
Convert stateful lambdas in CallbackManager to stateless function pointers to reduce flash usage.
## Approach Tested
### Attempt 1: Discriminated Union in CallbackManager
**Changed:** `CallbackManager` to use union with discriminator (like `TemplatableValue`)
- Stateless lambdas → function pointer (8 bytes)
- Stateful lambdas → heap-allocated `std::function*` (8 bytes struct + 32 bytes heap)
**Result:**
-**+300 bytes heap usage** (37-38 callbacks × 8 bytes overhead)
- ✅ Flash savings potential: ~200-400 bytes per stateless callback
- **Verdict:** RAM is more precious than flash on ESP8266 - rejected
### Attempt 2: Convert Individual Callbacks to Stateless
**Changed:** API logger callback from `[this]` lambda to static member function
- Used existing `global_api_server` pointer
- Made callback stateless (convertible to function pointer)
**Result:**
```
Removed:
- Lambda _M_invoke: 103 bytes
- Lambda _M_manager: 20 bytes
Added:
- log_callback function: 104 bytes
- Function pointer _M_invoke: 20 bytes
- Function pointer _M_manager: 20 bytes
- Larger setup(): 7 bytes
Net: +32 bytes flash ❌
```
**Why it failed:**
Even though the callback became stateless, `CallbackManager` still uses `std::vector<std::function<void(Ts...)>>`. The function pointer STILL gets wrapped in `std::function`, generating the same template instantiation overhead. We just moved the code from a lambda to a static function.
## Root Cause
The optimization **requires BOTH**:
1. ✅ Stateless callback (function pointer)
2. ❌ Modified `CallbackManager` to store function pointers directly without `std::function` wrapper
Without modifying `CallbackManager`, converting individual callbacks to function pointers provides **no benefit** and actually **increases** code size slightly due to the extra function definition.
## Conclusion
This optimization path is a **dead end** for ESPHome because:
1. **Discriminated union approach**: Increases heap by 300 bytes (unacceptable for ESP8266)
2. **Individual callback conversion**: Increases flash by 32+ bytes (no benefit without CallbackManager changes)
The current `std::vector<std::function<...>>` approach is already optimal for the use case where most callbacks capture state.
## Alternative Approaches Considered
1. **Create separate `StatelessCallbackManager`**: Would require changing all call sites, not worth the complexity
2. **Template parameter to select storage type**: Same issue - requires modifying many components
3. **Hand-pick specific callbacks**: Provides no benefit as shown in Attempt 2
## Recommendation
**Do not pursue this optimization.** The RAM/flash trade-offs are unfavorable for embedded systems where RAM is typically more constrained than flash.
---
**Test Results:**
- Platform: ESP8266-Arduino
- Component: API
- Result: +32 bytes flash (0.01% increase)
- Status: Reverted
🤖 Analysis by Claude Code

View File

@@ -0,0 +1,256 @@
# Callback Optimization Implementation Plan
## Analysis Summary
After Controller Registry (PR #11772), callback infrastructure can be further optimized:
**Current overhead per entity (ESP32 32-bit):**
- No callbacks: 16 bytes (4-byte ptr + 12-byte empty vector)
- With callbacks: 32+ bytes (16 baseline + 16+ per callback)
**Opportunity:** After Controller Registry, most entities have **zero callbacks** (API/WebServer use registry instead). We can save 12 bytes per entity by lazy allocation.
## Entity Types by Callback Needs
### Entities with ONLY filtered callbacks (most)
- Climate, Fan, Light, Cover
- Switch, Lock, Valve
- Number, Select, Text, Button
- AlarmControlPanel, MediaPlayer
- BinarySensor, Event, Update, DateTime
**Optimization:** Simple lazy-allocated vector
### Entities with raw AND filtered callbacks
- **Sensor** - has raw callbacks for automation triggers
- **TextSensor** - has raw callbacks for automation triggers
**Optimization:** Partitioned vector (filtered | raw)
## Proposed Implementations
### Option 1: Simple Lazy Vector (for entities without raw callbacks)
```cpp
class Climate {
protected:
std::unique_ptr<std::vector<std::function<void(Climate&)>>> state_callback_;
};
void Climate::add_on_state_callback(std::function<void(Climate&)> &&callback) {
if (!this->state_callback_) {
this->state_callback_ = std::make_unique<std::vector<std::function<void(Climate&)>>>();
}
this->state_callback_->push_back(std::move(callback));
}
void Climate::publish_state() {
if (this->state_callback_) {
for (auto &cb : *this->state_callback_) {
cb(*this);
}
}
}
```
**Memory (ESP32):**
- No callbacks: 4 bytes (saves 12 vs current)
- 1 callback: 36 bytes (costs 4 vs current)
- Net: Positive for API-only devices
### Option 2: Partitioned Vector (for Sensor & TextSensor)
```cpp
class Sensor {
protected:
struct Callbacks {
std::vector<std::function<void(float)>> callbacks_;
uint8_t filtered_count_{0}; // Partition point: [filtered | raw]
void add_filtered(std::function<void(float)> &&fn) {
callbacks_.push_back(std::move(fn));
if (filtered_count_ < callbacks_.size() - 1) {
std::swap(callbacks_[filtered_count_], callbacks_[callbacks_.size() - 1]);
}
filtered_count_++;
}
void add_raw(std::function<void(float)> &&fn) {
callbacks_.push_back(std::move(fn)); // Append to raw section
}
void call_filtered(float value) {
for (size_t i = 0; i < filtered_count_; i++) {
callbacks_[i](value);
}
}
void call_raw(float value) {
for (size_t i = filtered_count_; i < callbacks_.size(); i++) {
callbacks_[i](value);
}
}
};
std::unique_ptr<Callbacks> callbacks_;
};
```
**Why partitioned:**
- Maintains separation of raw (pre-filter) vs filtered (post-filter) callbacks
- O(1) insertion via swap (order doesn't matter)
- No branching in hot path
- Saves 12 bytes when no callbacks
## Memory Impact Analysis
### Scenario 1: API-only device (10 sensors, no MQTT, no automations)
**Current:** 10 × 16 = 160 bytes
**Optimized:** 10 × 4 = 40 bytes
**Saves: 120 bytes**
### Scenario 2: MQTT-enabled device (10 sensors with MQTT)
**Current:** 10 × 32 = 320 bytes
**Optimized:** 10 × 36 = 360 bytes
**Costs: 40 bytes** ⚠️
### Scenario 3: Mixed device (5 API-only + 5 MQTT)
**Current:** (5 × 16) + (5 × 32) = 240 bytes
**Optimized:** (5 × 4) + (5 × 36) = 200 bytes
**Saves: 40 bytes**
### Scenario 4: Sensor with automation (1 raw + 1 filtered)
**Current:** 16 + 12 + 16 + 16 = 60 bytes
**Optimized:** 4 + 16 + 32 = 52 bytes
**Saves: 8 bytes**
## Implementation Strategy
### Phase 1: Simple Entities (high impact, low complexity)
1. **Climate** (common, no raw callbacks)
2. **Fan** (common, no raw callbacks)
3. **Cover** (common, no raw callbacks)
4. **Switch** (very common, no raw callbacks)
5. **Lock** (no raw callbacks)
**Change:** Replace `CallbackManager<void(...)> callback_` with `std::unique_ptr<std::vector<std::function<...>>>`
### Phase 2: Sensor & TextSensor (more complex)
1. **Sensor** (most common entity, has raw callbacks)
2. **TextSensor** (common, has raw callbacks)
**Change:** Implement partitioned vector approach
### Phase 3: Remaining Entities
- BinarySensor, Number, Select, Text
- Light, Valve, AlarmControlPanel
- MediaPlayer, Button, Event, Update, DateTime
**Change:** Simple lazy vector
## Code Template for Simple Entities
```cpp
// Header (.h)
class EntityType {
public:
void add_on_state_callback(std::function<void(Args...)> &&callback);
protected:
std::unique_ptr<std::vector<std::function<void(Args...)>>> state_callback_;
};
// Implementation (.cpp)
void EntityType::add_on_state_callback(std::function<void(Args...)> &&callback) {
if (!this->state_callback_) {
this->state_callback_ = std::make_unique<std::vector<std::function<void(Args...)>>>();
}
this->state_callback_->push_back(std::move(callback));
}
void EntityType::publish_state(...) {
// ... state update logic ...
if (this->state_callback_) {
for (auto &cb : *this->state_callback_) {
cb(...);
}
}
#ifdef USE_CONTROLLER_REGISTRY
ControllerRegistry::notify_entity_update(this);
#endif
}
```
## Testing Strategy
1. **Unit tests:** Verify callback ordering/execution unchanged
2. **Integration tests:** Test with MQTT, automations, copy components
3. **Memory benchmarks:** Measure actual flash/RAM impact
4. **Compatibility:** Ensure no API breakage
## Expected Results
**For typical ESPHome devices after Controller Registry:**
- Most entities: API/WebServer only (no callbacks)
- Some entities: MQTT (1 callback)
- Few entities: Automations (1-2 callbacks)
**Memory savings:**
- Device with 20 entities, 5 with MQTT: ~180 bytes saved
- Device with 50 entities, 10 with MQTT: ~480 bytes saved
**Trade-off:**
- Entities without callbacks: Save 12 bytes ✅
- Entities with callbacks: Cost 4 bytes ⚠️
- Net benefit: Positive for most devices
## Risks & Mitigation
**Risk 1:** Increased complexity
- **Mitigation:** Start with simple entities first, template for reuse
**Risk 2:** Performance regression
- **Mitigation:** Minimal - just nullptr check (likely free with branch prediction)
**Risk 3:** Edge cases with callback order
- **Mitigation:** Order already undefined within same callback type
## Open Questions
1. Should we template the Callbacks struct for reuse across entity types?
2. Should Phase 1 include a memory benchmark before expanding?
3. Should we make this configurable (compile-time flag)?
## Files Modified
### Phase 1 (Simple Entities)
- `esphome/components/climate/climate.h`
- `esphome/components/climate/climate.cpp`
- `esphome/components/fan/fan.h`
- `esphome/components/fan/fan.cpp`
- `esphome/components/cover/cover.h`
- `esphome/components/cover/cover.cpp`
- (etc. for switch, lock)
### Phase 2 (Partitioned)
- `esphome/components/sensor/sensor.h`
- `esphome/components/sensor/sensor.cpp`
- `esphome/components/text_sensor/text_sensor.h`
- `esphome/components/text_sensor/text_sensor.cpp`
### Phase 3 (Remaining)
- All other entity types
## Conclusion
**Recommendation: Implement in phases**
1. Start with Climate (common entity, simple change)
2. Measure impact on real device
3. If positive, proceed with other simple entities
4. Implement partitioned approach for Sensor/TextSensor
5. Complete remaining entity types
Expected net savings: **50-500 bytes per typical device**, depending on entity count and MQTT usage.

118
callback_usage_analysis.md Normal file
View File

@@ -0,0 +1,118 @@
# add_on_state_callback Usage Analysis
## Summary
After the Controller Registry migration (PR #11772), `add_on_state_callback` is still widely used in the codebase, but for **legitimate reasons** - components that genuinely need per-entity state tracking.
## Usage Breakdown
### 1. **MQTT Components** (~17 uses)
**Purpose:** Per-entity MQTT configuration requires callbacks
- Each MQTT component instance needs to publish to custom topics with custom QoS/retain settings
- Cannot use Controller pattern due to per-entity configuration overhead
- Examples: `mqtt_sensor.cpp`, `mqtt_climate.cpp`, `mqtt_number.cpp`, etc.
```cpp
this->sensor_->add_on_state_callback([this](float state) {
this->publish_state(state);
});
```
### 2. **Copy Components** (~10 uses)
**Purpose:** Mirror state from one entity to another
- Each copy instance tracks a different source entity
- Legitimate use of callbacks for entity-to-entity synchronization
- Examples: `copy_sensor.cpp`, `copy_fan.cpp`, `copy_select.cpp`, etc.
```cpp
source_->add_on_state_callback([this](const std::string &value) {
this->publish_state(value);
});
```
### 3. **Derivative Sensors** (~5-7 uses)
**Purpose:** Compute derived values from source sensors
- **integration_sensor:** Integrates sensor values over time
- **total_daily_energy:** Tracks cumulative energy
- **combination:** Combines multiple sensor values
- **graph:** Samples sensor data for display
- **duty_time:** Tracks on-time duration
- **ntc/absolute_humidity/resistance:** Mathematical transformations
```cpp
this->sensor_->add_on_state_callback([this](float state) {
this->process_sensor_value_(state);
});
```
### 4. **Climate/Cover with Sensors** (~10-15 uses)
**Purpose:** External sensors providing feedback to control loops
- **feedback_cover:** Binary sensors for open/close/obstacle detection
- **bang_bang/pid/thermostat:** External temperature sensors for climate control
- **climate_ir (toshiba/yashima/heatpumpir):** Temperature sensors for IR climate
```cpp
this->sensor_->add_on_state_callback([this](float state) {
this->current_temperature = state;
// Trigger control loop update
});
```
### 5. **Entity Base Classes** (~10-15 definitions)
**Purpose:** Provide the callback interface for all entities
- Not actual usage, just the method definitions
- Examples: `sensor.cpp::add_on_state_callback()`, `climate.cpp::add_on_state_callback()`, etc.
### 6. **Automation Trigger Classes** (~15-20 definitions)
**Purpose:** User-defined YAML automations need callbacks
- Files like `sensor/automation.h`, `climate/automation.h`
- Implement triggers like `on_value:`, `on_state:`
- Cannot be migrated - this is user-facing automation functionality
### 7. **Miscellaneous** (~5-10 uses)
- **voice_assistant/micro_wake_word:** State coordination
- **esp32_improv:** Provisioning state tracking
- **http_request/update:** Update status monitoring
- **switch/binary_sensor:** Cross-component dependencies
- **OTA callbacks:** OTA state monitoring
## Key Insights
### What's NOT Using Callbacks Anymore ✅
**API Server and WebServer** - migrated to Controller Registry
- **Before:** Each entity had 2 callbacks (API + WebServer) = ~32 bytes overhead
- **After:** Zero per-entity overhead = saves ~32 bytes per entity
### What SHOULD Keep Using Callbacks ✅
All the above categories have legitimate reasons:
1. **Per-entity configuration:** MQTT needs custom topics/QoS per entity
2. **Entity-to-entity relationships:** Copy components, derivative sensors
3. **Control loop feedback:** Climate/cover with external sensors
4. **User-defined automations:** YAML triggers configured by users
5. **Component dependencies:** Components that genuinely depend on other entities
## Memory Impact
**Per Sensor (ESP32):**
- Empty callback infrastructure: **~16 bytes** (unique_ptr + empty vector)
- With one callback (e.g., MQTT): **~32 bytes** (16 + std::function)
- With multiple callbacks: **~32 + 16n bytes** (where n = additional callbacks)
**Typical scenarios:**
- Sensor with **only API/WebServer:** ~16 bytes (no callbacks registered)
- Sensor with **MQTT:** ~32 bytes (one callback)
- Sensor with **MQTT + automation:** ~48 bytes (two callbacks)
- Sensor with **copy + total_daily_energy + graph:** ~64 bytes (three callbacks)
## Conclusion
The callback system is still heavily used (~103 occurrences) but for **appropriate reasons**:
- Components with per-entity state/configuration (MQTT, Copy)
- Sensor processing chains (derivatives, transformations)
- Control loops with external feedback (climate, covers)
- User-defined automations (cannot be removed)
The Controller Registry successfully eliminated wasteful callbacks for **stateless global handlers** (API/WebServer), saving ~32 bytes per entity for those use cases.
**No further callback elimination opportunities** exist without fundamentally changing ESPHome's architecture or breaking user-facing features.

View File

@@ -741,13 +741,6 @@ def command_vscode(args: ArgsProtocol) -> int | None:
def command_compile(args: ArgsProtocol, config: ConfigType) -> int | None:
# Set memory analysis options in config
if args.analyze_memory:
config.setdefault(CONF_ESPHOME, {})["analyze_memory"] = True
if args.memory_report:
config.setdefault(CONF_ESPHOME, {})["memory_report_file"] = args.memory_report
exit_code = write_cpp(config)
if exit_code != 0:
return exit_code
@@ -1209,17 +1202,6 @@ def parse_args(argv):
help="Only generate source code, do not compile.",
action="store_true",
)
parser_compile.add_argument(
"--analyze-memory",
help="Analyze and display memory usage by component after compilation.",
action="store_true",
)
parser_compile.add_argument(
"--memory-report",
help="Save memory analysis report to a file (supports .json or .txt).",
type=str,
metavar="FILE",
)
parser_upload = subparsers.add_parser(
"upload",

View File

@@ -1,7 +1,6 @@
"""CLI interface for memory analysis with report generation."""
from collections import defaultdict
import json
import sys
from . import (
@@ -16,11 +15,6 @@ from . import (
class MemoryAnalyzerCLI(MemoryAnalyzer):
"""Memory analyzer with CLI-specific report generation."""
# Symbol size threshold for detailed analysis
SYMBOL_SIZE_THRESHOLD: int = (
100 # Show symbols larger than this in detailed analysis
)
# Column width constants
COL_COMPONENT: int = 29
COL_FLASH_TEXT: int = 14
@@ -197,21 +191,14 @@ class MemoryAnalyzerCLI(MemoryAnalyzer):
f"{len(symbols):>{self.COL_CORE_COUNT}} | {percentage:>{self.COL_CORE_PERCENT - 1}.1f}%"
)
# All core symbols above threshold
# Top 15 largest core symbols
lines.append("")
lines.append(f"Top 15 Largest {_COMPONENT_CORE} Symbols:")
sorted_core_symbols = sorted(
self._esphome_core_symbols, key=lambda x: x[2], reverse=True
)
large_core_symbols = [
(symbol, demangled, size)
for symbol, demangled, size in sorted_core_symbols
if size > self.SYMBOL_SIZE_THRESHOLD
]
lines.append(
f"{_COMPONENT_CORE} Symbols > {self.SYMBOL_SIZE_THRESHOLD} B ({len(large_core_symbols)} symbols):"
)
for i, (symbol, demangled, size) in enumerate(large_core_symbols):
for i, (symbol, demangled, size) in enumerate(sorted_core_symbols[:15]):
lines.append(f"{i + 1}. {demangled} ({size:,} B)")
lines.append("=" * self.TABLE_WIDTH)
@@ -281,15 +268,13 @@ class MemoryAnalyzerCLI(MemoryAnalyzer):
lines.append(f"Total size: {comp_mem.flash_total:,} B")
lines.append("")
# Show all symbols above threshold for better visibility
# Show all symbols > 100 bytes for better visibility
large_symbols = [
(sym, dem, size)
for sym, dem, size in sorted_symbols
if size > self.SYMBOL_SIZE_THRESHOLD
(sym, dem, size) for sym, dem, size in sorted_symbols if size > 100
]
lines.append(
f"{comp_name} Symbols > {self.SYMBOL_SIZE_THRESHOLD} B ({len(large_symbols)} symbols):"
f"{comp_name} Symbols > 100 B ({len(large_symbols)} symbols):"
)
for i, (symbol, demangled, size) in enumerate(large_symbols):
lines.append(f"{i + 1}. {demangled} ({size:,} B)")
@@ -298,28 +283,6 @@ class MemoryAnalyzerCLI(MemoryAnalyzer):
return "\n".join(lines)
def to_json(self) -> str:
"""Export analysis results as JSON."""
data = {
"components": {
name: {
"text": mem.text_size,
"rodata": mem.rodata_size,
"data": mem.data_size,
"bss": mem.bss_size,
"flash_total": mem.flash_total,
"ram_total": mem.ram_total,
"symbol_count": mem.symbol_count,
}
for name, mem in self.components.items()
},
"totals": {
"flash": sum(c.flash_total for c in self.components.values()),
"ram": sum(c.ram_total for c in self.components.values()),
},
}
return json.dumps(data, indent=2)
def dump_uncategorized_symbols(self, output_file: str | None = None) -> None:
"""Dump uncategorized symbols for analysis."""
# Sort by size descending

View File

@@ -227,7 +227,6 @@ CONFIG_SCHEMA = cv.All(
esp32=8, # More RAM, can buffer more
rp2040=5, # Limited RAM
bk72xx=8, # Moderate RAM
nrf52=8, # Moderate RAM
rtl87xx=8, # Moderate RAM
host=16, # Abundant resources
ln882x=8, # Moderate RAM

View File

@@ -476,9 +476,8 @@ uint16_t APIConnection::try_send_light_info(EntityBase *entity, APIConnection *c
auto *light = static_cast<light::LightState *>(entity);
ListEntitiesLightResponse msg;
auto traits = light->get_traits();
auto supported_modes = traits.get_supported_color_modes();
// Pass pointer to ColorModeMask so the iterator can encode actual ColorMode enum values
msg.supported_color_modes = &supported_modes;
msg.supported_color_modes = &traits.get_supported_color_modes();
if (traits.supports_color_capability(light::ColorCapability::COLOR_TEMPERATURE) ||
traits.supports_color_capability(light::ColorCapability::COLD_WARM_WHITE)) {
msg.min_mireds = traits.get_min_mireds();
@@ -1295,11 +1294,11 @@ void APIConnection::alarm_control_panel_command(const AlarmControlPanelCommandRe
#endif
#ifdef USE_EVENT
void APIConnection::send_event(event::Event *event, const char *event_type) {
this->send_message_smart_(event, MessageCreator(event_type), EventResponse::MESSAGE_TYPE,
EventResponse::ESTIMATED_SIZE);
void APIConnection::send_event(event::Event *event, const std::string &event_type) {
this->schedule_message_(event, MessageCreator(event_type), EventResponse::MESSAGE_TYPE,
EventResponse::ESTIMATED_SIZE);
}
uint16_t APIConnection::try_send_event_response(event::Event *event, const char *event_type, APIConnection *conn,
uint16_t APIConnection::try_send_event_response(event::Event *event, const std::string &event_type, APIConnection *conn,
uint32_t remaining_size, bool is_single) {
EventResponse resp;
resp.set_event_type(StringRef(event_type));
@@ -1468,8 +1467,6 @@ bool APIConnection::send_device_info_response(const DeviceInfoRequest &msg) {
static constexpr auto MANUFACTURER = StringRef::from_lit("Beken");
#elif defined(USE_LN882X)
static constexpr auto MANUFACTURER = StringRef::from_lit("Lightning");
#elif defined(USE_NRF52)
static constexpr auto MANUFACTURER = StringRef::from_lit("Nordic Semiconductor");
#elif defined(USE_RTL87XX)
static constexpr auto MANUFACTURER = StringRef::from_lit("Realtek");
#elif defined(USE_HOST)
@@ -1651,7 +1648,9 @@ void APIConnection::DeferredBatch::add_item(EntityBase *entity, MessageCreator c
// O(n) but optimized for RAM and not performance.
for (auto &item : items) {
if (item.entity == entity && item.message_type == message_type) {
// Replace with new creator
// Clean up old creator before replacing
item.creator.cleanup(message_type);
// Move assign the new creator
item.creator = std::move(creator);
return;
}
@@ -1821,7 +1820,7 @@ void APIConnection::process_batch_() {
// Handle remaining items more efficiently
if (items_processed < this->deferred_batch_.size()) {
// Remove processed items from the beginning
// Remove processed items from the beginning with proper cleanup
this->deferred_batch_.remove_front(items_processed);
// Reschedule for remaining items
this->schedule_batch_();
@@ -1834,10 +1833,10 @@ void APIConnection::process_batch_() {
uint16_t APIConnection::MessageCreator::operator()(EntityBase *entity, APIConnection *conn, uint32_t remaining_size,
bool is_single, uint8_t message_type) const {
#ifdef USE_EVENT
// Special case: EventResponse uses const char * pointer
// Special case: EventResponse uses string pointer
if (message_type == EventResponse::MESSAGE_TYPE) {
auto *e = static_cast<event::Event *>(entity);
return APIConnection::try_send_event_response(e, data_.const_char_ptr, conn, remaining_size, is_single);
return APIConnection::try_send_event_response(e, *data_.string_ptr, conn, remaining_size, is_single);
}
#endif

View File

@@ -177,7 +177,7 @@ class APIConnection final : public APIServerConnection {
#endif
#ifdef USE_EVENT
void send_event(event::Event *event, const char *event_type);
void send_event(event::Event *event, const std::string &event_type);
#endif
#ifdef USE_UPDATE
@@ -450,7 +450,7 @@ class APIConnection final : public APIServerConnection {
bool is_single);
#endif
#ifdef USE_EVENT
static uint16_t try_send_event_response(event::Event *event, const char *event_type, APIConnection *conn,
static uint16_t try_send_event_response(event::Event *event, const std::string &event_type, APIConnection *conn,
uint32_t remaining_size, bool is_single);
static uint16_t try_send_event_info(EntityBase *entity, APIConnection *conn, uint32_t remaining_size, bool is_single);
#endif
@@ -508,8 +508,10 @@ class APIConnection final : public APIServerConnection {
// Constructor for function pointer
MessageCreator(MessageCreatorPtr ptr) { data_.function_ptr = ptr; }
// Constructor for const char * (Event types - no allocation needed)
explicit MessageCreator(const char *str_value) { data_.const_char_ptr = str_value; }
// Constructor for string state capture
explicit MessageCreator(const std::string &str_value) { data_.string_ptr = new std::string(str_value); }
// No destructor - cleanup must be called explicitly with message_type
// Delete copy operations - MessageCreator should only be moved
MessageCreator(const MessageCreator &other) = delete;
@@ -521,6 +523,8 @@ class APIConnection final : public APIServerConnection {
// Move assignment
MessageCreator &operator=(MessageCreator &&other) noexcept {
if (this != &other) {
// IMPORTANT: Caller must ensure cleanup() was called if this contains a string!
// In our usage, this happens in add_item() deduplication and vector::erase()
data_ = other.data_;
other.data_.function_ptr = nullptr;
}
@@ -531,10 +535,20 @@ class APIConnection final : public APIServerConnection {
uint16_t operator()(EntityBase *entity, APIConnection *conn, uint32_t remaining_size, bool is_single,
uint8_t message_type) const;
// Manual cleanup method - must be called before destruction for string types
void cleanup(uint8_t message_type) {
#ifdef USE_EVENT
if (message_type == EventResponse::MESSAGE_TYPE && data_.string_ptr != nullptr) {
delete data_.string_ptr;
data_.string_ptr = nullptr;
}
#endif
}
private:
union Data {
MessageCreatorPtr function_ptr;
const char *const_char_ptr;
std::string *string_ptr;
} data_; // 4 bytes on 32-bit, 8 bytes on 64-bit - same as before
};
@@ -554,24 +568,42 @@ class APIConnection final : public APIServerConnection {
std::vector<BatchItem> items;
uint32_t batch_start_time{0};
private:
// Helper to cleanup items from the beginning
void cleanup_items_(size_t count) {
for (size_t i = 0; i < count; i++) {
items[i].creator.cleanup(items[i].message_type);
}
}
public:
DeferredBatch() {
// Pre-allocate capacity for typical batch sizes to avoid reallocation
items.reserve(8);
}
~DeferredBatch() {
// Ensure cleanup of any remaining items
clear();
}
// Add item to the batch
void add_item(EntityBase *entity, MessageCreator creator, uint8_t message_type, uint8_t estimated_size);
// Add item to the front of the batch (for high priority messages like ping)
void add_item_front(EntityBase *entity, MessageCreator creator, uint8_t message_type, uint8_t estimated_size);
// Clear all items
// Clear all items with proper cleanup
void clear() {
cleanup_items_(items.size());
items.clear();
batch_start_time = 0;
}
// Remove processed items from the front
void remove_front(size_t count) { items.erase(items.begin(), items.begin() + count); }
// Remove processed items from the front with proper cleanup
void remove_front(size_t count) {
cleanup_items_(count);
items.erase(items.begin(), items.begin() + count);
}
bool empty() const { return items.empty(); }
size_t size() const { return items.size(); }
@@ -650,30 +682,21 @@ class APIConnection final : public APIServerConnection {
}
#endif
// Helper to check if a message type should bypass batching
// Returns true if:
// 1. It's an UpdateStateResponse (always send immediately to handle cases where
// the main loop is blocked, e.g., during OTA updates)
// 2. It's an EventResponse (events are edge-triggered - every occurrence matters)
// 3. OR: User has opted into immediate sending (should_try_send_immediately = true
// AND batch_delay = 0)
inline bool should_send_immediately_(uint8_t message_type) const {
return (
#ifdef USE_UPDATE
message_type == UpdateStateResponse::MESSAGE_TYPE ||
#endif
#ifdef USE_EVENT
message_type == EventResponse::MESSAGE_TYPE ||
#endif
(this->flags_.should_try_send_immediately && this->get_batch_delay_ms_() == 0));
}
// Helper method to send a message either immediately or via batching
// Tries immediate send if should_send_immediately_() returns true and buffer has space
// Falls back to batching if immediate send fails or isn't applicable
bool send_message_smart_(EntityBase *entity, MessageCreatorPtr creator, uint8_t message_type,
uint8_t estimated_size) {
if (this->should_send_immediately_(message_type) && this->helper_->can_write_without_blocking()) {
// Try to send immediately if:
// 1. It's an UpdateStateResponse (always send immediately to handle cases where
// the main loop is blocked, e.g., during OTA updates)
// 2. OR: We should try to send immediately (should_try_send_immediately = true)
// AND Batch delay is 0 (user has opted in to immediate sending)
// 3. AND: Buffer has space available
if ((
#ifdef USE_UPDATE
message_type == UpdateStateResponse::MESSAGE_TYPE ||
#endif
(this->flags_.should_try_send_immediately && this->get_batch_delay_ms_() == 0)) &&
this->helper_->can_write_without_blocking()) {
// Now actually encode and send
if (creator(entity, this, MAX_BATCH_PACKET_SIZE, true) &&
this->send_buffer(ProtoWriteBuffer{&this->parent_->get_shared_buffer_ref()}, message_type)) {
@@ -691,27 +714,6 @@ class APIConnection final : public APIServerConnection {
return this->schedule_message_(entity, creator, message_type, estimated_size);
}
// Overload for MessageCreator (used by events which need to capture event_type)
bool send_message_smart_(EntityBase *entity, MessageCreator creator, uint8_t message_type, uint8_t estimated_size) {
// Try to send immediately if message type should bypass batching and buffer has space
if (this->should_send_immediately_(message_type) && this->helper_->can_write_without_blocking()) {
// Now actually encode and send
if (creator(entity, this, MAX_BATCH_PACKET_SIZE, true, message_type) &&
this->send_buffer(ProtoWriteBuffer{&this->parent_->get_shared_buffer_ref()}, message_type)) {
#ifdef HAS_PROTO_MESSAGE_DUMP
// Log the message in verbose mode
this->log_proto_message_(entity, creator, message_type);
#endif
return true;
}
// If immediate send failed, fall through to batching
}
// Fall back to scheduled batching
return this->schedule_message_(entity, std::move(creator), message_type, estimated_size);
}
// Helper function to schedule a deferred message with known message type
bool schedule_message_(EntityBase *entity, MessageCreator creator, uint8_t message_type, uint8_t estimated_size) {
this->deferred_batch_.add_item(entity, std::move(creator), message_type, estimated_size);

View File

@@ -9,7 +9,7 @@ static const char *const TAG = "bl0940.number";
void CalibrationNumber::setup() {
float value = 0.0f;
if (this->restore_value_) {
this->pref_ = global_preferences->make_preference<float>(this->get_preference_hash());
this->pref_ = global_preferences->make_preference<float>(this->get_object_id_hash());
if (!this->pref_.load(&value)) {
value = 0.0f;
}

View File

@@ -15,7 +15,6 @@ from esphome.const import (
CONF_TRIGGER_ID,
CONF_VALUE,
)
from esphome.core import ID
AUTO_LOAD = ["esp32_ble_client"]
CODEOWNERS = ["@buxtronix", "@clydebarrow"]
@@ -199,12 +198,7 @@ async def ble_write_to_code(config, action_id, template_arg, args):
templ = await cg.templatable(value, args, cg.std_vector.template(cg.uint8))
cg.add(var.set_value_template(templ))
else:
# Generate static array in flash to avoid RAM copy
if isinstance(value, bytes):
value = list(value)
arr_id = ID(f"{action_id}_data", is_declaration=True, type=cg.uint8)
arr = cg.static_const_array(arr_id, cg.ArrayInitializer(*value))
cg.add(var.set_value_simple(arr, len(value)))
cg.add(var.set_value_simple(value))
if len(config[CONF_SERVICE_UUID]) == len(esp32_ble_tracker.bt_uuid16_format):
cg.add(

View File

@@ -96,8 +96,11 @@ template<typename... Ts> class BLEClientWriteAction : public Action<Ts...>, publ
BLEClientWriteAction(BLEClient *ble_client) {
ble_client->register_ble_node(this);
ble_client_ = ble_client;
this->construct_simple_value_();
}
~BLEClientWriteAction() { this->destroy_simple_value_(); }
void set_service_uuid16(uint16_t uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_uint16(uuid); }
void set_service_uuid32(uint32_t uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_uint32(uuid); }
void set_service_uuid128(uint8_t *uuid) { this->service_uuid_ = espbt::ESPBTUUID::from_raw(uuid); }
@@ -107,14 +110,17 @@ template<typename... Ts> class BLEClientWriteAction : public Action<Ts...>, publ
void set_char_uuid128(uint8_t *uuid) { this->char_uuid_ = espbt::ESPBTUUID::from_raw(uuid); }
void set_value_template(std::vector<uint8_t> (*func)(Ts...)) {
this->value_.func = func;
this->len_ = -1; // Sentinel value indicates template mode
this->destroy_simple_value_();
this->value_.template_func = func;
this->has_simple_value_ = false;
}
// Store pointer to static data in flash (no RAM copy)
void set_value_simple(const uint8_t *data, size_t len) {
this->value_.data = data;
this->len_ = len; // Length >= 0 indicates static mode
void set_value_simple(const std::vector<uint8_t> &value) {
if (!this->has_simple_value_) {
this->construct_simple_value_();
}
this->value_.simple = value;
this->has_simple_value_ = true;
}
void play(const Ts &...x) override {}
@@ -122,19 +128,9 @@ template<typename... Ts> class BLEClientWriteAction : public Action<Ts...>, publ
void play_complex(const Ts &...x) override {
this->num_running_++;
this->var_ = std::make_tuple(x...);
bool result;
if (this->len_ >= 0) {
// Static mode: write directly from flash pointer
result = this->write(this->value_.data, this->len_);
} else {
// Template mode: call function and write the vector
std::vector<uint8_t> value = this->value_.func(x...);
result = this->write(value);
}
auto value = this->has_simple_value_ ? this->value_.simple : this->value_.template_func(x...);
// on write failure, continue the automation chain rather than stopping so that e.g. disconnect can work.
if (!result)
if (!write(value))
this->play_next_(x...);
}
@@ -147,15 +143,15 @@ template<typename... Ts> class BLEClientWriteAction : public Action<Ts...>, publ
* errors.
*/
// initiate the write. Return true if all went well, will be followed by a WRITE_CHAR event.
bool write(const uint8_t *data, size_t len) {
bool write(const std::vector<uint8_t> &value) {
if (this->node_state != espbt::ClientState::ESTABLISHED) {
esph_log_w(Automation::TAG, "Cannot write to BLE characteristic - not connected");
return false;
}
esph_log_vv(Automation::TAG, "Will write %d bytes: %s", len, format_hex_pretty(data, len).c_str());
esp_err_t err =
esp_ble_gattc_write_char(this->parent()->get_gattc_if(), this->parent()->get_conn_id(), this->char_handle_, len,
const_cast<uint8_t *>(data), this->write_type_, ESP_GATT_AUTH_REQ_NONE);
esph_log_vv(Automation::TAG, "Will write %d bytes: %s", value.size(), format_hex_pretty(value).c_str());
esp_err_t err = esp_ble_gattc_write_char(this->parent()->get_gattc_if(), this->parent()->get_conn_id(),
this->char_handle_, value.size(), const_cast<uint8_t *>(value.data()),
this->write_type_, ESP_GATT_AUTH_REQ_NONE);
if (err != ESP_OK) {
esph_log_e(Automation::TAG, "Error writing to characteristic: %s!", esp_err_to_name(err));
return false;
@@ -163,8 +159,6 @@ template<typename... Ts> class BLEClientWriteAction : public Action<Ts...>, publ
return true;
}
bool write(const std::vector<uint8_t> &value) { return this->write(value.data(), value.size()); }
void gattc_event_handler(esp_gattc_cb_event_t event, esp_gatt_if_t gattc_if,
esp_ble_gattc_cb_param_t *param) override {
switch (event) {
@@ -207,11 +201,21 @@ template<typename... Ts> class BLEClientWriteAction : public Action<Ts...>, publ
}
private:
void construct_simple_value_() { new (&this->value_.simple) std::vector<uint8_t>(); }
void destroy_simple_value_() {
if (this->has_simple_value_) {
this->value_.simple.~vector();
}
}
BLEClient *ble_client_;
ssize_t len_{-1}; // -1 = template mode, >=0 = static mode with length
bool has_simple_value_ = true;
union Value {
std::vector<uint8_t> (*func)(Ts...); // Function pointer (stateless lambdas)
const uint8_t *data; // Pointer to static data in flash
std::vector<uint8_t> simple;
std::vector<uint8_t> (*template_func)(Ts...);
Value() {} // trivial constructor
~Value() {} // trivial destructor - we manage lifetime via discriminator
} value_;
espbt::ESPBTUUID service_uuid_;
espbt::ESPBTUUID char_uuid_;

View File

@@ -4,7 +4,7 @@ from esphome import automation
import esphome.codegen as cg
import esphome.config_validation as cv
from esphome.const import CONF_DATA, CONF_ID, CONF_TRIGGER_ID
from esphome.core import CORE, ID
from esphome.core import CORE
CODEOWNERS = ["@mvturnho", "@danielschramm"]
IS_PLATFORM_COMPONENT = True
@@ -176,8 +176,5 @@ async def canbus_action_to_code(config, action_id, template_arg, args):
else:
if isinstance(data, bytes):
data = [int(x) for x in data]
# Generate static array in flash to avoid RAM copy
arr_id = ID(f"{action_id}_data", is_declaration=True, type=cg.uint8)
arr = cg.static_const_array(arr_id, cg.ArrayInitializer(*data))
cg.add(var.set_data_static(arr, len(data)))
cg.add(var.set_data_static(data))
return var

View File

@@ -112,16 +112,13 @@ class Canbus : public Component {
template<typename... Ts> class CanbusSendAction : public Action<Ts...>, public Parented<Canbus> {
public:
void set_data_template(std::vector<uint8_t> (*func)(Ts...)) {
// Stateless lambdas (generated by ESPHome) implicitly convert to function pointers
this->data_.func = func;
this->len_ = -1; // Sentinel value indicates template mode
void set_data_template(const std::function<std::vector<uint8_t>(Ts...)> func) {
this->data_func_ = func;
this->static_ = false;
}
// Store pointer to static data in flash (no RAM copy)
void set_data_static(const uint8_t *data, size_t len) {
this->data_.data = data;
this->len_ = len; // Length >= 0 indicates static mode
void set_data_static(const std::vector<uint8_t> &data) {
this->data_static_ = data;
this->static_ = true;
}
void set_can_id(uint32_t can_id) { this->can_id_ = can_id; }
@@ -136,26 +133,21 @@ template<typename... Ts> class CanbusSendAction : public Action<Ts...>, public P
auto can_id = this->can_id_.has_value() ? *this->can_id_ : this->parent_->can_id_;
auto use_extended_id =
this->use_extended_id_.has_value() ? *this->use_extended_id_ : this->parent_->use_extended_id_;
std::vector<uint8_t> data;
if (this->len_ >= 0) {
// Static mode: copy from flash to vector
data.assign(this->data_.data, this->data_.data + this->len_);
if (this->static_) {
this->parent_->send_data(can_id, use_extended_id, this->remote_transmission_request_, this->data_static_);
} else {
// Template mode: call function
data = this->data_.func(x...);
auto val = this->data_func_(x...);
this->parent_->send_data(can_id, use_extended_id, this->remote_transmission_request_, val);
}
this->parent_->send_data(can_id, use_extended_id, this->remote_transmission_request_, data);
}
protected:
optional<uint32_t> can_id_{};
optional<bool> use_extended_id_{};
bool remote_transmission_request_{false};
ssize_t len_{-1}; // -1 = template mode, >=0 = static mode with length
union Data {
std::vector<uint8_t> (*func)(Ts...); // Function pointer (stateless lambdas)
const uint8_t *data; // Pointer to static data in flash
} data_;
bool static_{false};
std::function<std::vector<uint8_t>(Ts...)> data_func_{};
std::vector<uint8_t> data_static_{};
};
class CanbusTrigger : public Trigger<std::vector<uint8_t>, uint32_t, bool>, public Component {

View File

@@ -1,12 +1,9 @@
import logging
import esphome.codegen as cg
from esphome.components import web_server_base
from esphome.components.web_server_base import CONF_WEB_SERVER_BASE_ID
from esphome.config_helpers import filter_source_files_from_platform
import esphome.config_validation as cv
from esphome.const import (
CONF_AP,
CONF_ID,
PLATFORM_BK72XX,
PLATFORM_ESP32,
@@ -17,10 +14,6 @@ from esphome.const import (
)
from esphome.core import CORE, coroutine_with_priority
from esphome.coroutine import CoroPriority
import esphome.final_validate as fv
from esphome.types import ConfigType
_LOGGER = logging.getLogger(__name__)
def AUTO_LOAD() -> list[str]:
@@ -57,27 +50,6 @@ CONFIG_SCHEMA = cv.All(
)
def _final_validate(config: ConfigType) -> ConfigType:
full_config = fv.full_config.get()
wifi_conf = full_config.get("wifi")
if wifi_conf is None:
# This shouldn't happen due to DEPENDENCIES = ["wifi"], but check anyway
raise cv.Invalid("Captive portal requires the wifi component to be configured")
if CONF_AP not in wifi_conf:
_LOGGER.warning(
"Captive portal is enabled but no WiFi AP is configured. "
"The captive portal will not be accessible. "
"Add 'ap:' to your WiFi configuration to enable the captive portal."
)
return config
FINAL_VALIDATE_SCHEMA = _final_validate
@coroutine_with_priority(CoroPriority.CAPTIVE_PORTAL)
async def to_code(config):
paren = await cg.get_variable(config[CONF_WEB_SERVER_BASE_ID])

View File

@@ -59,7 +59,6 @@ async def to_code(config):
zephyr_add_prj_conf("SEGGER_RTT_MODE_BLOCK_IF_FIFO_FULL", True)
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
cg.add_define("USE_DEBUG")
FILTER_SOURCE_FILES = filter_source_files_from_platform(

View File

@@ -49,9 +49,9 @@ void DebugComponent::dump_config() {
}
#endif // USE_TEXT_SENSOR
#if defined(USE_ESP32) || defined(USE_ZEPHYR)
this->log_partition_info_(); // Log partition information
#endif
#ifdef USE_ESP32
this->log_partition_info_(); // Log partition information for ESP32
#endif // USE_ESP32
}
void DebugComponent::loop() {

View File

@@ -62,19 +62,19 @@ class DebugComponent : public PollingComponent {
sensor::Sensor *cpu_frequency_sensor_{nullptr};
#endif // USE_SENSOR
#if defined(USE_ESP32) || defined(USE_ZEPHYR)
#ifdef USE_ESP32
/**
* @brief Logs information about the device's partition table.
*
* This function iterates through the partition table and logs details
* This function iterates through the ESP32's partition table and logs details
* about each partition, including its name, type, subtype, starting address,
* and size. The information is useful for diagnosing issues related to flash
* memory or verifying the partition configuration dynamically at runtime.
*
* Only available when compiled for ESP32 and ZEPHYR platforms.
* Only available when compiled for ESP32 platforms.
*/
void log_partition_info_();
#endif
#endif // USE_ESP32
#ifdef USE_TEXT_SENSOR
text_sensor::TextSensor *device_info_{nullptr};

View File

@@ -5,7 +5,6 @@
#include <zephyr/drivers/hwinfo.h>
#include <hal/nrf_power.h>
#include <cstdint>
#include <zephyr/storage/flash_map.h>
#define BOOTLOADER_VERSION_REGISTER NRF_TIMER2->CC[0]
@@ -87,37 +86,6 @@ std::string DebugComponent::get_reset_reason_() {
uint32_t DebugComponent::get_free_heap_() { return INT_MAX; }
static void fa_cb(const struct flash_area *fa, void *user_data) {
#if CONFIG_FLASH_MAP_LABELS
const char *fa_label = flash_area_label(fa);
if (fa_label == nullptr) {
fa_label = "-";
}
ESP_LOGCONFIG(TAG, "%2d 0x%0*" PRIxPTR " %-26s %-24.24s 0x%-10x 0x%-12x", (int) fa->fa_id,
sizeof(uintptr_t) * 2, (uintptr_t) fa->fa_dev, fa->fa_dev->name, fa_label, (uint32_t) fa->fa_off,
fa->fa_size);
#else
ESP_LOGCONFIG(TAG, "%2d 0x%0*" PRIxPTR " %-26s 0x%-10x 0x%-12x", (int) fa->fa_id, sizeof(uintptr_t) * 2,
(uintptr_t) fa->fa_dev, fa->fa_dev->name, (uint32_t) fa->fa_off, fa->fa_size);
#endif
}
void DebugComponent::log_partition_info_() {
#if CONFIG_FLASH_MAP_LABELS
ESP_LOGCONFIG(TAG, "ID | Device | Device Name "
"| Label | Offset | Size");
ESP_LOGCONFIG(TAG, "--------------------------------------------"
"-----------------------------------------------");
#else
ESP_LOGCONFIG(TAG, "ID | Device | Device Name "
"| Offset | Size");
ESP_LOGCONFIG(TAG, "-----------------------------------------"
"------------------------------");
#endif
flash_area_foreach(fa_cb, nullptr);
}
void DebugComponent::get_device_info_(std::string &device_info) {
std::string supply = "Main supply status: ";
if (nrf_power_mainregstatus_get(NRF_POWER) == NRF_POWER_MAINREGSTATUS_NORMAL) {

View File

@@ -23,7 +23,7 @@ void DS1307Component::dump_config() {
if (this->is_failed()) {
ESP_LOGE(TAG, ESP_LOG_MSG_COMM_FAIL);
}
RealTimeClock::dump_config();
ESP_LOGCONFIG(TAG, " Timezone: '%s'", this->timezone_.c_str());
}
float DS1307Component::get_setup_priority() const { return setup_priority::DATA; }

View File

@@ -334,14 +334,12 @@ def _is_framework_url(source: str) -> str:
# - https://github.com/espressif/arduino-esp32/releases
ARDUINO_FRAMEWORK_VERSION_LOOKUP = {
"recommended": cv.Version(3, 3, 2),
"latest": cv.Version(3, 3, 4),
"dev": cv.Version(3, 3, 4),
"latest": cv.Version(3, 3, 2),
"dev": cv.Version(3, 3, 2),
}
ARDUINO_PLATFORM_VERSION_LOOKUP = {
cv.Version(3, 3, 4): cv.Version(55, 3, 31, "2"),
cv.Version(3, 3, 3): cv.Version(55, 3, 31, "2"),
cv.Version(3, 3, 2): cv.Version(55, 3, 31, "2"),
cv.Version(3, 3, 1): cv.Version(55, 3, 31, "2"),
cv.Version(3, 3, 2): cv.Version(55, 3, 31, "1"),
cv.Version(3, 3, 1): cv.Version(55, 3, 31, "1"),
cv.Version(3, 3, 0): cv.Version(55, 3, 30, "2"),
cv.Version(3, 2, 1): cv.Version(54, 3, 21, "2"),
cv.Version(3, 2, 0): cv.Version(54, 3, 20),
@@ -359,8 +357,8 @@ ESP_IDF_FRAMEWORK_VERSION_LOOKUP = {
"dev": cv.Version(5, 5, 1),
}
ESP_IDF_PLATFORM_VERSION_LOOKUP = {
cv.Version(5, 5, 1): cv.Version(55, 3, 31, "2"),
cv.Version(5, 5, 0): cv.Version(55, 3, 31, "2"),
cv.Version(5, 5, 1): cv.Version(55, 3, 31, "1"),
cv.Version(5, 5, 0): cv.Version(55, 3, 31, "1"),
cv.Version(5, 4, 3): cv.Version(55, 3, 32),
cv.Version(5, 4, 2): cv.Version(54, 3, 21, "2"),
cv.Version(5, 4, 1): cv.Version(54, 3, 21, "2"),
@@ -375,15 +373,14 @@ ESP_IDF_PLATFORM_VERSION_LOOKUP = {
# The platform-espressif32 version
# - https://github.com/pioarduino/platform-espressif32/releases
PLATFORM_VERSION_LOOKUP = {
"recommended": cv.Version(55, 3, 31, "2"),
"latest": cv.Version(55, 3, 31, "2"),
"dev": cv.Version(55, 3, 31, "2"),
"recommended": cv.Version(55, 3, 31, "1"),
"latest": cv.Version(55, 3, 31, "1"),
"dev": cv.Version(55, 3, 31, "1"),
}
def _check_versions(config):
config = config.copy()
value = config[CONF_FRAMEWORK]
def _check_versions(value):
value = value.copy()
if value[CONF_VERSION] in PLATFORM_VERSION_LOOKUP:
if CONF_SOURCE in value or CONF_PLATFORM_VERSION in value:
@@ -448,7 +445,7 @@ def _check_versions(config):
"If there are connectivity or build issues please remove the manual version."
)
return config
return value
def _parse_platform_version(value):
@@ -498,8 +495,6 @@ def final_validate(config):
from esphome.components.psram import DOMAIN as PSRAM_DOMAIN
errs = []
conf_fw = config[CONF_FRAMEWORK]
advanced = conf_fw[CONF_ADVANCED]
full_config = fv.full_config.get()
if pio_options := full_config[CONF_ESPHOME].get(CONF_PLATFORMIO_OPTIONS):
pio_flash_size_key = "board_upload.flash_size"
@@ -516,14 +511,22 @@ def final_validate(config):
f"Please specify {CONF_FLASH_SIZE} within esp32 configuration only"
)
)
if config[CONF_VARIANT] != VARIANT_ESP32 and advanced[CONF_IGNORE_EFUSE_MAC_CRC]:
if (
config[CONF_VARIANT] != VARIANT_ESP32
and CONF_ADVANCED in (conf_fw := config[CONF_FRAMEWORK])
and CONF_IGNORE_EFUSE_MAC_CRC in conf_fw[CONF_ADVANCED]
):
errs.append(
cv.Invalid(
f"'{CONF_IGNORE_EFUSE_MAC_CRC}' is not supported on {config[CONF_VARIANT]}",
path=[CONF_FRAMEWORK, CONF_ADVANCED, CONF_IGNORE_EFUSE_MAC_CRC],
)
)
if advanced[CONF_EXECUTE_FROM_PSRAM]:
if (
config.get(CONF_FRAMEWORK, {})
.get(CONF_ADVANCED, {})
.get(CONF_EXECUTE_FROM_PSRAM)
):
if config[CONF_VARIANT] != VARIANT_ESP32S3:
errs.append(
cv.Invalid(
@@ -539,17 +542,6 @@ def final_validate(config):
)
)
if (
config[CONF_FLASH_SIZE] == "32MB"
and "ota" in full_config
and not advanced[CONF_ENABLE_IDF_EXPERIMENTAL_FEATURES]
):
errs.append(
cv.Invalid(
f"OTA with 32MB flash requires '{CONF_ENABLE_IDF_EXPERIMENTAL_FEATURES}' to be set in the '{CONF_ADVANCED}' section of the esp32 configuration",
path=[CONF_FLASH_SIZE],
)
)
if errs:
raise cv.MultipleInvalid(errs)
@@ -604,74 +596,89 @@ def _validate_idf_component(config: ConfigType) -> ConfigType:
FRAMEWORK_ESP_IDF = "esp-idf"
FRAMEWORK_ARDUINO = "arduino"
FRAMEWORK_SCHEMA = cv.Schema(
{
cv.Optional(CONF_TYPE): cv.one_of(FRAMEWORK_ESP_IDF, FRAMEWORK_ARDUINO),
cv.Optional(CONF_VERSION, default="recommended"): cv.string_strict,
cv.Optional(CONF_RELEASE): cv.string_strict,
cv.Optional(CONF_SOURCE): cv.string_strict,
cv.Optional(CONF_PLATFORM_VERSION): _parse_platform_version,
cv.Optional(CONF_SDKCONFIG_OPTIONS, default={}): {
cv.string_strict: cv.string_strict
},
cv.Optional(CONF_LOG_LEVEL, default="ERROR"): cv.one_of(
*LOG_LEVELS_IDF, upper=True
),
cv.Optional(CONF_ADVANCED, default={}): cv.Schema(
{
cv.Optional(CONF_ASSERTION_LEVEL): cv.one_of(
*ASSERTION_LEVELS, upper=True
),
cv.Optional(CONF_COMPILER_OPTIMIZATION, default="SIZE"): cv.one_of(
*COMPILER_OPTIMIZATIONS, upper=True
),
cv.Optional(
CONF_ENABLE_IDF_EXPERIMENTAL_FEATURES, default=False
): cv.boolean,
cv.Optional(CONF_ENABLE_LWIP_ASSERT, default=True): cv.boolean,
cv.Optional(CONF_IGNORE_EFUSE_CUSTOM_MAC, default=False): cv.boolean,
cv.Optional(CONF_IGNORE_EFUSE_MAC_CRC, default=False): cv.boolean,
# DHCP server is needed for WiFi AP mode. When WiFi component is used,
# it will handle disabling DHCP server when AP is not configured.
# Default to false (disabled) when WiFi is not used.
cv.OnlyWithout(
CONF_ENABLE_LWIP_DHCP_SERVER, "wifi", default=False
): cv.boolean,
cv.Optional(CONF_ENABLE_LWIP_MDNS_QUERIES, default=True): cv.boolean,
cv.Optional(
CONF_ENABLE_LWIP_BRIDGE_INTERFACE, default=False
): cv.boolean,
cv.Optional(
CONF_ENABLE_LWIP_TCPIP_CORE_LOCKING, default=True
): cv.boolean,
cv.Optional(
CONF_ENABLE_LWIP_CHECK_THREAD_SAFETY, default=True
): cv.boolean,
cv.Optional(CONF_DISABLE_LIBC_LOCKS_IN_IRAM, default=True): cv.boolean,
cv.Optional(CONF_DISABLE_VFS_SUPPORT_TERMIOS, default=True): cv.boolean,
cv.Optional(CONF_DISABLE_VFS_SUPPORT_SELECT, default=True): cv.boolean,
cv.Optional(CONF_DISABLE_VFS_SUPPORT_DIR, default=True): cv.boolean,
cv.Optional(CONF_EXECUTE_FROM_PSRAM, default=False): cv.boolean,
cv.Optional(CONF_LOOP_TASK_STACK_SIZE, default=8192): cv.int_range(
min=8192, max=32768
),
}
),
cv.Optional(CONF_COMPONENTS, default=[]): cv.ensure_list(
cv.All(
cv.Schema(
{
cv.Required(CONF_NAME): cv.string_strict,
cv.Optional(CONF_SOURCE): cv.git_ref,
cv.Optional(CONF_REF): cv.string,
cv.Optional(CONF_PATH): cv.string,
cv.Optional(CONF_REFRESH): cv.All(cv.string, cv.source_refresh),
}
),
_validate_idf_component,
)
),
}
FRAMEWORK_SCHEMA = cv.All(
cv.Schema(
{
cv.Optional(CONF_TYPE, default=FRAMEWORK_ARDUINO): cv.one_of(
FRAMEWORK_ESP_IDF, FRAMEWORK_ARDUINO
),
cv.Optional(CONF_VERSION, default="recommended"): cv.string_strict,
cv.Optional(CONF_RELEASE): cv.string_strict,
cv.Optional(CONF_SOURCE): cv.string_strict,
cv.Optional(CONF_PLATFORM_VERSION): _parse_platform_version,
cv.Optional(CONF_SDKCONFIG_OPTIONS, default={}): {
cv.string_strict: cv.string_strict
},
cv.Optional(CONF_LOG_LEVEL, default="ERROR"): cv.one_of(
*LOG_LEVELS_IDF, upper=True
),
cv.Optional(CONF_ADVANCED, default={}): cv.Schema(
{
cv.Optional(CONF_ASSERTION_LEVEL): cv.one_of(
*ASSERTION_LEVELS, upper=True
),
cv.Optional(CONF_COMPILER_OPTIMIZATION, default="SIZE"): cv.one_of(
*COMPILER_OPTIMIZATIONS, upper=True
),
cv.Optional(CONF_ENABLE_IDF_EXPERIMENTAL_FEATURES): cv.boolean,
cv.Optional(CONF_ENABLE_LWIP_ASSERT, default=True): cv.boolean,
cv.Optional(
CONF_IGNORE_EFUSE_CUSTOM_MAC, default=False
): cv.boolean,
cv.Optional(CONF_IGNORE_EFUSE_MAC_CRC): cv.boolean,
# DHCP server is needed for WiFi AP mode. When WiFi component is used,
# it will handle disabling DHCP server when AP is not configured.
# Default to false (disabled) when WiFi is not used.
cv.OnlyWithout(
CONF_ENABLE_LWIP_DHCP_SERVER, "wifi", default=False
): cv.boolean,
cv.Optional(
CONF_ENABLE_LWIP_MDNS_QUERIES, default=True
): cv.boolean,
cv.Optional(
CONF_ENABLE_LWIP_BRIDGE_INTERFACE, default=False
): cv.boolean,
cv.Optional(
CONF_ENABLE_LWIP_TCPIP_CORE_LOCKING, default=True
): cv.boolean,
cv.Optional(
CONF_ENABLE_LWIP_CHECK_THREAD_SAFETY, default=True
): cv.boolean,
cv.Optional(
CONF_DISABLE_LIBC_LOCKS_IN_IRAM, default=True
): cv.boolean,
cv.Optional(
CONF_DISABLE_VFS_SUPPORT_TERMIOS, default=True
): cv.boolean,
cv.Optional(
CONF_DISABLE_VFS_SUPPORT_SELECT, default=True
): cv.boolean,
cv.Optional(CONF_DISABLE_VFS_SUPPORT_DIR, default=True): cv.boolean,
cv.Optional(CONF_EXECUTE_FROM_PSRAM): cv.boolean,
cv.Optional(CONF_LOOP_TASK_STACK_SIZE, default=8192): cv.int_range(
min=8192, max=32768
),
}
),
cv.Optional(CONF_COMPONENTS, default=[]): cv.ensure_list(
cv.All(
cv.Schema(
{
cv.Required(CONF_NAME): cv.string_strict,
cv.Optional(CONF_SOURCE): cv.git_ref,
cv.Optional(CONF_REF): cv.string,
cv.Optional(CONF_PATH): cv.string,
cv.Optional(CONF_REFRESH): cv.All(
cv.string, cv.source_refresh
),
}
),
_validate_idf_component,
)
),
}
),
_check_versions,
)
@@ -734,11 +741,11 @@ def _show_framework_migration_message(name: str, variant: str) -> None:
def _set_default_framework(config):
config = config.copy()
if CONF_FRAMEWORK not in config:
config[CONF_FRAMEWORK] = FRAMEWORK_SCHEMA({})
if CONF_TYPE not in config[CONF_FRAMEWORK]:
config = config.copy()
variant = config[CONF_VARIANT]
config[CONF_FRAMEWORK] = FRAMEWORK_SCHEMA({})
if variant in ARDUINO_ALLOWED_VARIANTS:
config[CONF_FRAMEWORK][CONF_TYPE] = FRAMEWORK_ARDUINO
_show_framework_migration_message(
@@ -778,7 +785,6 @@ CONFIG_SCHEMA = cv.All(
),
_detect_variant,
_set_default_framework,
_check_versions,
set_core_data,
cv.has_at_least_one_key(CONF_BOARD, CONF_VARIANT),
)
@@ -797,7 +803,9 @@ def _configure_lwip_max_sockets(conf: dict) -> None:
from esphome.components.socket import KEY_SOCKET_CONSUMERS
# Check if user manually specified CONFIG_LWIP_MAX_SOCKETS
user_max_sockets = conf[CONF_SDKCONFIG_OPTIONS].get("CONFIG_LWIP_MAX_SOCKETS")
user_max_sockets = conf.get(CONF_SDKCONFIG_OPTIONS, {}).get(
"CONFIG_LWIP_MAX_SOCKETS"
)
socket_consumers: dict[str, int] = CORE.data.get(KEY_SOCKET_CONSUMERS, {})
total_sockets = sum(socket_consumers.values())
@@ -967,18 +975,23 @@ async def to_code(config):
# WiFi component handles its own optimization when AP mode is not used
# When using Arduino with Ethernet, DHCP server functions must be available
# for the Network library to compile, even if not actively used
if advanced.get(CONF_ENABLE_LWIP_DHCP_SERVER) is False and not (
conf[CONF_TYPE] == FRAMEWORK_ARDUINO and "ethernet" in CORE.loaded_integrations
if (
CONF_ENABLE_LWIP_DHCP_SERVER in advanced
and not advanced[CONF_ENABLE_LWIP_DHCP_SERVER]
and not (
conf[CONF_TYPE] == FRAMEWORK_ARDUINO
and "ethernet" in CORE.loaded_integrations
)
):
add_idf_sdkconfig_option("CONFIG_LWIP_DHCPS", False)
if not advanced[CONF_ENABLE_LWIP_MDNS_QUERIES]:
if not advanced.get(CONF_ENABLE_LWIP_MDNS_QUERIES, True):
add_idf_sdkconfig_option("CONFIG_LWIP_DNS_SUPPORT_MDNS_QUERIES", False)
if not advanced[CONF_ENABLE_LWIP_BRIDGE_INTERFACE]:
if not advanced.get(CONF_ENABLE_LWIP_BRIDGE_INTERFACE, False):
add_idf_sdkconfig_option("CONFIG_LWIP_BRIDGEIF_MAX_PORTS", 0)
_configure_lwip_max_sockets(conf)
if advanced[CONF_EXECUTE_FROM_PSRAM]:
if advanced.get(CONF_EXECUTE_FROM_PSRAM, False):
add_idf_sdkconfig_option("CONFIG_SPIRAM_FETCH_INSTRUCTIONS", True)
add_idf_sdkconfig_option("CONFIG_SPIRAM_RODATA", True)
@@ -989,22 +1002,23 @@ async def to_code(config):
# - select() on 4 sockets: ~190μs (Arduino/core locking) vs ~235μs (ESP-IDF default)
# - Up to 200% slower under load when all operations queue through tcpip_thread
# Enabling this makes ESP-IDF socket performance match Arduino framework.
if advanced[CONF_ENABLE_LWIP_TCPIP_CORE_LOCKING]:
if advanced.get(CONF_ENABLE_LWIP_TCPIP_CORE_LOCKING, True):
add_idf_sdkconfig_option("CONFIG_LWIP_TCPIP_CORE_LOCKING", True)
if advanced[CONF_ENABLE_LWIP_CHECK_THREAD_SAFETY]:
if advanced.get(CONF_ENABLE_LWIP_CHECK_THREAD_SAFETY, True):
add_idf_sdkconfig_option("CONFIG_LWIP_CHECK_THREAD_SAFETY", True)
# Disable placing libc locks in IRAM to save RAM
# This is safe for ESPHome since no IRAM ISRs (interrupts that run while cache is disabled)
# use libc lock APIs. Saves approximately 1.3KB (1,356 bytes) of IRAM.
if advanced[CONF_DISABLE_LIBC_LOCKS_IN_IRAM]:
if advanced.get(CONF_DISABLE_LIBC_LOCKS_IN_IRAM, True):
add_idf_sdkconfig_option("CONFIG_LIBC_LOCKS_PLACE_IN_IRAM", False)
# Disable VFS support for termios (terminal I/O functions)
# ESPHome doesn't use termios functions on ESP32 (only used in host UART driver).
# Saves approximately 1.8KB of flash when disabled (default).
add_idf_sdkconfig_option(
"CONFIG_VFS_SUPPORT_TERMIOS", not advanced[CONF_DISABLE_VFS_SUPPORT_TERMIOS]
"CONFIG_VFS_SUPPORT_TERMIOS",
not advanced.get(CONF_DISABLE_VFS_SUPPORT_TERMIOS, True),
)
# Disable VFS support for select() with file descriptors
@@ -1018,7 +1032,8 @@ async def to_code(config):
else:
# No component needs it - allow user to control (default: disabled)
add_idf_sdkconfig_option(
"CONFIG_VFS_SUPPORT_SELECT", not advanced[CONF_DISABLE_VFS_SUPPORT_SELECT]
"CONFIG_VFS_SUPPORT_SELECT",
not advanced.get(CONF_DISABLE_VFS_SUPPORT_SELECT, True),
)
# Disable VFS support for directory functions (opendir, readdir, mkdir, etc.)
@@ -1031,7 +1046,8 @@ async def to_code(config):
else:
# No component needs it - allow user to control (default: disabled)
add_idf_sdkconfig_option(
"CONFIG_VFS_SUPPORT_DIR", not advanced[CONF_DISABLE_VFS_SUPPORT_DIR]
"CONFIG_VFS_SUPPORT_DIR",
not advanced.get(CONF_DISABLE_VFS_SUPPORT_DIR, True),
)
cg.add_platformio_option("board_build.partitions", "partitions.csv")
@@ -1045,7 +1061,7 @@ async def to_code(config):
add_idf_sdkconfig_option(flag, assertion_level == key)
add_idf_sdkconfig_option("CONFIG_COMPILER_OPTIMIZATION_DEFAULT", False)
compiler_optimization = advanced[CONF_COMPILER_OPTIMIZATION]
compiler_optimization = advanced.get(CONF_COMPILER_OPTIMIZATION)
for key, flag in COMPILER_OPTIMIZATIONS.items():
add_idf_sdkconfig_option(flag, compiler_optimization == key)
@@ -1054,20 +1070,18 @@ async def to_code(config):
conf[CONF_ADVANCED][CONF_ENABLE_LWIP_ASSERT],
)
if advanced[CONF_IGNORE_EFUSE_MAC_CRC]:
if advanced.get(CONF_IGNORE_EFUSE_MAC_CRC):
add_idf_sdkconfig_option("CONFIG_ESP_MAC_IGNORE_MAC_CRC_ERROR", True)
add_idf_sdkconfig_option("CONFIG_ESP_PHY_CALIBRATION_AND_DATA_STORAGE", False)
if advanced[CONF_ENABLE_IDF_EXPERIMENTAL_FEATURES]:
if advanced.get(CONF_ENABLE_IDF_EXPERIMENTAL_FEATURES):
_LOGGER.warning(
"Using experimental features in ESP-IDF may result in unexpected failures."
)
add_idf_sdkconfig_option("CONFIG_IDF_EXPERIMENTAL_FEATURES", True)
if config[CONF_FLASH_SIZE] == "32MB":
add_idf_sdkconfig_option(
"CONFIG_BOOTLOADER_CACHE_32BIT_ADDR_QUAD_FLASH", True
)
cg.add_define("ESPHOME_LOOP_TASK_STACK_SIZE", advanced[CONF_LOOP_TASK_STACK_SIZE])
cg.add_define(
"ESPHOME_LOOP_TASK_STACK_SIZE", advanced.get(CONF_LOOP_TASK_STACK_SIZE)
)
cg.add_define(
"USE_ESP_IDF_VERSION_CODE",

View File

@@ -96,10 +96,6 @@ void ESP32BLE::advertising_set_service_data(const std::vector<uint8_t> &data) {
}
void ESP32BLE::advertising_set_manufacturer_data(const std::vector<uint8_t> &data) {
this->advertising_set_manufacturer_data(std::span<const uint8_t>(data));
}
void ESP32BLE::advertising_set_manufacturer_data(std::span<const uint8_t> data) {
this->advertising_init_();
this->advertising_->set_manufacturer_data(data);
this->advertising_start();
@@ -638,13 +634,11 @@ void ESP32BLE::dump_config() {
io_capability_s = "invalid";
break;
}
char mac_s[18];
format_mac_addr_upper(mac_address, mac_s);
ESP_LOGCONFIG(TAG,
"BLE:\n"
" MAC address: %s\n"
" IO Capability: %s",
mac_s, io_capability_s);
format_mac_address_pretty(mac_address).c_str(), io_capability_s);
} else {
ESP_LOGCONFIG(TAG, "Bluetooth stack is not enabled");
}

View File

@@ -118,7 +118,6 @@ class ESP32BLE : public Component {
void advertising_start();
void advertising_set_service_data(const std::vector<uint8_t> &data);
void advertising_set_manufacturer_data(const std::vector<uint8_t> &data);
void advertising_set_manufacturer_data(std::span<const uint8_t> data);
void advertising_set_appearance(uint16_t appearance) { this->appearance_ = appearance; }
void advertising_set_service_data_and_name(std::span<const uint8_t> data, bool include_name);
void advertising_add_service_uuid(ESPBTUUID uuid);

View File

@@ -59,10 +59,6 @@ void BLEAdvertising::set_service_data(const std::vector<uint8_t> &data) {
}
void BLEAdvertising::set_manufacturer_data(const std::vector<uint8_t> &data) {
this->set_manufacturer_data(std::span<const uint8_t>(data));
}
void BLEAdvertising::set_manufacturer_data(std::span<const uint8_t> data) {
delete[] this->advertising_data_.p_manufacturer_data;
this->advertising_data_.p_manufacturer_data = nullptr;
this->advertising_data_.manufacturer_len = data.size();

View File

@@ -37,7 +37,6 @@ class BLEAdvertising {
void set_scan_response(bool scan_response) { this->scan_response_ = scan_response; }
void set_min_preferred_interval(uint16_t interval) { this->advertising_data_.min_interval = interval; }
void set_manufacturer_data(const std::vector<uint8_t> &data);
void set_manufacturer_data(std::span<const uint8_t> data);
void set_appearance(uint16_t appearance) { this->advertising_data_.appearance = appearance; }
void set_service_data(const std::vector<uint8_t> &data);
void set_service_data(std::span<const uint8_t> data);

View File

@@ -1,6 +1,5 @@
#include "esp32_ble_beacon.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#ifdef USE_ESP32

View File

@@ -15,10 +15,7 @@ Trigger<std::vector<uint8_t>, uint16_t> *BLETriggers::create_characteristic_on_w
Trigger<std::vector<uint8_t>, uint16_t> *on_write_trigger = // NOLINT(cppcoreguidelines-owning-memory)
new Trigger<std::vector<uint8_t>, uint16_t>();
characteristic->on_write([on_write_trigger](std::span<const uint8_t> data, uint16_t id) {
// Convert span to vector for trigger - copy is necessary because:
// 1. Trigger stores the data for use in automation actions that execute later
// 2. The span is only valid during this callback (points to temporary BLE stack data)
// 3. User lambdas in automations need persistent data they can access asynchronously
// Convert span to vector for trigger
on_write_trigger->trigger(std::vector<uint8_t>(data.begin(), data.end()), id);
});
return on_write_trigger;
@@ -30,10 +27,7 @@ Trigger<std::vector<uint8_t>, uint16_t> *BLETriggers::create_descriptor_on_write
Trigger<std::vector<uint8_t>, uint16_t> *on_write_trigger = // NOLINT(cppcoreguidelines-owning-memory)
new Trigger<std::vector<uint8_t>, uint16_t>();
descriptor->on_write([on_write_trigger](std::span<const uint8_t> data, uint16_t id) {
// Convert span to vector for trigger - copy is necessary because:
// 1. Trigger stores the data for use in automation actions that execute later
// 2. The span is only valid during this callback (points to temporary BLE stack data)
// 3. User lambdas in automations need persistent data they can access asynchronously
// Convert span to vector for trigger
on_write_trigger->trigger(std::vector<uint8_t>(data.begin(), data.end()), id);
});
return on_write_trigger;

View File

@@ -10,7 +10,7 @@ namespace esphome::esp32_ble_tracker {
class ESPBTAdvertiseTrigger : public Trigger<const ESPBTDevice &>, public ESPBTDeviceListener {
public:
explicit ESPBTAdvertiseTrigger(ESP32BLETracker *parent) { parent->register_listener(this); }
void set_addresses(std::initializer_list<uint64_t> addresses) { this->address_vec_ = addresses; }
void set_addresses(const std::vector<uint64_t> &addresses) { this->address_vec_ = addresses; }
bool parse_device(const ESPBTDevice &device) override {
uint64_t u64_addr = device.address_uint64();

View File

@@ -336,7 +336,7 @@ void ESP32ImprovComponent::process_incoming_data_() {
this->connecting_sta_ = sta;
wifi::global_wifi_component->set_sta(sta);
wifi::global_wifi_component->start_connecting(sta);
wifi::global_wifi_component->start_connecting(sta, false);
this->set_state_(improv::STATE_PROVISIONING);
ESP_LOGD(TAG, "Received Improv Wi-Fi settings ssid=%s, password=" LOG_SECRET("%s"), command.ssid.c_str(),
command.password.c_str());

View File

@@ -383,7 +383,6 @@ async def to_code(config):
cg.add(var.set_use_address(config[CONF_USE_ADDRESS]))
if CONF_MANUAL_IP in config:
cg.add_define("USE_ETHERNET_MANUAL_IP")
cg.add(var.set_manual_ip(manual_ip(config[CONF_MANUAL_IP])))
# Add compile-time define for PHY types with specific code

View File

@@ -381,10 +381,7 @@ void EthernetComponent::dump_config() {
break;
}
ESP_LOGCONFIG(TAG,
"Ethernet:\n"
" Connected: %s",
YESNO(this->is_connected()));
ESP_LOGCONFIG(TAG, "Ethernet:");
this->dump_connect_params_();
#ifdef USE_ETHERNET_SPI
ESP_LOGCONFIG(TAG,
@@ -421,6 +418,8 @@ void EthernetComponent::dump_config() {
float EthernetComponent::get_setup_priority() const { return setup_priority::WIFI; }
bool EthernetComponent::can_proceed() { return this->is_connected(); }
network::IPAddresses EthernetComponent::get_ip_addresses() {
network::IPAddresses addresses;
esp_netif_ip_info_t ip;
@@ -553,14 +552,11 @@ void EthernetComponent::start_connect_() {
}
esp_netif_ip_info_t info;
#ifdef USE_ETHERNET_MANUAL_IP
if (this->manual_ip_.has_value()) {
info.ip = this->manual_ip_->static_ip;
info.gw = this->manual_ip_->gateway;
info.netmask = this->manual_ip_->subnet;
} else
#endif
{
} else {
info.ip.addr = 0;
info.gw.addr = 0;
info.netmask.addr = 0;
@@ -581,7 +577,6 @@ void EthernetComponent::start_connect_() {
err = esp_netif_set_ip_info(this->eth_netif_, &info);
ESPHL_ERROR_CHECK(err, "DHCPC set IP info error");
#ifdef USE_ETHERNET_MANUAL_IP
if (this->manual_ip_.has_value()) {
LwIPLock lock;
if (this->manual_ip_->dns1.is_set()) {
@@ -594,9 +589,7 @@ void EthernetComponent::start_connect_() {
d = this->manual_ip_->dns2;
dns_setserver(1, &d);
}
} else
#endif
{
} else {
err = esp_netif_dhcpc_start(this->eth_netif_);
if (err != ESP_ERR_ESP_NETIF_DHCP_ALREADY_STARTED) {
ESPHL_ERROR_CHECK(err, "DHCPC start error");
@@ -694,9 +687,7 @@ void EthernetComponent::set_clk_mode(emac_rmii_clock_mode_t clk_mode) { this->cl
void EthernetComponent::add_phy_register(PHYRegister register_value) { this->phy_registers_.push_back(register_value); }
#endif
void EthernetComponent::set_type(EthernetType type) { this->type_ = type; }
#ifdef USE_ETHERNET_MANUAL_IP
void EthernetComponent::set_manual_ip(const ManualIP &manual_ip) { this->manual_ip_ = manual_ip; }
#endif
// set_use_address() is guaranteed to be called during component setup by Python code generation,
// so use_address_ will always be valid when get_use_address() is called - no fallback needed.

View File

@@ -58,6 +58,7 @@ class EthernetComponent : public Component {
void loop() override;
void dump_config() override;
float get_setup_priority() const override;
bool can_proceed() override;
void on_powerdown() override { powerdown(); }
bool is_connected();
@@ -82,9 +83,7 @@ class EthernetComponent : public Component {
void add_phy_register(PHYRegister register_value);
#endif
void set_type(EthernetType type);
#ifdef USE_ETHERNET_MANUAL_IP
void set_manual_ip(const ManualIP &manual_ip);
#endif
void set_fixed_mac(const std::array<uint8_t, 6> &mac) { this->fixed_mac_ = mac; }
network::IPAddresses get_ip_addresses();
@@ -139,9 +138,7 @@ class EthernetComponent : public Component {
uint8_t mdc_pin_{23};
uint8_t mdio_pin_{18};
#endif
#ifdef USE_ETHERNET_MANUAL_IP
optional<ManualIP> manual_ip_{};
#endif
uint32_t connect_begin_;
// Group all uint8_t types together (enums and bools)

View File

@@ -1,247 +0,0 @@
from esphome import automation
import esphome.codegen as cg
from esphome.components import uart
import esphome.config_validation as cv
from esphome.const import (
CONF_DIRECTION,
CONF_ID,
CONF_NAME,
CONF_ON_ENROLLMENT_DONE,
CONF_ON_ENROLLMENT_FAILED,
CONF_TRIGGER_ID,
)
CODEOWNERS = ["@OnFreund"]
DEPENDENCIES = ["uart"]
AUTO_LOAD = ["binary_sensor", "sensor", "text_sensor"]
MULTI_CONF = True
CONF_HLK_FM22X_ID = "hlk_fm22x_id"
CONF_FACE_ID = "face_id"
CONF_ON_FACE_SCAN_MATCHED = "on_face_scan_matched"
CONF_ON_FACE_SCAN_UNMATCHED = "on_face_scan_unmatched"
CONF_ON_FACE_SCAN_INVALID = "on_face_scan_invalid"
CONF_ON_FACE_INFO = "on_face_info"
hlk_fm22x_ns = cg.esphome_ns.namespace("hlk_fm22x")
HlkFm22xComponent = hlk_fm22x_ns.class_(
"HlkFm22xComponent", cg.PollingComponent, uart.UARTDevice
)
FaceScanMatchedTrigger = hlk_fm22x_ns.class_(
"FaceScanMatchedTrigger", automation.Trigger.template(cg.int16, cg.std_string)
)
FaceScanUnmatchedTrigger = hlk_fm22x_ns.class_(
"FaceScanUnmatchedTrigger", automation.Trigger.template()
)
FaceScanInvalidTrigger = hlk_fm22x_ns.class_(
"FaceScanInvalidTrigger", automation.Trigger.template(cg.uint8)
)
FaceInfoTrigger = hlk_fm22x_ns.class_(
"FaceInfoTrigger",
automation.Trigger.template(
cg.int16, cg.int16, cg.int16, cg.int16, cg.int16, cg.int16, cg.int16, cg.int16
),
)
EnrollmentDoneTrigger = hlk_fm22x_ns.class_(
"EnrollmentDoneTrigger", automation.Trigger.template(cg.int16, cg.uint8)
)
EnrollmentFailedTrigger = hlk_fm22x_ns.class_(
"EnrollmentFailedTrigger", automation.Trigger.template(cg.uint8)
)
EnrollmentAction = hlk_fm22x_ns.class_("EnrollmentAction", automation.Action)
DeleteAction = hlk_fm22x_ns.class_("DeleteAction", automation.Action)
DeleteAllAction = hlk_fm22x_ns.class_("DeleteAllAction", automation.Action)
ScanAction = hlk_fm22x_ns.class_("ScanAction", automation.Action)
ResetAction = hlk_fm22x_ns.class_("ResetAction", automation.Action)
CONFIG_SCHEMA = cv.All(
cv.Schema(
{
cv.GenerateID(): cv.declare_id(HlkFm22xComponent),
cv.Optional(CONF_ON_FACE_SCAN_MATCHED): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(
FaceScanMatchedTrigger
),
}
),
cv.Optional(CONF_ON_FACE_SCAN_UNMATCHED): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(
FaceScanUnmatchedTrigger
),
}
),
cv.Optional(CONF_ON_FACE_SCAN_INVALID): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(
FaceScanInvalidTrigger
),
}
),
cv.Optional(CONF_ON_FACE_INFO): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(FaceInfoTrigger),
}
),
cv.Optional(CONF_ON_ENROLLMENT_DONE): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(
EnrollmentDoneTrigger
),
}
),
cv.Optional(CONF_ON_ENROLLMENT_FAILED): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(
EnrollmentFailedTrigger
),
}
),
}
)
.extend(cv.polling_component_schema("50ms"))
.extend(uart.UART_DEVICE_SCHEMA),
)
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await uart.register_uart_device(var, config)
for conf in config.get(CONF_ON_FACE_SCAN_MATCHED, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(
trigger, [(cg.int16, "face_id"), (cg.std_string, "name")], conf
)
for conf in config.get(CONF_ON_FACE_SCAN_UNMATCHED, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [], conf)
for conf in config.get(CONF_ON_FACE_SCAN_INVALID, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [(cg.uint8, "error")], conf)
for conf in config.get(CONF_ON_FACE_INFO, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(
trigger,
[
(cg.int16, "status"),
(cg.int16, "left"),
(cg.int16, "top"),
(cg.int16, "right"),
(cg.int16, "bottom"),
(cg.int16, "yaw"),
(cg.int16, "pitch"),
(cg.int16, "roll"),
],
conf,
)
for conf in config.get(CONF_ON_ENROLLMENT_DONE, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(
trigger, [(cg.int16, "face_id"), (cg.uint8, "direction")], conf
)
for conf in config.get(CONF_ON_ENROLLMENT_FAILED, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [(cg.uint8, "error")], conf)
@automation.register_action(
"hlk_fm22x.enroll",
EnrollmentAction,
cv.maybe_simple_value(
{
cv.GenerateID(): cv.use_id(HlkFm22xComponent),
cv.Required(CONF_NAME): cv.templatable(cv.string),
cv.Required(CONF_DIRECTION): cv.templatable(cv.uint8_t),
},
key=CONF_NAME,
),
)
async def hlk_fm22x_enroll_to_code(config, action_id, template_arg, args):
var = cg.new_Pvariable(action_id, template_arg)
await cg.register_parented(var, config[CONF_ID])
template_ = await cg.templatable(config[CONF_NAME], args, cg.std_string)
cg.add(var.set_name(template_))
template_ = await cg.templatable(config[CONF_DIRECTION], args, cg.uint8)
cg.add(var.set_direction(template_))
return var
@automation.register_action(
"hlk_fm22x.delete",
DeleteAction,
cv.maybe_simple_value(
{
cv.GenerateID(): cv.use_id(HlkFm22xComponent),
cv.Required(CONF_FACE_ID): cv.templatable(cv.uint16_t),
},
key=CONF_FACE_ID,
),
)
async def hlk_fm22x_delete_to_code(config, action_id, template_arg, args):
var = cg.new_Pvariable(action_id, template_arg)
await cg.register_parented(var, config[CONF_ID])
template_ = await cg.templatable(config[CONF_FACE_ID], args, cg.int16)
cg.add(var.set_face_id(template_))
return var
@automation.register_action(
"hlk_fm22x.delete_all",
DeleteAllAction,
cv.Schema(
{
cv.GenerateID(): cv.use_id(HlkFm22xComponent),
}
),
)
async def hlk_fm22x_delete_all_to_code(config, action_id, template_arg, args):
var = cg.new_Pvariable(action_id, template_arg)
await cg.register_parented(var, config[CONF_ID])
return var
@automation.register_action(
"hlk_fm22x.scan",
ScanAction,
cv.Schema(
{
cv.GenerateID(): cv.use_id(HlkFm22xComponent),
}
),
)
async def hlk_fm22x_scan_to_code(config, action_id, template_arg, args):
var = cg.new_Pvariable(action_id, template_arg)
await cg.register_parented(var, config[CONF_ID])
return var
@automation.register_action(
"hlk_fm22x.reset",
ResetAction,
cv.Schema(
{
cv.GenerateID(): cv.use_id(HlkFm22xComponent),
}
),
)
async def hlk_fm22x_reset_to_code(config, action_id, template_arg, args):
var = cg.new_Pvariable(action_id, template_arg)
await cg.register_parented(var, config[CONF_ID])
return var

View File

@@ -1,21 +0,0 @@
import esphome.codegen as cg
from esphome.components import binary_sensor
import esphome.config_validation as cv
from esphome.const import CONF_ICON, ICON_KEY_PLUS
from . import CONF_HLK_FM22X_ID, HlkFm22xComponent
DEPENDENCIES = ["hlk_fm22x"]
CONFIG_SCHEMA = binary_sensor.binary_sensor_schema().extend(
{
cv.GenerateID(CONF_HLK_FM22X_ID): cv.use_id(HlkFm22xComponent),
cv.Optional(CONF_ICON, default=ICON_KEY_PLUS): cv.icon,
}
)
async def to_code(config):
hub = await cg.get_variable(config[CONF_HLK_FM22X_ID])
var = await binary_sensor.new_binary_sensor(config)
cg.add(hub.set_enrolling_binary_sensor(var))

View File

@@ -1,325 +0,0 @@
#include "hlk_fm22x.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#include <array>
#include <cinttypes>
namespace esphome::hlk_fm22x {
static const char *const TAG = "hlk_fm22x";
void HlkFm22xComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up HLK-FM22X...");
this->set_enrolling_(false);
while (this->available()) {
this->read();
}
this->defer([this]() { this->send_command_(HlkFm22xCommand::GET_STATUS); });
}
void HlkFm22xComponent::update() {
if (this->active_command_ != HlkFm22xCommand::NONE) {
if (this->wait_cycles_ > 600) {
ESP_LOGE(TAG, "Command 0x%.2X timed out", this->active_command_);
if (HlkFm22xCommand::RESET == this->active_command_) {
this->mark_failed();
} else {
this->reset();
}
}
}
this->recv_command_();
}
void HlkFm22xComponent::enroll_face(const std::string &name, HlkFm22xFaceDirection direction) {
if (name.length() > 31) {
ESP_LOGE(TAG, "enroll_face(): name too long '%s'", name.c_str());
return;
}
ESP_LOGI(TAG, "Starting enrollment for %s", name.c_str());
std::array<uint8_t, 35> data{};
data[0] = 0; // admin
std::copy(name.begin(), name.end(), data.begin() + 1);
// Remaining bytes are already zero-initialized
data[33] = (uint8_t) direction;
data[34] = 10; // timeout
this->send_command_(HlkFm22xCommand::ENROLL, data.data(), data.size());
this->set_enrolling_(true);
}
void HlkFm22xComponent::scan_face() {
ESP_LOGI(TAG, "Verify face");
static const uint8_t DATA[] = {0, 0};
this->send_command_(HlkFm22xCommand::VERIFY, DATA, sizeof(DATA));
}
void HlkFm22xComponent::delete_face(int16_t face_id) {
ESP_LOGI(TAG, "Deleting face in slot %d", face_id);
const uint8_t data[] = {(uint8_t) (face_id >> 8), (uint8_t) (face_id & 0xFF)};
this->send_command_(HlkFm22xCommand::DELETE_FACE, data, sizeof(data));
}
void HlkFm22xComponent::delete_all_faces() {
ESP_LOGI(TAG, "Deleting all stored faces");
this->send_command_(HlkFm22xCommand::DELETE_ALL_FACES);
}
void HlkFm22xComponent::get_face_count_() {
ESP_LOGD(TAG, "Getting face count");
this->send_command_(HlkFm22xCommand::GET_ALL_FACE_IDS);
}
void HlkFm22xComponent::reset() {
ESP_LOGI(TAG, "Resetting module");
this->active_command_ = HlkFm22xCommand::NONE;
this->wait_cycles_ = 0;
this->set_enrolling_(false);
this->send_command_(HlkFm22xCommand::RESET);
}
void HlkFm22xComponent::send_command_(HlkFm22xCommand command, const uint8_t *data, size_t size) {
ESP_LOGV(TAG, "Send command: 0x%.2X", command);
if (this->active_command_ != HlkFm22xCommand::NONE) {
ESP_LOGW(TAG, "Command 0x%.2X already active", this->active_command_);
return;
}
this->wait_cycles_ = 0;
this->active_command_ = command;
while (this->available())
this->read();
this->write((uint8_t) (START_CODE >> 8));
this->write((uint8_t) (START_CODE & 0xFF));
this->write((uint8_t) command);
uint16_t data_size = size;
this->write((uint8_t) (data_size >> 8));
this->write((uint8_t) (data_size & 0xFF));
uint8_t checksum = 0;
checksum ^= (uint8_t) command;
checksum ^= (data_size >> 8);
checksum ^= (data_size & 0xFF);
for (size_t i = 0; i < size; i++) {
this->write(data[i]);
checksum ^= data[i];
}
this->write(checksum);
this->active_command_ = command;
this->wait_cycles_ = 0;
}
void HlkFm22xComponent::recv_command_() {
uint8_t byte, checksum = 0;
uint16_t length = 0;
if (this->available() < 7) {
++this->wait_cycles_;
return;
}
this->wait_cycles_ = 0;
if ((this->read() != (uint8_t) (START_CODE >> 8)) || (this->read() != (uint8_t) (START_CODE & 0xFF))) {
ESP_LOGE(TAG, "Invalid start code");
return;
}
byte = this->read();
checksum ^= byte;
HlkFm22xResponseType response_type = (HlkFm22xResponseType) byte;
byte = this->read();
checksum ^= byte;
length = byte << 8;
byte = this->read();
checksum ^= byte;
length |= byte;
std::vector<uint8_t> data;
data.reserve(length);
for (uint16_t idx = 0; idx < length; ++idx) {
byte = this->read();
checksum ^= byte;
data.push_back(byte);
}
ESP_LOGV(TAG, "Recv type: 0x%.2X, data: %s", response_type, format_hex_pretty(data).c_str());
byte = this->read();
if (byte != checksum) {
ESP_LOGE(TAG, "Invalid checksum for data. Calculated: 0x%.2X, Received: 0x%.2X", checksum, byte);
return;
}
switch (response_type) {
case HlkFm22xResponseType::NOTE:
this->handle_note_(data);
break;
case HlkFm22xResponseType::REPLY:
this->handle_reply_(data);
break;
default:
ESP_LOGW(TAG, "Unexpected response type: 0x%.2X", response_type);
break;
}
}
void HlkFm22xComponent::handle_note_(const std::vector<uint8_t> &data) {
switch (data[0]) {
case HlkFm22xNoteType::FACE_STATE:
if (data.size() < 17) {
ESP_LOGE(TAG, "Invalid face note data size: %u", data.size());
break;
}
{
int16_t info[8];
uint8_t offset = 1;
for (int16_t &i : info) {
i = ((int16_t) data[offset + 1] << 8) | data[offset];
offset += 2;
}
ESP_LOGV(TAG, "Face state: status: %d, left: %d, top: %d, right: %d, bottom: %d, yaw: %d, pitch: %d, roll: %d",
info[0], info[1], info[2], info[3], info[4], info[5], info[6], info[7]);
this->face_info_callback_.call(info[0], info[1], info[2], info[3], info[4], info[5], info[6], info[7]);
}
break;
case HlkFm22xNoteType::READY:
ESP_LOGE(TAG, "Command 0x%.2X timed out", this->active_command_);
switch (this->active_command_) {
case HlkFm22xCommand::ENROLL:
this->set_enrolling_(false);
this->enrollment_failed_callback_.call(HlkFm22xResult::FAILED4_TIMEOUT);
break;
case HlkFm22xCommand::VERIFY:
this->face_scan_invalid_callback_.call(HlkFm22xResult::FAILED4_TIMEOUT);
break;
default:
break;
}
this->active_command_ = HlkFm22xCommand::NONE;
this->wait_cycles_ = 0;
break;
default:
ESP_LOGW(TAG, "Unhandled note: 0x%.2X", data[0]);
break;
}
}
void HlkFm22xComponent::handle_reply_(const std::vector<uint8_t> &data) {
auto expected = this->active_command_;
this->active_command_ = HlkFm22xCommand::NONE;
if (data[0] != (uint8_t) expected) {
ESP_LOGE(TAG, "Unexpected response command. Expected: 0x%.2X, Received: 0x%.2X", expected, data[0]);
return;
}
if (data[1] != HlkFm22xResult::SUCCESS) {
ESP_LOGE(TAG, "Command <0x%.2X> failed. Error: 0x%.2X", data[0], data[1]);
switch (expected) {
case HlkFm22xCommand::ENROLL:
this->set_enrolling_(false);
this->enrollment_failed_callback_.call(data[1]);
break;
case HlkFm22xCommand::VERIFY:
if (data[1] == HlkFm22xResult::REJECTED) {
this->face_scan_unmatched_callback_.call();
} else {
this->face_scan_invalid_callback_.call(data[1]);
}
break;
default:
break;
}
return;
}
switch (expected) {
case HlkFm22xCommand::VERIFY: {
int16_t face_id = ((int16_t) data[2] << 8) | data[3];
std::string name(data.begin() + 4, data.begin() + 36);
ESP_LOGD(TAG, "Face verified. ID: %d, name: %s", face_id, name.c_str());
if (this->last_face_id_sensor_ != nullptr) {
this->last_face_id_sensor_->publish_state(face_id);
}
if (this->last_face_name_text_sensor_ != nullptr) {
this->last_face_name_text_sensor_->publish_state(name);
}
this->face_scan_matched_callback_.call(face_id, name);
break;
}
case HlkFm22xCommand::ENROLL: {
int16_t face_id = ((int16_t) data[2] << 8) | data[3];
HlkFm22xFaceDirection direction = (HlkFm22xFaceDirection) data[4];
ESP_LOGI(TAG, "Face enrolled. ID: %d, Direction: 0x%.2X", face_id, direction);
this->enrollment_done_callback_.call(face_id, (uint8_t) direction);
this->set_enrolling_(false);
this->defer([this]() { this->get_face_count_(); });
break;
}
case HlkFm22xCommand::GET_STATUS:
if (this->status_sensor_ != nullptr) {
this->status_sensor_->publish_state(data[2]);
}
this->defer([this]() { this->send_command_(HlkFm22xCommand::GET_VERSION); });
break;
case HlkFm22xCommand::GET_VERSION:
if (this->version_text_sensor_ != nullptr) {
std::string version(data.begin() + 2, data.end());
this->version_text_sensor_->publish_state(version);
}
this->defer([this]() { this->get_face_count_(); });
break;
case HlkFm22xCommand::GET_ALL_FACE_IDS:
if (this->face_count_sensor_ != nullptr) {
this->face_count_sensor_->publish_state(data[2]);
}
break;
case HlkFm22xCommand::DELETE_FACE:
ESP_LOGI(TAG, "Deleted face");
break;
case HlkFm22xCommand::DELETE_ALL_FACES:
ESP_LOGI(TAG, "Deleted all faces");
break;
case HlkFm22xCommand::RESET:
ESP_LOGI(TAG, "Module reset");
this->defer([this]() { this->send_command_(HlkFm22xCommand::GET_STATUS); });
break;
default:
ESP_LOGW(TAG, "Unhandled command: 0x%.2X", this->active_command_);
break;
}
}
void HlkFm22xComponent::set_enrolling_(bool enrolling) {
if (this->enrolling_binary_sensor_ != nullptr) {
this->enrolling_binary_sensor_->publish_state(enrolling);
}
}
void HlkFm22xComponent::dump_config() {
ESP_LOGCONFIG(TAG, "HLK_FM22X:");
LOG_UPDATE_INTERVAL(this);
if (this->version_text_sensor_) {
LOG_TEXT_SENSOR(" ", "Version", this->version_text_sensor_);
ESP_LOGCONFIG(TAG, " Current Value: %s", this->version_text_sensor_->get_state().c_str());
}
if (this->enrolling_binary_sensor_) {
LOG_BINARY_SENSOR(" ", "Enrolling", this->enrolling_binary_sensor_);
ESP_LOGCONFIG(TAG, " Current Value: %s", this->enrolling_binary_sensor_->state ? "ON" : "OFF");
}
if (this->face_count_sensor_) {
LOG_SENSOR(" ", "Face Count", this->face_count_sensor_);
ESP_LOGCONFIG(TAG, " Current Value: %u", (uint16_t) this->face_count_sensor_->get_state());
}
if (this->status_sensor_) {
LOG_SENSOR(" ", "Status", this->status_sensor_);
ESP_LOGCONFIG(TAG, " Current Value: %u", (uint8_t) this->status_sensor_->get_state());
}
if (this->last_face_id_sensor_) {
LOG_SENSOR(" ", "Last Face ID", this->last_face_id_sensor_);
ESP_LOGCONFIG(TAG, " Current Value: %u", (int16_t) this->last_face_id_sensor_->get_state());
}
if (this->last_face_name_text_sensor_) {
LOG_TEXT_SENSOR(" ", "Last Face Name", this->last_face_name_text_sensor_);
ESP_LOGCONFIG(TAG, " Current Value: %s", this->last_face_name_text_sensor_->get_state().c_str());
}
}
} // namespace esphome::hlk_fm22x

View File

@@ -1,224 +0,0 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/core/automation.h"
#include "esphome/components/sensor/sensor.h"
#include "esphome/components/binary_sensor/binary_sensor.h"
#include "esphome/components/text_sensor/text_sensor.h"
#include "esphome/components/uart/uart.h"
#include <utility>
#include <vector>
namespace esphome::hlk_fm22x {
static const uint16_t START_CODE = 0xEFAA;
enum HlkFm22xCommand {
NONE = 0x00,
RESET = 0x10,
GET_STATUS = 0x11,
VERIFY = 0x12,
ENROLL = 0x13,
DELETE_FACE = 0x20,
DELETE_ALL_FACES = 0x21,
GET_ALL_FACE_IDS = 0x24,
GET_VERSION = 0x30,
GET_SERIAL_NUMBER = 0x93,
};
enum HlkFm22xResponseType {
REPLY = 0x00,
NOTE = 0x01,
IMAGE = 0x02,
};
enum HlkFm22xNoteType {
READY = 0x00,
FACE_STATE = 0x01,
};
enum HlkFm22xResult {
SUCCESS = 0x00,
REJECTED = 0x01,
ABORTED = 0x02,
FAILED4_CAMERA = 0x04,
FAILED4_UNKNOWNREASON = 0x05,
FAILED4_INVALIDPARAM = 0x06,
FAILED4_NOMEMORY = 0x07,
FAILED4_UNKNOWNUSER = 0x08,
FAILED4_MAXUSER = 0x09,
FAILED4_FACEENROLLED = 0x0A,
FAILED4_LIVENESSCHECK = 0x0C,
FAILED4_TIMEOUT = 0x0D,
FAILED4_AUTHORIZATION = 0x0E,
FAILED4_READ_FILE = 0x13,
FAILED4_WRITE_FILE = 0x14,
FAILED4_NO_ENCRYPT = 0x15,
FAILED4_NO_RGBIMAGE = 0x17,
FAILED4_JPGPHOTO_LARGE = 0x18,
FAILED4_JPGPHOTO_SMALL = 0x19,
};
enum HlkFm22xFaceDirection {
FACE_DIRECTION_UNDEFINED = 0x00,
FACE_DIRECTION_MIDDLE = 0x01,
FACE_DIRECTION_RIGHT = 0x02,
FACE_DIRECTION_LEFT = 0x04,
FACE_DIRECTION_DOWN = 0x08,
FACE_DIRECTION_UP = 0x10,
};
class HlkFm22xComponent : public PollingComponent, public uart::UARTDevice {
public:
void setup() override;
void update() override;
void dump_config() override;
void set_face_count_sensor(sensor::Sensor *face_count_sensor) { this->face_count_sensor_ = face_count_sensor; }
void set_status_sensor(sensor::Sensor *status_sensor) { this->status_sensor_ = status_sensor; }
void set_last_face_id_sensor(sensor::Sensor *last_face_id_sensor) {
this->last_face_id_sensor_ = last_face_id_sensor;
}
void set_last_face_name_text_sensor(text_sensor::TextSensor *last_face_name_text_sensor) {
this->last_face_name_text_sensor_ = last_face_name_text_sensor;
}
void set_enrolling_binary_sensor(binary_sensor::BinarySensor *enrolling_binary_sensor) {
this->enrolling_binary_sensor_ = enrolling_binary_sensor;
}
void set_version_text_sensor(text_sensor::TextSensor *version_text_sensor) {
this->version_text_sensor_ = version_text_sensor;
}
void add_on_face_scan_matched_callback(std::function<void(int16_t, std::string)> callback) {
this->face_scan_matched_callback_.add(std::move(callback));
}
void add_on_face_scan_unmatched_callback(std::function<void()> callback) {
this->face_scan_unmatched_callback_.add(std::move(callback));
}
void add_on_face_scan_invalid_callback(std::function<void(uint8_t)> callback) {
this->face_scan_invalid_callback_.add(std::move(callback));
}
void add_on_face_info_callback(
std::function<void(int16_t, int16_t, int16_t, int16_t, int16_t, int16_t, int16_t, int16_t)> callback) {
this->face_info_callback_.add(std::move(callback));
}
void add_on_enrollment_done_callback(std::function<void(int16_t, uint8_t)> callback) {
this->enrollment_done_callback_.add(std::move(callback));
}
void add_on_enrollment_failed_callback(std::function<void(uint8_t)> callback) {
this->enrollment_failed_callback_.add(std::move(callback));
}
void enroll_face(const std::string &name, HlkFm22xFaceDirection direction);
void scan_face();
void delete_face(int16_t face_id);
void delete_all_faces();
void reset();
protected:
void get_face_count_();
void send_command_(HlkFm22xCommand command, const uint8_t *data = nullptr, size_t size = 0);
void recv_command_();
void handle_note_(const std::vector<uint8_t> &data);
void handle_reply_(const std::vector<uint8_t> &data);
void set_enrolling_(bool enrolling);
HlkFm22xCommand active_command_ = HlkFm22xCommand::NONE;
uint16_t wait_cycles_ = 0;
sensor::Sensor *face_count_sensor_{nullptr};
sensor::Sensor *status_sensor_{nullptr};
sensor::Sensor *last_face_id_sensor_{nullptr};
binary_sensor::BinarySensor *enrolling_binary_sensor_{nullptr};
text_sensor::TextSensor *last_face_name_text_sensor_{nullptr};
text_sensor::TextSensor *version_text_sensor_{nullptr};
CallbackManager<void(uint8_t)> face_scan_invalid_callback_;
CallbackManager<void(int16_t, std::string)> face_scan_matched_callback_;
CallbackManager<void()> face_scan_unmatched_callback_;
CallbackManager<void(int16_t, int16_t, int16_t, int16_t, int16_t, int16_t, int16_t, int16_t)> face_info_callback_;
CallbackManager<void(int16_t, uint8_t)> enrollment_done_callback_;
CallbackManager<void(uint8_t)> enrollment_failed_callback_;
};
class FaceScanMatchedTrigger : public Trigger<int16_t, std::string> {
public:
explicit FaceScanMatchedTrigger(HlkFm22xComponent *parent) {
parent->add_on_face_scan_matched_callback(
[this](int16_t face_id, const std::string &name) { this->trigger(face_id, name); });
}
};
class FaceScanUnmatchedTrigger : public Trigger<> {
public:
explicit FaceScanUnmatchedTrigger(HlkFm22xComponent *parent) {
parent->add_on_face_scan_unmatched_callback([this]() { this->trigger(); });
}
};
class FaceScanInvalidTrigger : public Trigger<uint8_t> {
public:
explicit FaceScanInvalidTrigger(HlkFm22xComponent *parent) {
parent->add_on_face_scan_invalid_callback([this](uint8_t error) { this->trigger(error); });
}
};
class FaceInfoTrigger : public Trigger<int16_t, int16_t, int16_t, int16_t, int16_t, int16_t, int16_t, int16_t> {
public:
explicit FaceInfoTrigger(HlkFm22xComponent *parent) {
parent->add_on_face_info_callback(
[this](int16_t status, int16_t left, int16_t top, int16_t right, int16_t bottom, int16_t yaw, int16_t pitch,
int16_t roll) { this->trigger(status, left, top, right, bottom, yaw, pitch, roll); });
}
};
class EnrollmentDoneTrigger : public Trigger<int16_t, uint8_t> {
public:
explicit EnrollmentDoneTrigger(HlkFm22xComponent *parent) {
parent->add_on_enrollment_done_callback(
[this](int16_t face_id, uint8_t direction) { this->trigger(face_id, direction); });
}
};
class EnrollmentFailedTrigger : public Trigger<uint8_t> {
public:
explicit EnrollmentFailedTrigger(HlkFm22xComponent *parent) {
parent->add_on_enrollment_failed_callback([this](uint8_t error) { this->trigger(error); });
}
};
template<typename... Ts> class EnrollmentAction : public Action<Ts...>, public Parented<HlkFm22xComponent> {
public:
TEMPLATABLE_VALUE(std::string, name)
TEMPLATABLE_VALUE(uint8_t, direction)
void play(Ts... x) override {
auto name = this->name_.value(x...);
auto direction = (HlkFm22xFaceDirection) this->direction_.value(x...);
this->parent_->enroll_face(name, direction);
}
};
template<typename... Ts> class DeleteAction : public Action<Ts...>, public Parented<HlkFm22xComponent> {
public:
TEMPLATABLE_VALUE(int16_t, face_id)
void play(Ts... x) override {
auto face_id = this->face_id_.value(x...);
this->parent_->delete_face(face_id);
}
};
template<typename... Ts> class DeleteAllAction : public Action<Ts...>, public Parented<HlkFm22xComponent> {
public:
void play(Ts... x) override { this->parent_->delete_all_faces(); }
};
template<typename... Ts> class ScanAction : public Action<Ts...>, public Parented<HlkFm22xComponent> {
public:
void play(Ts... x) override { this->parent_->scan_face(); }
};
template<typename... Ts> class ResetAction : public Action<Ts...>, public Parented<HlkFm22xComponent> {
public:
void play(Ts... x) override { this->parent_->reset(); }
};
} // namespace esphome::hlk_fm22x

View File

@@ -1,47 +0,0 @@
import esphome.codegen as cg
from esphome.components import sensor
import esphome.config_validation as cv
from esphome.const import CONF_STATUS, ENTITY_CATEGORY_DIAGNOSTIC, ICON_ACCOUNT
from . import CONF_HLK_FM22X_ID, HlkFm22xComponent
DEPENDENCIES = ["hlk_fm22x"]
CONF_FACE_COUNT = "face_count"
CONF_LAST_FACE_ID = "last_face_id"
ICON_FACE = "mdi:face-recognition"
CONFIG_SCHEMA = cv.Schema(
{
cv.GenerateID(CONF_HLK_FM22X_ID): cv.use_id(HlkFm22xComponent),
cv.Optional(CONF_FACE_COUNT): sensor.sensor_schema(
icon=ICON_FACE,
accuracy_decimals=0,
entity_category=ENTITY_CATEGORY_DIAGNOSTIC,
),
cv.Optional(CONF_STATUS): sensor.sensor_schema(
accuracy_decimals=0,
entity_category=ENTITY_CATEGORY_DIAGNOSTIC,
),
cv.Optional(CONF_LAST_FACE_ID): sensor.sensor_schema(
icon=ICON_ACCOUNT,
accuracy_decimals=0,
entity_category=ENTITY_CATEGORY_DIAGNOSTIC,
),
}
)
async def to_code(config):
hub = await cg.get_variable(config[CONF_HLK_FM22X_ID])
for key in [
CONF_FACE_COUNT,
CONF_STATUS,
CONF_LAST_FACE_ID,
]:
if key not in config:
continue
conf = config[key]
sens = await sensor.new_sensor(conf)
cg.add(getattr(hub, f"set_{key}_sensor")(sens))

View File

@@ -1,42 +0,0 @@
import esphome.codegen as cg
from esphome.components import text_sensor
import esphome.config_validation as cv
from esphome.const import (
CONF_VERSION,
ENTITY_CATEGORY_DIAGNOSTIC,
ICON_ACCOUNT,
ICON_RESTART,
)
from . import CONF_HLK_FM22X_ID, HlkFm22xComponent
DEPENDENCIES = ["hlk_fm22x"]
CONF_LAST_FACE_NAME = "last_face_name"
CONFIG_SCHEMA = cv.Schema(
{
cv.GenerateID(CONF_HLK_FM22X_ID): cv.use_id(HlkFm22xComponent),
cv.Optional(CONF_VERSION): text_sensor.text_sensor_schema(
icon=ICON_RESTART,
entity_category=ENTITY_CATEGORY_DIAGNOSTIC,
),
cv.Optional(CONF_LAST_FACE_NAME): text_sensor.text_sensor_schema(
icon=ICON_ACCOUNT,
entity_category=ENTITY_CATEGORY_DIAGNOSTIC,
),
}
)
async def to_code(config):
hub = await cg.get_variable(config[CONF_HLK_FM22X_ID])
for key in [
CONF_VERSION,
CONF_LAST_FACE_NAME,
]:
if key not in config:
continue
conf = config[key]
sens = await text_sensor.new_text_sensor(conf)
cg.add(getattr(hub, f"set_{key}_text_sensor")(sens))

View File

@@ -1,7 +1,7 @@
#pragma once
#include <climits>
#include "abstract_aqi_calculator.h"
// https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf
// https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf
namespace esphome {
namespace hm3301 {
@@ -16,15 +16,16 @@ class AQICalculator : public AbstractAQICalculator {
}
protected:
static const int AMOUNT_OF_LEVELS = 6;
static const int AMOUNT_OF_LEVELS = 7;
int index_grid_[AMOUNT_OF_LEVELS][2] = {{0, 50}, {51, 100}, {101, 150}, {151, 200}, {201, 300}, {301, 500}};
int index_grid_[AMOUNT_OF_LEVELS][2] = {{0, 50}, {51, 100}, {101, 150}, {151, 200},
{201, 300}, {301, 400}, {401, 500}};
int pm2_5_calculation_grid_[AMOUNT_OF_LEVELS][2] = {{0, 9}, {10, 35}, {36, 55},
{56, 125}, {126, 225}, {226, INT_MAX}};
int pm2_5_calculation_grid_[AMOUNT_OF_LEVELS][2] = {{0, 12}, {13, 35}, {36, 55}, {56, 150},
{151, 250}, {251, 350}, {351, 500}};
int pm10_0_calculation_grid_[AMOUNT_OF_LEVELS][2] = {{0, 54}, {55, 154}, {155, 254},
{255, 354}, {355, 424}, {425, INT_MAX}};
int pm10_0_calculation_grid_[AMOUNT_OF_LEVELS][2] = {{0, 54}, {55, 154}, {155, 254}, {255, 354},
{355, 424}, {425, 504}, {505, 604}};
int calculate_index_(uint16_t value, int array[AMOUNT_OF_LEVELS][2]) {
int grid_index = get_grid_index_(value, array);

View File

@@ -7,8 +7,10 @@ namespace homeassistant {
static const char *const TAG = "homeassistant.time";
void HomeassistantTime::dump_config() {
ESP_LOGCONFIG(TAG, "Home Assistant Time");
RealTimeClock::dump_config();
ESP_LOGCONFIG(TAG,
"Home Assistant Time:\n"
" Timezone: '%s'",
this->timezone_.c_str());
}
float HomeassistantTime::get_setup_priority() const { return setup_priority::DATA; }

View File

@@ -107,7 +107,7 @@ void IDFI2CBus::dump_config() {
if (s.second) {
ESP_LOGCONFIG(TAG, "Found device at address 0x%02X", s.first);
} else {
ESP_LOGCONFIG(TAG, "Unknown error at address 0x%02X", s.first);
ESP_LOGE(TAG, "Unknown error at address 0x%02X", s.first);
}
}
}

View File

@@ -231,7 +231,7 @@ bool ImprovSerialComponent::parse_improv_payload_(improv::ImprovCommand &command
this->connecting_sta_ = sta;
wifi::global_wifi_component->set_sta(sta);
wifi::global_wifi_component->start_connecting(sta);
wifi::global_wifi_component->start_connecting(sta, false);
this->set_state_(improv::STATE_PROVISIONING);
ESP_LOGD(TAG, "Received settings: SSID=%s, password=" LOG_SECRET("%s"), command.ssid.c_str(),
command.password.c_str());

View File

@@ -52,10 +52,8 @@ static void log_invalid_parameter(const char *name, const LogString *message) {
}
static const LogString *color_mode_to_human(ColorMode color_mode) {
if (color_mode == ColorMode::ON_OFF)
return LOG_STR("On/Off");
if (color_mode == ColorMode::BRIGHTNESS)
return LOG_STR("Brightness");
if (color_mode == ColorMode::UNKNOWN)
return LOG_STR("Unknown");
if (color_mode == ColorMode::WHITE)
return LOG_STR("White");
if (color_mode == ColorMode::COLOR_TEMPERATURE)
@@ -70,7 +68,7 @@ static const LogString *color_mode_to_human(ColorMode color_mode) {
return LOG_STR("RGB + cold/warm white");
if (color_mode == ColorMode::RGB_COLOR_TEMPERATURE)
return LOG_STR("RGB + color temperature");
return LOG_STR("Unknown");
return LOG_STR("");
}
// Helper to log percentage values
@@ -408,7 +406,7 @@ void LightCall::transform_parameters_() {
}
}
ColorMode LightCall::compute_color_mode_() {
auto supported_modes = this->parent_->get_traits().get_supported_color_modes();
const auto &supported_modes = this->parent_->get_traits().get_supported_color_modes();
int supported_count = supported_modes.size();
// Some lights don't support any color modes (e.g. monochromatic light), leave it at unknown.

View File

@@ -24,9 +24,6 @@ void LightState::setup() {
effect->init_internal(this);
}
// Start with loop disabled if idle - respects any effects/transitions set up during initialization
this->disable_loop_if_idle_();
// When supported color temperature range is known, initialize color temperature setting within bounds.
auto traits = this->get_traits();
float min_mireds = traits.get_min_mireds();
@@ -129,9 +126,6 @@ void LightState::loop() {
this->is_transformer_active_ = false;
this->transformer_ = nullptr;
this->target_state_reached_callback_.call();
// Disable loop if idle (no transformer and no effect)
this->disable_loop_if_idle_();
}
}
@@ -139,8 +133,6 @@ void LightState::loop() {
if (this->next_write_) {
this->next_write_ = false;
this->output_->write_state(this);
// Disable loop if idle (no transformer and no effect)
this->disable_loop_if_idle_();
}
}
@@ -236,8 +228,6 @@ void LightState::start_effect_(uint32_t effect_index) {
this->active_effect_index_ = effect_index;
auto *effect = this->get_active_effect_();
effect->start_internal();
// Enable loop while effect is active
this->enable_loop();
}
LightEffect *LightState::get_active_effect_() {
if (this->active_effect_index_ == 0) {
@@ -252,8 +242,6 @@ void LightState::stop_effect_() {
effect->stop();
}
this->active_effect_index_ = 0;
// Disable loop if idle (no effect and no transformer)
this->disable_loop_if_idle_();
}
void LightState::start_transition_(const LightColorValues &target, uint32_t length, bool set_remote_values) {
@@ -263,8 +251,6 @@ void LightState::start_transition_(const LightColorValues &target, uint32_t leng
if (set_remote_values) {
this->remote_values = target;
}
// Enable loop while transition is active
this->enable_loop();
}
void LightState::start_flash_(const LightColorValues &target, uint32_t length, bool set_remote_values) {
@@ -280,8 +266,6 @@ void LightState::start_flash_(const LightColorValues &target, uint32_t length, b
if (set_remote_values) {
this->remote_values = target;
};
// Enable loop while flash is active
this->enable_loop();
}
void LightState::set_immediately_(const LightColorValues &target, bool set_remote_values) {
@@ -293,14 +277,6 @@ void LightState::set_immediately_(const LightColorValues &target, bool set_remot
}
this->output_->update_state(this);
this->next_write_ = true;
this->enable_loop();
}
void LightState::disable_loop_if_idle_() {
// Only disable loop if both transformer and effect are inactive, and no pending writes
if (this->transformer_ == nullptr && this->get_active_effect_() == nullptr && !this->next_write_) {
this->disable_loop();
}
}
void LightState::save_remote_values_() {

View File

@@ -256,9 +256,6 @@ class LightState : public EntityBase, public Component {
/// Internal method to save the current remote_values to the preferences
void save_remote_values_();
/// Disable loop if neither transformer nor effect is active
void disable_loop_if_idle_();
/// Store the output to allow effects to have more access.
LightOutput *output_;
/// The currently active transformer for this light (transition/flash).

View File

@@ -18,8 +18,7 @@ class LightTraits {
public:
LightTraits() = default;
// Return by value to avoid dangling reference when get_traits() returns a temporary
ColorModeMask get_supported_color_modes() const { return this->supported_color_modes_; }
const ColorModeMask &get_supported_color_modes() const { return this->supported_color_modes_; }
void set_supported_color_modes(ColorModeMask supported_color_modes) {
this->supported_color_modes_ = supported_color_modes;
}

View File

@@ -1,8 +1,6 @@
import importlib
import logging
import pkgutil
from esphome.automation import build_automation, validate_automation
from esphome.automation import build_automation, register_action, validate_automation
import esphome.codegen as cg
from esphome.components.const import CONF_COLOR_DEPTH, CONF_DRAW_ROUNDING
from esphome.components.display import Display
@@ -27,8 +25,8 @@ from esphome.cpp_generator import MockObj
from esphome.final_validate import full_config
from esphome.helpers import write_file_if_changed
from . import defines as df, helpers, lv_validation as lvalid, widgets
from .automation import disp_update, focused_widgets, refreshed_widgets
from . import defines as df, helpers, lv_validation as lvalid
from .automation import disp_update, focused_widgets, refreshed_widgets, update_to_code
from .defines import add_define
from .encoders import (
ENCODERS_CONFIG,
@@ -47,6 +45,7 @@ from .schemas import (
WIDGET_TYPES,
any_widget_schema,
container_schema,
create_modify_schema,
obj_schema,
)
from .styles import add_top_layer, styles_to_code, theme_to_code
@@ -55,6 +54,7 @@ from .trigger import add_on_boot_triggers, generate_triggers
from .types import (
FontEngine,
IdleTrigger,
ObjUpdateAction,
PlainTrigger,
lv_font_t,
lv_group_t,
@@ -69,23 +69,33 @@ from .widgets import (
set_obj_properties,
styles_used,
)
# Import only what we actually use directly in this file
from .widgets.animimg import animimg_spec
from .widgets.arc import arc_spec
from .widgets.button import button_spec
from .widgets.buttonmatrix import buttonmatrix_spec
from .widgets.canvas import canvas_spec
from .widgets.checkbox import checkbox_spec
from .widgets.container import container_spec
from .widgets.dropdown import dropdown_spec
from .widgets.img import img_spec
from .widgets.keyboard import keyboard_spec
from .widgets.label import label_spec
from .widgets.led import led_spec
from .widgets.line import line_spec
from .widgets.lv_bar import bar_spec
from .widgets.meter import meter_spec
from .widgets.msgbox import MSGBOX_SCHEMA, msgboxes_to_code
from .widgets.obj import obj_spec # Used in LVGL_SCHEMA
from .widgets.page import ( # page_spec used in LVGL_SCHEMA
add_pages,
generate_page_triggers,
page_spec,
)
# Widget registration happens via WidgetType.__init__ in individual widget files
# The imports below trigger creation of the widget types
# Action registration (lvgl.{widget}.update) happens automatically
# in the WidgetType.__init__ method
for module_info in pkgutil.iter_modules(widgets.__path__):
importlib.import_module(f".widgets.{module_info.name}", package=__package__)
from .widgets.obj import obj_spec
from .widgets.page import add_pages, generate_page_triggers, page_spec
from .widgets.qrcode import qr_code_spec
from .widgets.roller import roller_spec
from .widgets.slider import slider_spec
from .widgets.spinbox import spinbox_spec
from .widgets.spinner import spinner_spec
from .widgets.switch import switch_spec
from .widgets.tabview import tabview_spec
from .widgets.textarea import textarea_spec
from .widgets.tileview import tileview_spec
DOMAIN = "lvgl"
DEPENDENCIES = ["display"]
@@ -93,6 +103,41 @@ AUTO_LOAD = ["key_provider"]
CODEOWNERS = ["@clydebarrow"]
LOGGER = logging.getLogger(__name__)
for w_type in (
label_spec,
obj_spec,
button_spec,
bar_spec,
slider_spec,
arc_spec,
line_spec,
spinner_spec,
led_spec,
animimg_spec,
checkbox_spec,
img_spec,
switch_spec,
tabview_spec,
buttonmatrix_spec,
meter_spec,
dropdown_spec,
roller_spec,
textarea_spec,
spinbox_spec,
keyboard_spec,
tileview_spec,
qr_code_spec,
canvas_spec,
container_spec,
):
WIDGET_TYPES[w_type.name] = w_type
for w_type in WIDGET_TYPES.values():
register_action(
f"lvgl.{w_type.name}.update",
ObjUpdateAction,
create_modify_schema(w_type),
)(update_to_code)
SIMPLE_TRIGGERS = (
df.CONF_ON_PAUSE,
@@ -331,7 +376,7 @@ async def to_code(configs):
# This must be done after all widgets are created
for comp in helpers.lvgl_components_required:
cg.add_define(f"USE_LVGL_{comp.upper()}")
if {"transform_angle", "transform_zoom"} & styles_used:
if "transform_angle" in styles_used:
add_define("LV_COLOR_SCREEN_TRANSP", "1")
for use in helpers.lv_uses:
add_define(f"LV_USE_{use.upper()}")
@@ -357,15 +402,6 @@ def add_hello_world(config):
return config
def _theme_schema(value):
return cv.Schema(
{
cv.Optional(name): obj_schema(w).extend(FULL_STYLE_SCHEMA)
for name, w in WIDGET_TYPES.items()
}
)(value)
FINAL_VALIDATE_SCHEMA = final_validation
LVGL_SCHEMA = cv.All(
@@ -418,7 +454,12 @@ LVGL_SCHEMA = cv.All(
cv.Optional(
df.CONF_TRANSPARENCY_KEY, default=0x000400
): lvalid.lv_color,
cv.Optional(df.CONF_THEME): _theme_schema,
cv.Optional(df.CONF_THEME): cv.Schema(
{
cv.Optional(name): obj_schema(w).extend(FULL_STYLE_SCHEMA)
for name, w in WIDGET_TYPES.items()
}
),
cv.Optional(df.CONF_GRADIENTS): GRADIENT_SCHEMA,
cv.Optional(df.CONF_TOUCHSCREENS, default=None): touchscreen_schema,
cv.Optional(df.CONF_ENCODERS, default=None): ENCODERS_CONFIG,

View File

@@ -411,10 +411,6 @@ def any_widget_schema(extras=None):
Dynamically generate schemas for all possible LVGL widgets. This is what implements the ability to have a list of any kind of
widget under the widgets: key.
This uses lazy evaluation - the schema is built when called during validation,
not at import time. This allows external components to register widgets
before schema validation begins.
:param extras: Additional schema to be applied to each generated one
:return: A validator for the Widgets key
"""

View File

@@ -1,10 +1,8 @@
import sys
from esphome import automation, codegen as cg
from esphome.automation import register_action
from esphome.config_validation import Schema
from esphome.const import CONF_MAX_VALUE, CONF_MIN_VALUE, CONF_TEXT, CONF_VALUE
from esphome.core import EsphomeError
from esphome.cpp_generator import MockObj, MockObjClass
from esphome.cpp_types import esphome_ns
@@ -126,16 +124,13 @@ class WidgetType:
schema=None,
modify_schema=None,
lv_name=None,
is_mock: bool = False,
):
"""
:param name: The widget name, e.g. "bar"
:param w_type: The C type of the widget
:param parts: What parts this widget supports
:param schema: The config schema for defining a widget
:param modify_schema: A schema to update the widget, defaults to the same as the schema
:param lv_name: The name of the LVGL widget in the LVGL library, if different from the name
:param is_mock: Whether this widget is a mock widget, i.e. not a real LVGL widget
:param modify_schema: A schema to update the widget
"""
self.name = name
self.lv_name = lv_name or name
@@ -151,22 +146,6 @@ class WidgetType:
self.modify_schema = modify_schema
self.mock_obj = MockObj(f"lv_{self.lv_name}", "_")
# Local import to avoid circular import
from .automation import update_to_code
from .schemas import WIDGET_TYPES, create_modify_schema
if not is_mock:
if self.name in WIDGET_TYPES:
raise EsphomeError(f"Duplicate definition of widget type '{self.name}'")
WIDGET_TYPES[self.name] = self
# Register the update action automatically
register_action(
f"lvgl.{self.name}.update",
ObjUpdateAction,
create_modify_schema(self),
)(update_to_code)
@property
def animated(self):
return False

View File

@@ -213,14 +213,17 @@ class LvScrActType(WidgetType):
"""
def __init__(self):
super().__init__("lv_scr_act()", lv_obj_t, (), is_mock=True)
super().__init__("lv_scr_act()", lv_obj_t, ())
async def to_code(self, w, config: dict):
return []
lv_scr_act_spec = LvScrActType()
def get_scr_act(lv_comp: MockObj) -> Widget:
return Widget.create(None, lv_comp.get_scr_act(), LvScrActType(), {})
return Widget.create(None, lv_comp.get_scr_act(), lv_scr_act_spec, {})
def get_widget_generator(wid):

View File

@@ -2,7 +2,7 @@ from esphome import automation
import esphome.config_validation as cv
from esphome.const import CONF_ID, CONF_RANGE_FROM, CONF_RANGE_TO, CONF_STEP, CONF_VALUE
from ..automation import action_to_code
from ..automation import action_to_code, update_to_code
from ..defines import (
CONF_CURSOR,
CONF_DECIMAL_PLACES,
@@ -171,3 +171,17 @@ async def spinbox_decrement(config, action_id, template_arg, args):
lv.spinbox_decrement(w.obj)
return await action_to_code(widgets, do_increment, action_id, template_arg, args)
@automation.register_action(
"lvgl.spinbox.update",
ObjUpdateAction,
cv.Schema(
{
cv.Required(CONF_ID): cv.use_id(lv_spinbox_t),
cv.Required(CONF_VALUE): lv_float,
}
),
)
async def spinbox_update_to_code(config, action_id, template_arg, args):
return await update_to_code(config, action_id, template_arg, args)

View File

@@ -56,7 +56,7 @@ void MCP23016::pin_mode(uint8_t pin, gpio::Flags flags) {
this->update_reg_(pin, false, iodir);
}
}
float MCP23016::get_setup_priority() const { return setup_priority::IO; }
float MCP23016::get_setup_priority() const { return setup_priority::HARDWARE; }
bool MCP23016::read_reg_(uint8_t reg, uint8_t *value) {
if (this->is_failed())
return false;

View File

@@ -1,9 +1,7 @@
import ipaddress
import logging
import esphome.codegen as cg
from esphome.components.esp32 import add_idf_sdkconfig_option
from esphome.components.psram import is_guaranteed as psram_is_guaranteed
import esphome.config_validation as cv
from esphome.const import CONF_ENABLE_IPV6, CONF_MIN_IPV6_ADDR_COUNT
from esphome.core import CORE, CoroPriority, coroutine_with_priority
@@ -11,13 +9,6 @@ from esphome.core import CORE, CoroPriority, coroutine_with_priority
CODEOWNERS = ["@esphome/core"]
AUTO_LOAD = ["mdns"]
_LOGGER = logging.getLogger(__name__)
# High performance networking tracking infrastructure
# Components can request high performance networking and this configures lwip and WiFi settings
KEY_HIGH_PERFORMANCE_NETWORKING = "high_performance_networking"
CONF_ENABLE_HIGH_PERFORMANCE = "enable_high_performance"
network_ns = cg.esphome_ns.namespace("network")
IPAddress = network_ns.class_("IPAddress")
@@ -56,55 +47,6 @@ def ip_address_literal(ip: str | int | None) -> cg.MockObj:
return IPAddress(str(ip))
def require_high_performance_networking() -> None:
"""Request high performance networking for network and WiFi.
Call this from components that need optimized network performance for streaming
or high-throughput data transfer. This enables high performance mode which
configures both lwip TCP settings and WiFi driver settings for improved
network performance.
Settings applied (ESP-IDF only):
- lwip: Larger TCP buffers, windows, and mailbox sizes
- WiFi: Increased RX/TX buffers, AMPDU aggregation, PSRAM allocation (set by wifi component)
Configuration is PSRAM-aware:
- With PSRAM guaranteed: Aggressive settings (512 RX buffers, 512KB TCP windows)
- Without PSRAM: Conservative optimized settings (64 buffers, 65KB TCP windows)
Example:
from esphome.components import network
def _request_high_performance_networking(config):
network.require_high_performance_networking()
return config
CONFIG_SCHEMA = cv.All(
...,
_request_high_performance_networking,
)
"""
# Only set up once (idempotent - multiple components can call this)
if not CORE.data.get(KEY_HIGH_PERFORMANCE_NETWORKING, False):
CORE.data[KEY_HIGH_PERFORMANCE_NETWORKING] = True
def has_high_performance_networking() -> bool:
"""Check if high performance networking mode is enabled.
Returns True when high performance networking has been requested by a
component or explicitly enabled in the network configuration. This indicates
that lwip and WiFi will use optimized buffer sizes and settings.
This function should be called during code generation (to_code phase) by
components that need to apply performance-related settings.
Returns:
bool: True if high performance networking is enabled, False otherwise
"""
return CORE.data.get(KEY_HIGH_PERFORMANCE_NETWORKING, False)
CONFIG_SCHEMA = cv.Schema(
{
cv.SplitDefault(
@@ -129,7 +71,6 @@ CONFIG_SCHEMA = cv.Schema(
),
),
cv.Optional(CONF_MIN_IPV6_ADDR_COUNT, default=0): cv.positive_int,
cv.Optional(CONF_ENABLE_HIGH_PERFORMANCE): cv.All(cv.boolean, cv.only_on_esp32),
}
)
@@ -139,70 +80,6 @@ async def to_code(config):
cg.add_define("USE_NETWORK")
if CORE.using_arduino and CORE.is_esp32:
cg.add_library("Networking", None)
# Apply high performance networking settings
# Config can explicitly enable/disable, or default to component-driven behavior
enable_high_perf = config.get(CONF_ENABLE_HIGH_PERFORMANCE)
component_requested = CORE.data.get(KEY_HIGH_PERFORMANCE_NETWORKING, False)
# Explicit config overrides component request
should_enable = (
enable_high_perf if enable_high_perf is not None else component_requested
)
# Log when user explicitly disables but a component requested it
if enable_high_perf is False and component_requested:
_LOGGER.info(
"High performance networking disabled by user configuration (overriding component request)"
)
if CORE.is_esp32 and CORE.using_esp_idf and should_enable:
# Check if PSRAM is guaranteed (set by psram component during final validation)
psram_guaranteed = psram_is_guaranteed()
if psram_guaranteed:
_LOGGER.info(
"Applying high-performance lwip settings (PSRAM guaranteed): 512KB TCP windows, 512 mailbox sizes"
)
# PSRAM is guaranteed - use aggressive settings
# Higher maximum values are allowed because CONFIG_LWIP_WND_SCALE is set to true
# CONFIG_LWIP_WND_SCALE can only be enabled if CONFIG_SPIRAM_IGNORE_NOTFOUND isn't set
# Based on https://github.com/espressif/esp-adf/issues/297#issuecomment-783811702
# Enable window scaling for much larger TCP windows
add_idf_sdkconfig_option("CONFIG_LWIP_WND_SCALE", True)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_RCV_SCALE", 3)
# Large TCP buffers and windows (requires PSRAM)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_SND_BUF_DEFAULT", 65534)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_WND_DEFAULT", 512000)
# Large mailboxes for high throughput
add_idf_sdkconfig_option("CONFIG_LWIP_TCPIP_RECVMBOX_SIZE", 512)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_RECVMBOX_SIZE", 512)
# TCP connection limits
add_idf_sdkconfig_option("CONFIG_LWIP_MAX_ACTIVE_TCP", 16)
add_idf_sdkconfig_option("CONFIG_LWIP_MAX_LISTENING_TCP", 16)
# TCP optimizations
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_MAXRTX", 12)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_SYNMAXRTX", 6)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_MSS", 1436)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_MSL", 60000)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_OVERSIZE_MSS", True)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_QUEUE_OOSEQ", True)
else:
_LOGGER.info(
"Applying optimized lwip settings: 65KB TCP windows, 64 mailbox sizes"
)
# PSRAM not guaranteed - use more conservative, but still optimized settings
# Based on https://github.com/espressif/esp-idf/blob/release/v5.4/examples/wifi/iperf/sdkconfig.defaults.esp32
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_SND_BUF_DEFAULT", 65534)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_WND_DEFAULT", 65534)
add_idf_sdkconfig_option("CONFIG_LWIP_TCP_RECVMBOX_SIZE", 64)
add_idf_sdkconfig_option("CONFIG_LWIP_TCPIP_RECVMBOX_SIZE", 64)
if (enable_ipv6 := config.get(CONF_ENABLE_IPV6, None)) is not None:
cg.add_define("USE_NETWORK_IPV6", enable_ipv6)
if enable_ipv6:

View File

@@ -118,10 +118,10 @@ struct IPAddress {
operator arduino_ns::IPAddress() const { return ip_addr_get_ip4_u32(&ip_addr_); }
#endif
bool is_set() const { return !ip_addr_isany(&ip_addr_); } // NOLINT(readability-simplify-boolean-expr)
bool is_ip4() const { return IP_IS_V4(&ip_addr_); }
bool is_ip6() const { return IP_IS_V6(&ip_addr_); }
bool is_multicast() const { return ip_addr_ismulticast(&ip_addr_); }
bool is_set() { return !ip_addr_isany(&ip_addr_); } // NOLINT(readability-simplify-boolean-expr)
bool is_ip4() { return IP_IS_V4(&ip_addr_); }
bool is_ip6() { return IP_IS_V6(&ip_addr_); }
bool is_multicast() { return ip_addr_ismulticast(&ip_addr_); }
std::string str() const { return str_lower_case(ipaddr_ntoa(&ip_addr_)); }
bool operator==(const IPAddress &other) const { return ip_addr_cmp(&ip_addr_, &other.ip_addr_); }
bool operator!=(const IPAddress &other) const { return !ip_addr_cmp(&ip_addr_, &other.ip_addr_); }

View File

@@ -25,7 +25,6 @@ from esphome.const import (
CONF_FRAMEWORK,
CONF_ID,
CONF_RESET_PIN,
CONF_VOLTAGE,
KEY_CORE,
KEY_FRAMEWORK_VERSION,
KEY_TARGET_FRAMEWORK,
@@ -103,11 +102,6 @@ nrf52_ns = cg.esphome_ns.namespace("nrf52")
DeviceFirmwareUpdate = nrf52_ns.class_("DeviceFirmwareUpdate", cg.Component)
CONF_DFU = "dfu"
CONF_DCDC = "dcdc"
CONF_REG0 = "reg0"
CONF_UICR_ERASE = "uicr_erase"
VOLTAGE_LEVELS = [1.8, 2.1, 2.4, 2.7, 3.0, 3.3]
CONFIG_SCHEMA = cv.All(
_detect_bootloader,
@@ -122,16 +116,6 @@ CONFIG_SCHEMA = cv.All(
cv.Required(CONF_RESET_PIN): pins.gpio_output_pin_schema,
}
),
cv.Optional(CONF_DCDC, default=True): cv.boolean,
cv.Optional(CONF_REG0): cv.Schema(
{
cv.Required(CONF_VOLTAGE): cv.All(
cv.voltage,
cv.one_of(*VOLTAGE_LEVELS, float=True),
),
cv.Optional(CONF_UICR_ERASE, default=False): cv.boolean,
}
),
}
),
)
@@ -198,13 +182,6 @@ async def to_code(config: ConfigType) -> None:
if dfu_config := config.get(CONF_DFU):
CORE.add_job(_dfu_to_code, dfu_config)
zephyr_add_prj_conf("BOARD_ENABLE_DCDC", config[CONF_DCDC])
if reg0_config := config.get(CONF_REG0):
value = VOLTAGE_LEVELS.index(reg0_config[CONF_VOLTAGE])
cg.add_define("USE_NRF52_REG0_VOUT", value)
if reg0_config[CONF_UICR_ERASE]:
cg.add_define("USE_NRF52_UICR_ERASE")
@coroutine_with_priority(CoroPriority.DIAGNOSTICS)

View File

@@ -1,121 +0,0 @@
#include "esphome/core/defines.h"
#ifdef USE_NRF52_REG0_VOUT
#include <zephyr/init.h>
#include <hal/nrf_power.h>
#include <zephyr/sys/printk.h>
extern "C" {
void nvmc_config(uint32_t mode);
void nvmc_wait();
nrfx_err_t nrfx_nvmc_uicr_erase();
}
namespace esphome::nrf52 {
enum class StatusFlags : uint8_t {
OK = 0x00,
NEED_RESET = 0x01,
NEED_ERASE = 0x02,
};
constexpr StatusFlags &operator|=(StatusFlags &a, StatusFlags b) {
a = static_cast<StatusFlags>(static_cast<uint8_t>(a) | static_cast<uint8_t>(b));
return a;
}
constexpr bool operator&(StatusFlags a, StatusFlags b) {
return (static_cast<uint8_t>(a) & static_cast<uint8_t>(b)) != 0;
}
static bool regout0_ok() {
return (NRF_UICR->REGOUT0 & UICR_REGOUT0_VOUT_Msk) == (USE_NRF52_REG0_VOUT << UICR_REGOUT0_VOUT_Pos);
}
static StatusFlags set_regout0() {
/* If the board is powered from USB (high voltage mode),
* GPIO output voltage is set to 1.8 volts by default.
*/
if (!regout0_ok()) {
nvmc_config(NVMC_CONFIG_WEN_Wen);
NRF_UICR->REGOUT0 =
(NRF_UICR->REGOUT0 & ~((uint32_t) UICR_REGOUT0_VOUT_Msk)) | (USE_NRF52_REG0_VOUT << UICR_REGOUT0_VOUT_Pos);
nvmc_wait();
nvmc_config(NVMC_CONFIG_WEN_Ren);
return regout0_ok() ? StatusFlags::NEED_RESET : StatusFlags::NEED_ERASE;
}
return StatusFlags::OK;
}
#ifndef USE_BOOTLOADER_MCUBOOT
// https://github.com/adafruit/Adafruit_nRF52_Bootloader/blob/6a9a6a3e6d0f86918e9286188426a279976645bd/lib/sdk11/components/libraries/bootloader_dfu/dfu_types.h#L61
constexpr uint32_t BOOTLOADER_REGION_START = 0x000F4000;
constexpr uint32_t BOOTLOADER_MBR_PARAMS_PAGE_ADDRESS = 0x000FE000;
static bool bootloader_ok() {
return NRF_UICR->NRFFW[0] == BOOTLOADER_REGION_START && NRF_UICR->NRFFW[1] == BOOTLOADER_MBR_PARAMS_PAGE_ADDRESS;
}
static StatusFlags fix_bootloader() {
if (!bootloader_ok()) {
nvmc_config(NVMC_CONFIG_WEN_Wen);
NRF_UICR->NRFFW[0] = BOOTLOADER_REGION_START;
NRF_UICR->NRFFW[1] = BOOTLOADER_MBR_PARAMS_PAGE_ADDRESS;
nvmc_wait();
nvmc_config(NVMC_CONFIG_WEN_Ren);
return bootloader_ok() ? StatusFlags::NEED_RESET : StatusFlags::NEED_ERASE;
}
return StatusFlags::OK;
}
#endif
#define BOOTLOADER_VERSION_REGISTER NRF_TIMER2->CC[0]
static StatusFlags set_uicr() {
StatusFlags status = StatusFlags::OK;
#ifndef USE_BOOTLOADER_MCUBOOT
if (BOOTLOADER_VERSION_REGISTER <= 0x902) {
#ifdef CONFIG_PRINTK
printk("cannot control regout0 for %#x\n", BOOTLOADER_VERSION_REGISTER);
#endif
} else
#endif
{
status |= set_regout0();
}
#ifndef USE_BOOTLOADER_MCUBOOT
status |= fix_bootloader();
#endif
return status;
}
static int board_esphome_init() {
StatusFlags status = set_uicr();
#ifdef USE_NRF52_UICR_ERASE
if (status & StatusFlags::NEED_ERASE) {
nrfx_err_t ret = nrfx_nvmc_uicr_erase();
if (ret != NRFX_SUCCESS) {
#ifdef CONFIG_PRINTK
printk("nrfx_nvmc_uicr_erase failed %d\n", ret);
#endif
} else {
status |= set_uicr();
}
}
#endif
if (status & StatusFlags::NEED_RESET) {
/* a reset is required for changes to take effect */
NVIC_SystemReset();
}
return 0;
}
} // namespace esphome::nrf52
static int board_esphome_init() { return esphome::nrf52::board_esphome_init(); }
SYS_INIT(board_esphome_init, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif

View File

@@ -23,7 +23,7 @@ void PCF85063Component::dump_config() {
if (this->is_failed()) {
ESP_LOGE(TAG, ESP_LOG_MSG_COMM_FAIL);
}
RealTimeClock::dump_config();
ESP_LOGCONFIG(TAG, " Timezone: '%s'", this->timezone_.c_str());
}
float PCF85063Component::get_setup_priority() const { return setup_priority::DATA; }

View File

@@ -23,7 +23,7 @@ void PCF8563Component::dump_config() {
if (this->is_failed()) {
ESP_LOGE(TAG, ESP_LOG_MSG_COMM_FAIL);
}
RealTimeClock::dump_config();
ESP_LOGCONFIG(TAG, " Timezone: '%s'", this->timezone_.c_str());
}
float PCF8563Component::get_setup_priority() const { return setup_priority::DATA; }

View File

@@ -35,9 +35,6 @@ DOMAIN = "psram"
DEPENDENCIES = [PLATFORM_ESP32]
# PSRAM availability tracking for cross-component coordination
KEY_PSRAM_GUARANTEED = "psram_guaranteed"
_LOGGER = logging.getLogger(__name__)
psram_ns = cg.esphome_ns.namespace(DOMAIN)
@@ -74,23 +71,6 @@ def supported() -> bool:
return variant in SPIRAM_MODES
def is_guaranteed() -> bool:
"""Check if PSRAM is guaranteed to be available.
Returns True when PSRAM is configured with both 'disabled: false' and
'ignore_not_found: false', meaning the device will fail to boot if PSRAM
is not found. This ensures safe use of high buffer configurations that
depend on PSRAM.
This function should be called during code generation (to_code phase) by
components that need to know PSRAM availability for configuration decisions.
Returns:
bool: True if PSRAM is guaranteed, False otherwise
"""
return CORE.data.get(KEY_PSRAM_GUARANTEED, False)
def validate_psram_mode(config):
esp32_config = fv.full_config.get()[PLATFORM_ESP32]
if config[CONF_SPEED] == "120MHZ":
@@ -151,22 +131,7 @@ def get_config_schema(config):
CONFIG_SCHEMA = get_config_schema
def _store_psram_guaranteed(config):
"""Store PSRAM guaranteed status in CORE.data for other components.
PSRAM is "guaranteed" when it will fail if not found, ensuring safe use
of high buffer configurations in network/wifi components.
Called during final validation to ensure the flag is available
before any to_code() functions run.
"""
psram_guaranteed = not config[CONF_DISABLED] and not config[CONF_IGNORE_NOT_FOUND]
CORE.data[KEY_PSRAM_GUARANTEED] = psram_guaranteed
return config
FINAL_VALIDATE_SCHEMA = cv.All(validate_psram_mode, _store_psram_guaranteed)
FINAL_VALIDATE_SCHEMA = validate_psram_mode
async def to_code(config):

View File

@@ -39,7 +39,7 @@ from esphome.const import (
CONF_WAND_ID,
CONF_ZERO,
)
from esphome.core import ID, coroutine
from esphome.core import coroutine
from esphome.schema_extractors import SCHEMA_EXTRACT, schema_extractor
from esphome.util import Registry, SimpleRegistry
@@ -2104,9 +2104,7 @@ async def abbwelcome_action(var, config, args):
)
cg.add(var.set_data_template(template_))
else:
arr_id = ID(f"{var.base}_data", is_declaration=True, type=cg.uint8)
arr = cg.static_const_array(arr_id, cg.ArrayInitializer(*data_))
cg.add(var.set_data_static(arr, len(data_)))
cg.add(var.set_data_static(data_))
# Mirage

View File

@@ -214,13 +214,10 @@ template<typename... Ts> class ABBWelcomeAction : public RemoteTransmitterAction
TEMPLATABLE_VALUE(uint8_t, message_type)
TEMPLATABLE_VALUE(uint8_t, message_id)
TEMPLATABLE_VALUE(bool, auto_message_id)
void set_data_template(std::vector<uint8_t> (*func)(Ts...)) {
this->data_.func = func;
this->len_ = -1; // Sentinel value indicates template mode
}
void set_data_static(const uint8_t *data, size_t len) {
this->data_.data = data;
this->len_ = len; // Length >= 0 indicates static mode
void set_data_static(std::vector<uint8_t> data) { data_static_ = std::move(data); }
void set_data_template(std::function<std::vector<uint8_t>(Ts...)> func) {
this->data_func_ = func;
has_data_func_ = true;
}
void encode(RemoteTransmitData *dst, Ts... x) override {
ABBWelcomeData data;
@@ -231,25 +228,19 @@ template<typename... Ts> class ABBWelcomeAction : public RemoteTransmitterAction
data.set_message_type(this->message_type_.value(x...));
data.set_message_id(this->message_id_.value(x...));
data.auto_message_id = this->auto_message_id_.value(x...);
std::vector<uint8_t> data_vec;
if (this->len_ >= 0) {
// Static mode: copy from flash to vector
data_vec.assign(this->data_.data, this->data_.data + this->len_);
if (has_data_func_) {
data.set_data(this->data_func_(x...));
} else {
// Template mode: call function
data_vec = this->data_.func(x...);
data.set_data(this->data_static_);
}
data.set_data(data_vec);
data.finalize();
ABBWelcomeProtocol().encode(dst, data);
}
protected:
ssize_t len_{-1}; // -1 = template mode, >=0 = static mode with length
union Data {
std::vector<uint8_t> (*func)(Ts...); // Function pointer (stateless lambdas)
const uint8_t *data; // Pointer to static data in flash
} data_;
std::function<std::vector<uint8_t>(Ts...)> data_func_{};
std::vector<uint8_t> data_static_{};
bool has_data_func_{false};
};
} // namespace remote_base

View File

@@ -71,7 +71,6 @@ static const uint16_t FALLBACK_FREQUENCY = 64767U; // To use with frequency = 0
static const uint32_t MICROSECONDS_IN_SECONDS = 1000000UL;
static const uint16_t PRONTO_DEFAULT_GAP = 45000;
static const uint16_t MARK_EXCESS_MICROS = 20;
static constexpr size_t PRONTO_LOG_CHUNK_SIZE = 230;
static uint16_t to_frequency_k_hz(uint16_t code) {
if (code == 0)
@@ -226,18 +225,18 @@ optional<ProntoData> ProntoProtocol::decode(RemoteReceiveData src) {
}
void ProntoProtocol::dump(const ProntoData &data) {
std::string rest;
rest = data.data;
ESP_LOGI(TAG, "Received Pronto: data=");
const char *ptr = data.data.c_str();
size_t remaining = data.data.size();
// Log in chunks, always logging at least once (even for empty string)
do {
size_t chunk_size = remaining < PRONTO_LOG_CHUNK_SIZE ? remaining : PRONTO_LOG_CHUNK_SIZE;
ESP_LOGI(TAG, "%.*s", (int) chunk_size, ptr);
ptr += chunk_size;
remaining -= chunk_size;
} while (remaining > 0);
while (true) {
ESP_LOGI(TAG, "%s", rest.substr(0, 230).c_str());
if (rest.size() > 230) {
rest = rest.substr(230);
} else {
break;
}
}
}
} // namespace remote_base

View File

@@ -42,20 +42,17 @@ class RawTrigger : public Trigger<RawTimings>, public Component, public RemoteRe
template<typename... Ts> class RawAction : public RemoteTransmitterActionBase<Ts...> {
public:
void set_code_template(RawTimings (*func)(Ts...)) {
this->code_.func = func;
this->len_ = -1; // Sentinel value indicates template mode
}
void set_code_template(std::function<RawTimings(Ts...)> func) { this->code_func_ = func; }
void set_code_static(const int32_t *code, size_t len) {
this->code_.data = code;
this->len_ = len; // Length >= 0 indicates static mode
this->code_static_ = code;
this->code_static_len_ = len;
}
TEMPLATABLE_VALUE(uint32_t, carrier_frequency);
void encode(RemoteTransmitData *dst, Ts... x) override {
if (this->len_ >= 0) {
for (size_t i = 0; i < static_cast<size_t>(this->len_); i++) {
auto val = this->code_.data[i];
if (this->code_static_ != nullptr) {
for (size_t i = 0; i < this->code_static_len_; i++) {
auto val = this->code_static_[i];
if (val < 0) {
dst->space(static_cast<uint32_t>(-val));
} else {
@@ -63,17 +60,15 @@ template<typename... Ts> class RawAction : public RemoteTransmitterActionBase<Ts
}
}
} else {
dst->set_data(this->code_.func(x...));
dst->set_data(this->code_func_(x...));
}
dst->set_carrier_frequency(this->carrier_frequency_.value(x...));
}
protected:
ssize_t len_{-1}; // -1 = template mode, >=0 = static mode with length
union Code {
RawTimings (*func)(Ts...);
const int32_t *data;
} code_;
std::function<RawTimings(Ts...)> code_func_{nullptr};
const int32_t *code_static_{nullptr};
int32_t code_static_len_{0};
};
class RawDumper : public RemoteReceiverDumperBase {

View File

@@ -1,128 +0,0 @@
#include "rx8130.h"
#include "esphome/core/log.h"
// https://download.epsondevice.com/td/pdf/app/RX8130CE_en.pdf
namespace esphome {
namespace rx8130 {
static const uint8_t RX8130_REG_SEC = 0x10;
static const uint8_t RX8130_REG_MIN = 0x11;
static const uint8_t RX8130_REG_HOUR = 0x12;
static const uint8_t RX8130_REG_WDAY = 0x13;
static const uint8_t RX8130_REG_MDAY = 0x14;
static const uint8_t RX8130_REG_MONTH = 0x15;
static const uint8_t RX8130_REG_YEAR = 0x16;
static const uint8_t RX8130_REG_EXTEN = 0x1C;
static const uint8_t RX8130_REG_FLAG = 0x1D;
static const uint8_t RX8130_REG_CTRL0 = 0x1E;
static const uint8_t RX8130_REG_CTRL1 = 0x1F;
static const uint8_t RX8130_REG_DIG_OFFSET = 0x30;
static const uint8_t RX8130_BIT_CTRL_STOP = 0x40;
static const uint8_t RX8130_BAT_FLAGS = 0x30;
static const uint8_t RX8130_CLEAR_FLAGS = 0x00;
static const char *const TAG = "rx8130";
constexpr uint8_t bcd2dec(uint8_t val) { return (val >> 4) * 10 + (val & 0x0f); }
constexpr uint8_t dec2bcd(uint8_t val) { return ((val / 10) << 4) + (val % 10); }
void RX8130Component::setup() {
// Set digital offset to disabled with no offset
if (this->write_register(RX8130_REG_DIG_OFFSET, &RX8130_CLEAR_FLAGS, 1) != i2c::ERROR_OK) {
this->mark_failed();
return;
}
// Disable wakeup timers
if (this->write_register(RX8130_REG_EXTEN, &RX8130_CLEAR_FLAGS, 1) != i2c::ERROR_OK) {
this->mark_failed();
return;
}
// Clear VLF flag in case there has been data loss
if (this->write_register(RX8130_REG_FLAG, &RX8130_CLEAR_FLAGS, 1) != i2c::ERROR_OK) {
this->mark_failed();
return;
}
// Clear test flag and disable interrupts
if (this->write_register(RX8130_REG_CTRL0, &RX8130_CLEAR_FLAGS, 1) != i2c::ERROR_OK) {
this->mark_failed();
return;
}
// Enable battery charging and switching
if (this->write_register(RX8130_REG_CTRL1, &RX8130_BAT_FLAGS, 1) != i2c::ERROR_OK) {
this->mark_failed();
return;
}
// Clear STOP bit
this->stop_(false);
}
void RX8130Component::update() { this->read_time(); }
void RX8130Component::dump_config() {
ESP_LOGCONFIG(TAG, "RX8130:");
LOG_I2C_DEVICE(this);
RealTimeClock::dump_config();
}
void RX8130Component::read_time() {
uint8_t date[7];
if (this->read_register(RX8130_REG_SEC, date, 7) != i2c::ERROR_OK) {
this->status_set_warning(ESP_LOG_MSG_COMM_FAIL);
return;
}
ESPTime rtc_time{
.second = bcd2dec(date[0] & 0x7f),
.minute = bcd2dec(date[1] & 0x7f),
.hour = bcd2dec(date[2] & 0x3f),
.day_of_week = bcd2dec(date[3] & 0x7f),
.day_of_month = bcd2dec(date[4] & 0x3f),
.day_of_year = 1, // ignored by recalc_timestamp_utc(false)
.month = bcd2dec(date[5] & 0x1f),
.year = static_cast<uint16_t>(bcd2dec(date[6]) + 2000),
.is_dst = false, // not used
.timestamp = 0 // overwritten by recalc_timestamp_utc(false)
};
rtc_time.recalc_timestamp_utc(false);
if (!rtc_time.is_valid()) {
ESP_LOGE(TAG, "Invalid RTC time, not syncing to system clock.");
return;
}
ESP_LOGD(TAG, "Read UTC time: %04d-%02d-%02d %02d:%02d:%02d", rtc_time.year, rtc_time.month, rtc_time.day_of_month,
rtc_time.hour, rtc_time.minute, rtc_time.second);
time::RealTimeClock::synchronize_epoch_(rtc_time.timestamp);
}
void RX8130Component::write_time() {
auto now = time::RealTimeClock::utcnow();
if (!now.is_valid()) {
ESP_LOGE(TAG, "Invalid system time, not syncing to RTC.");
return;
}
uint8_t buff[7];
buff[0] = dec2bcd(now.second);
buff[1] = dec2bcd(now.minute);
buff[2] = dec2bcd(now.hour);
buff[3] = dec2bcd(now.day_of_week);
buff[4] = dec2bcd(now.day_of_month);
buff[5] = dec2bcd(now.month);
buff[6] = dec2bcd(now.year % 100);
this->stop_(true);
if (this->write_register(RX8130_REG_SEC, buff, 7) != i2c::ERROR_OK) {
this->status_set_warning(ESP_LOG_MSG_COMM_FAIL);
} else {
ESP_LOGD(TAG, "Wrote UTC time: %04d-%02d-%02d %02d:%02d:%02d", now.year, now.month, now.day_of_month, now.hour,
now.minute, now.second);
}
this->stop_(false);
}
void RX8130Component::stop_(bool stop) {
const uint8_t data = stop ? RX8130_BIT_CTRL_STOP : RX8130_CLEAR_FLAGS;
if (this->write_register(RX8130_REG_CTRL0, &data, 1) != i2c::ERROR_OK) {
this->status_set_warning(ESP_LOG_MSG_COMM_FAIL);
}
}
} // namespace rx8130
} // namespace esphome

View File

@@ -1,35 +0,0 @@
#pragma once
#include "esphome/core/component.h"
#include "esphome/components/i2c/i2c.h"
#include "esphome/components/time/real_time_clock.h"
namespace esphome {
namespace rx8130 {
class RX8130Component : public time::RealTimeClock, public i2c::I2CDevice {
public:
void setup() override;
void update() override;
void dump_config() override;
void read_time();
void write_time();
/// Ensure RTC is initialized at the correct time in the setup sequence
float get_setup_priority() const override { return setup_priority::DATA; }
protected:
void stop_(bool stop);
};
template<typename... Ts> class WriteAction : public Action<Ts...>, public Parented<RX8130Component> {
public:
void play(const Ts... x) override { this->parent_->write_time(); }
};
template<typename... Ts> class ReadAction : public Action<Ts...>, public Parented<RX8130Component> {
public:
void play(const Ts... x) override { this->parent_->read_time(); }
};
} // namespace rx8130
} // namespace esphome

View File

@@ -1,56 +0,0 @@
from esphome import automation
import esphome.codegen as cg
from esphome.components import i2c, time
import esphome.config_validation as cv
from esphome.const import CONF_ID
CODEOWNERS = ["@beormund"]
DEPENDENCIES = ["i2c"]
rx8130_ns = cg.esphome_ns.namespace("rx8130")
RX8130Component = rx8130_ns.class_("RX8130Component", time.RealTimeClock, i2c.I2CDevice)
WriteAction = rx8130_ns.class_("WriteAction", automation.Action)
ReadAction = rx8130_ns.class_("ReadAction", automation.Action)
CONFIG_SCHEMA = time.TIME_SCHEMA.extend(
{
cv.GenerateID(): cv.declare_id(RX8130Component),
}
).extend(i2c.i2c_device_schema(0x32))
@automation.register_action(
"rx8130.write_time",
WriteAction,
cv.Schema(
{
cv.GenerateID(): cv.use_id(RX8130Component),
}
),
)
async def rx8130_write_time_to_code(config, action_id, template_arg, args):
var = cg.new_Pvariable(action_id, template_arg)
await cg.register_parented(var, config[CONF_ID])
return var
@automation.register_action(
"rx8130.read_time",
ReadAction,
automation.maybe_simple_id(
{
cv.GenerateID(): cv.use_id(RX8130Component),
}
),
)
async def rx8130_read_time_to_code(config, action_id, template_arg, args):
var = cg.new_Pvariable(action_id, template_arg)
await cg.register_parented(var, config[CONF_ID])
return var
async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await i2c.register_i2c_device(var, config)
await time.register_time(var, config)

View File

@@ -77,21 +77,23 @@ class Select : public EntityBase {
void add_on_state_callback(std::function<void(std::string, size_t)> &&callback);
/** Set the value of the select by index, this is an optional virtual method.
*
* This method is called by the SelectCall when the index is already known.
* Default implementation converts to string and calls control().
* Override this to work directly with indices and avoid string conversions.
*
* @param index The index as validated by the SelectCall.
*/
virtual void control(size_t index) { this->control(this->option_at(index)); }
protected:
friend class SelectCall;
size_t active_index_{0};
/** Set the value of the select by index, this is an optional virtual method.
*
* IMPORTANT: At least ONE of the two control() methods must be overridden by derived classes.
* Overriding this index-based version is PREFERRED as it avoids string conversions.
*
* This method is called by the SelectCall when the index is already known.
* Default implementation converts to string and calls control(const std::string&).
*
* @param index The index as validated by the SelectCall.
*/
virtual void control(size_t index) { this->control(this->option_at(index)); }
/** Set the value of the select, this is a virtual method that each select integration can implement.
*
* IMPORTANT: At least ONE of the two control() methods must be overridden by derived classes.

View File

@@ -74,9 +74,9 @@ StateClass Sensor::get_state_class() {
void Sensor::publish_state(float state) {
this->raw_state = state;
// Call raw callbacks (before filters)
this->callbacks_.call_first(this->raw_count_, state);
if (this->raw_callback_) {
this->raw_callback_->call(state);
}
ESP_LOGV(TAG, "'%s': Received new state %f", this->name_.c_str(), state);
@@ -87,12 +87,12 @@ void Sensor::publish_state(float state) {
}
}
void Sensor::add_on_state_callback(std::function<void(float)> &&callback) {
this->callbacks_.add_second(std::move(callback));
}
void Sensor::add_on_state_callback(std::function<void(float)> &&callback) { this->callback_.add(std::move(callback)); }
void Sensor::add_on_raw_state_callback(std::function<void(float)> &&callback) {
this->callbacks_.add_first(std::move(callback), &this->raw_count_);
if (!this->raw_callback_) {
this->raw_callback_ = make_unique<CallbackManager<void(float)>>();
}
this->raw_callback_->add(std::move(callback));
}
void Sensor::add_filter(Filter *filter) {
@@ -132,10 +132,7 @@ void Sensor::internal_send_state_to_frontend(float state) {
this->state = state;
ESP_LOGD(TAG, "'%s': Sending state %.5f %s with %d decimals of accuracy", this->get_name().c_str(), state,
this->get_unit_of_measurement_ref().c_str(), this->get_accuracy_decimals());
// Call filtered callbacks (after filters)
this->callbacks_.call_second(this->raw_count_, state);
this->callback_.call(state);
#if defined(USE_SENSOR) && defined(USE_CONTROLLER_REGISTRY)
ControllerRegistry::notify_sensor_update(this);
#endif

View File

@@ -124,7 +124,8 @@ class Sensor : public EntityBase, public EntityBase_DeviceClass, public EntityBa
void internal_send_state_to_frontend(float state);
protected:
PartitionedCallbackManager<void(float)> callbacks_;
std::unique_ptr<CallbackManager<void(float)>> raw_callback_; ///< Storage for raw state callbacks (lazy allocated).
CallbackManager<void(float)> callback_; ///< Storage for filtered state callbacks.
Filter *filter_list_{nullptr}; ///< Store all active filters.
@@ -139,8 +140,6 @@ class Sensor : public EntityBase, public EntityBase_DeviceClass, public EntityBa
uint8_t force_update : 1;
uint8_t reserved : 5; // Reserved for future use
} sensor_flags_{};
uint8_t raw_count_{0}; ///< Number of raw callbacks (partition point in callbacks_ vector)
};
} // namespace sensor

View File

@@ -61,7 +61,6 @@ void SNTPComponent::dump_config() {
for (auto &server : this->servers_) {
ESP_LOGCONFIG(TAG, " Server %zu: '%s'", i++, server);
}
RealTimeClock::dump_config();
}
void SNTPComponent::update() {
#if !defined(USE_ESP32)

View File

@@ -1,14 +1,9 @@
import logging
import esphome.codegen as cg
from esphome.components import time as time_
from esphome.config_helpers import merge_config
import esphome.config_validation as cv
from esphome.const import (
CONF_ID,
CONF_PLATFORM,
CONF_SERVERS,
CONF_TIME,
PLATFORM_BK72XX,
PLATFORM_ESP32,
PLATFORM_ESP8266,
@@ -17,74 +12,13 @@ from esphome.const import (
PLATFORM_RTL87XX,
)
from esphome.core import CORE
import esphome.final_validate as fv
from esphome.types import ConfigType
_LOGGER = logging.getLogger(__name__)
DEPENDENCIES = ["network"]
CONF_SNTP = "sntp"
sntp_ns = cg.esphome_ns.namespace("sntp")
SNTPComponent = sntp_ns.class_("SNTPComponent", time_.RealTimeClock)
DEFAULT_SERVERS = ["0.pool.ntp.org", "1.pool.ntp.org", "2.pool.ntp.org"]
def _sntp_final_validate(config: ConfigType) -> None:
"""Merge multiple SNTP instances into one, similar to OTA merging behavior."""
full_conf = fv.full_config.get()
time_confs = full_conf.get(CONF_TIME, [])
sntp_configs: list[ConfigType] = []
other_time_configs: list[ConfigType] = []
for time_conf in time_confs:
if time_conf.get(CONF_PLATFORM) == CONF_SNTP:
sntp_configs.append(time_conf)
else:
other_time_configs.append(time_conf)
if len(sntp_configs) <= 1:
return
# Merge all SNTP configs into the first one
merged = sntp_configs[0]
for sntp_conf in sntp_configs[1:]:
# Validate that IDs are consistent if manually specified
if merged[CONF_ID].is_manual and sntp_conf[CONF_ID].is_manual:
raise cv.Invalid(
f"Found multiple SNTP configurations but {CONF_ID} is inconsistent"
)
merged = merge_config(merged, sntp_conf)
# Deduplicate servers while preserving order
servers = merged[CONF_SERVERS]
unique_servers = list(dict.fromkeys(servers))
# Warn if we're dropping servers due to 3-server limit
if len(unique_servers) > 3:
dropped = unique_servers[3:]
unique_servers = unique_servers[:3]
_LOGGER.warning(
"SNTP supports maximum 3 servers. Dropped excess server(s): %s",
dropped,
)
merged[CONF_SERVERS] = unique_servers
_LOGGER.warning(
"Found and merged %d SNTP time configurations into one instance",
len(sntp_configs),
)
# Replace time configs with merged SNTP + other time platforms
other_time_configs.append(merged)
full_conf[CONF_TIME] = other_time_configs
fv.full_config.set(full_conf)
CONFIG_SCHEMA = cv.All(
time_.TIME_SCHEMA.extend(
{
@@ -106,8 +40,6 @@ CONFIG_SCHEMA = cv.All(
),
)
FINAL_VALIDATE_SCHEMA = _sntp_final_validate
async def to_code(config):
servers = config[CONF_SERVERS]

View File

@@ -3,7 +3,7 @@ import esphome.codegen as cg
from esphome.components import audio, audio_dac
import esphome.config_validation as cv
from esphome.const import CONF_DATA, CONF_ID, CONF_VOLUME
from esphome.core import CORE, ID
from esphome.core import CORE
from esphome.coroutine import CoroPriority, coroutine_with_priority
AUTO_LOAD = ["audio"]
@@ -90,10 +90,7 @@ async def speaker_play_action(config, action_id, template_arg, args):
templ = await cg.templatable(data, args, cg.std_vector.template(cg.uint8))
cg.add(var.set_data_template(templ))
else:
# Generate static array in flash to avoid RAM copy
arr_id = ID(f"{action_id}_data", is_declaration=True, type=cg.uint8)
arr = cg.static_const_array(arr_id, cg.ArrayInitializer(*data))
cg.add(var.set_data_static(arr, len(data)))
cg.add(var.set_data_static(data))
return var

View File

@@ -10,33 +10,28 @@ namespace speaker {
template<typename... Ts> class PlayAction : public Action<Ts...>, public Parented<Speaker> {
public:
void set_data_template(std::vector<uint8_t> (*func)(Ts...)) {
this->data_.func = func;
this->len_ = -1; // Sentinel value indicates template mode
void set_data_template(std::function<std::vector<uint8_t>(Ts...)> func) {
this->data_func_ = func;
this->static_ = false;
}
void set_data_static(const uint8_t *data, size_t len) {
this->data_.data = data;
this->len_ = len; // Length >= 0 indicates static mode
void set_data_static(const std::vector<uint8_t> &data) {
this->data_static_ = data;
this->static_ = true;
}
void play(const Ts &...x) override {
if (this->len_ >= 0) {
// Static mode: pass pointer directly to play(const uint8_t *, size_t)
this->parent_->play(this->data_.data, static_cast<size_t>(this->len_));
if (this->static_) {
this->parent_->play(this->data_static_);
} else {
// Template mode: call function and pass vector to play(const std::vector<uint8_t> &)
auto val = this->data_.func(x...);
auto val = this->data_func_(x...);
this->parent_->play(val);
}
}
protected:
ssize_t len_{-1}; // -1 = template mode, >=0 = static mode with length
union Data {
std::vector<uint8_t> (*func)(Ts...); // Function pointer (stateless lambdas)
const uint8_t *data; // Pointer to static data in flash
} data_;
bool static_{false};
std::function<std::vector<uint8_t>(Ts...)> data_func_{};
std::vector<uint8_t> data_static_{};
};
template<typename... Ts> class VolumeSetAction : public Action<Ts...>, public Parented<Speaker> {

View File

@@ -6,7 +6,7 @@ from pathlib import Path
from esphome import automation, external_files
import esphome.codegen as cg
from esphome.components import audio, esp32, media_player, network, psram, speaker
from esphome.components import audio, esp32, media_player, psram, speaker
import esphome.config_validation as cv
from esphome.const import (
CONF_BUFFER_SIZE,
@@ -32,7 +32,6 @@ _LOGGER = logging.getLogger(__name__)
AUTO_LOAD = ["audio"]
DEPENDENCIES = ["network"]
CODEOWNERS = ["@kahrendt", "@synesthesiam"]
DOMAIN = "media_player"
@@ -281,18 +280,6 @@ PIPELINE_SCHEMA = cv.Schema(
}
)
def _request_high_performance_networking(config):
"""Request high performance networking for streaming media.
Speaker media player streams audio data, so it always benefits from
optimized WiFi and lwip settings regardless of codec support.
Called during config validation to ensure flags are set before to_code().
"""
network.require_high_performance_networking()
return config
CONFIG_SCHEMA = cv.All(
media_player.media_player_schema(SpeakerMediaPlayer).extend(
{
@@ -317,7 +304,6 @@ CONFIG_SCHEMA = cv.All(
),
cv.only_with_esp_idf,
_validate_repeated_speaker,
_request_high_performance_networking,
)
@@ -335,10 +321,28 @@ FINAL_VALIDATE_SCHEMA = cv.All(
async def to_code(config):
if CORE.data[DOMAIN][config[CONF_ID].id][CONF_CODEC_SUPPORT_ENABLED]:
# Compile all supported audio codecs
# Compile all supported audio codecs and optimize the wifi settings
cg.add_define("USE_AUDIO_FLAC_SUPPORT", True)
cg.add_define("USE_AUDIO_MP3_SUPPORT", True)
# Based on https://github.com/espressif/esp-idf/blob/release/v5.4/examples/wifi/iperf/sdkconfig.defaults.esp32
esp32.add_idf_sdkconfig_option("CONFIG_ESP_WIFI_STATIC_RX_BUFFER_NUM", 16)
esp32.add_idf_sdkconfig_option("CONFIG_ESP_WIFI_DYNAMIC_RX_BUFFER_NUM", 64)
esp32.add_idf_sdkconfig_option("CONFIG_ESP_WIFI_DYNAMIC_TX_BUFFER_NUM", 64)
esp32.add_idf_sdkconfig_option("CONFIG_ESP_WIFI_AMPDU_TX_ENABLED", True)
esp32.add_idf_sdkconfig_option("CONFIG_ESP_WIFI_TX_BA_WIN", 32)
esp32.add_idf_sdkconfig_option("CONFIG_ESP_WIFI_AMPDU_RX_ENABLED", True)
esp32.add_idf_sdkconfig_option("CONFIG_ESP_WIFI_RX_BA_WIN", 32)
esp32.add_idf_sdkconfig_option("CONFIG_LWIP_TCP_SND_BUF_DEFAULT", 65534)
esp32.add_idf_sdkconfig_option("CONFIG_LWIP_TCP_WND_DEFAULT", 65534)
esp32.add_idf_sdkconfig_option("CONFIG_LWIP_TCP_RECVMBOX_SIZE", 64)
esp32.add_idf_sdkconfig_option("CONFIG_LWIP_TCPIP_RECVMBOX_SIZE", 64)
# Allocate wifi buffers in PSRAM
esp32.add_idf_sdkconfig_option("CONFIG_SPIRAM_TRY_ALLOCATE_WIFI_LWIP", True)
var = await media_player.new_media_player(config)
await cg.register_component(var, config)

View File

@@ -3,7 +3,7 @@ import esphome.codegen as cg
from esphome.components import spi
import esphome.config_validation as cv
from esphome.const import CONF_BUSY_PIN, CONF_DATA, CONF_FREQUENCY, CONF_ID
from esphome.core import ID, TimePeriod
from esphome.core import TimePeriod
MULTI_CONF = True
CODEOWNERS = ["@swoboda1337"]
@@ -189,7 +189,7 @@ CONFIG_SCHEMA = (
cv.GenerateID(): cv.declare_id(SX126x),
cv.Optional(CONF_BANDWIDTH, default="125_0kHz"): cv.enum(BW),
cv.Optional(CONF_BITRATE, default=4800): cv.int_range(min=600, max=300000),
cv.Required(CONF_BUSY_PIN): pins.gpio_input_pin_schema,
cv.Required(CONF_BUSY_PIN): pins.internal_gpio_input_pin_schema,
cv.Optional(CONF_CODING_RATE, default="CR_4_5"): cv.enum(CODING_RATE),
cv.Optional(CONF_CRC_ENABLE, default=False): cv.boolean,
cv.Optional(CONF_CRC_INVERTED, default=True): cv.boolean,
@@ -201,7 +201,7 @@ CONFIG_SCHEMA = (
cv.hex_int, cv.Range(min=0, max=0xFFFF)
),
cv.Optional(CONF_DEVIATION, default=5000): cv.int_range(min=0, max=100000),
cv.Required(CONF_DIO1_PIN): pins.gpio_input_pin_schema,
cv.Required(CONF_DIO1_PIN): pins.internal_gpio_input_pin_schema,
cv.Required(CONF_FREQUENCY): cv.int_range(min=137000000, max=1020000000),
cv.Required(CONF_HW_VERSION): cv.one_of(
"sx1261", "sx1262", "sx1268", "llcc68", lower=True
@@ -213,7 +213,7 @@ CONFIG_SCHEMA = (
cv.Optional(CONF_PAYLOAD_LENGTH, default=0): cv.int_range(min=0, max=256),
cv.Optional(CONF_PREAMBLE_DETECT, default=2): cv.int_range(min=0, max=4),
cv.Optional(CONF_PREAMBLE_SIZE, default=8): cv.int_range(min=1, max=65535),
cv.Required(CONF_RST_PIN): pins.gpio_output_pin_schema,
cv.Required(CONF_RST_PIN): pins.internal_gpio_output_pin_schema,
cv.Optional(CONF_RX_START, default=True): cv.boolean,
cv.Required(CONF_RF_SWITCH): cv.boolean,
cv.Optional(CONF_SHAPING, default="NONE"): cv.enum(SHAPING),
@@ -329,8 +329,5 @@ async def send_packet_action_to_code(config, action_id, template_arg, args):
templ = await cg.templatable(data, args, cg.std_vector.template(cg.uint8))
cg.add(var.set_data_template(templ))
else:
# Generate static array in flash to avoid RAM copy
arr_id = ID(f"{action_id}_data", is_declaration=True, type=cg.uint8)
arr = cg.static_const_array(arr_id, cg.ArrayInitializer(*data))
cg.add(var.set_data_static(arr, len(data)))
cg.add(var.set_data_static(data))
return var

View File

@@ -14,34 +14,28 @@ template<typename... Ts> class RunImageCalAction : public Action<Ts...>, public
template<typename... Ts> class SendPacketAction : public Action<Ts...>, public Parented<SX126x> {
public:
void set_data_template(std::vector<uint8_t> (*func)(Ts...)) {
this->data_.func = func;
this->len_ = -1; // Sentinel value indicates template mode
void set_data_template(std::function<std::vector<uint8_t>(Ts...)> func) {
this->data_func_ = func;
this->static_ = false;
}
void set_data_static(const uint8_t *data, size_t len) {
this->data_.data = data;
this->len_ = len; // Length >= 0 indicates static mode
void set_data_static(const std::vector<uint8_t> &data) {
this->data_static_ = data;
this->static_ = true;
}
void play(const Ts &...x) override {
std::vector<uint8_t> data;
if (this->len_ >= 0) {
// Static mode: copy from flash to vector
data.assign(this->data_.data, this->data_.data + this->len_);
if (this->static_) {
this->parent_->transmit_packet(this->data_static_);
} else {
// Template mode: call function
data = this->data_.func(x...);
this->parent_->transmit_packet(this->data_func_(x...));
}
this->parent_->transmit_packet(data);
}
protected:
ssize_t len_{-1}; // -1 = template mode, >=0 = static mode with length
union Data {
std::vector<uint8_t> (*func)(Ts...); // Function pointer (stateless lambdas)
const uint8_t *data; // Pointer to static data in flash
} data_;
bool static_{false};
std::function<std::vector<uint8_t>(Ts...)> data_func_{};
std::vector<uint8_t> data_static_{};
};
template<typename... Ts> class SetModeTxAction : public Action<Ts...>, public Parented<SX126x> {

View File

@@ -64,7 +64,7 @@ class SX126x : public Component,
void dump_config() override;
void set_bandwidth(SX126xBw bandwidth) { this->bandwidth_ = bandwidth; }
void set_bitrate(uint32_t bitrate) { this->bitrate_ = bitrate; }
void set_busy_pin(GPIOPin *busy_pin) { this->busy_pin_ = busy_pin; }
void set_busy_pin(InternalGPIOPin *busy_pin) { this->busy_pin_ = busy_pin; }
void set_coding_rate(uint8_t coding_rate) { this->coding_rate_ = coding_rate; }
void set_crc_enable(bool crc_enable) { this->crc_enable_ = crc_enable; }
void set_crc_inverted(bool crc_inverted) { this->crc_inverted_ = crc_inverted; }
@@ -72,7 +72,7 @@ class SX126x : public Component,
void set_crc_polynomial(uint16_t crc_polynomial) { this->crc_polynomial_ = crc_polynomial; }
void set_crc_initial(uint16_t crc_initial) { this->crc_initial_ = crc_initial; }
void set_deviation(uint32_t deviation) { this->deviation_ = deviation; }
void set_dio1_pin(GPIOPin *dio1_pin) { this->dio1_pin_ = dio1_pin; }
void set_dio1_pin(InternalGPIOPin *dio1_pin) { this->dio1_pin_ = dio1_pin; }
void set_frequency(uint32_t frequency) { this->frequency_ = frequency; }
void set_hw_version(const std::string &hw_version) { this->hw_version_ = hw_version; }
void set_mode_rx();
@@ -85,7 +85,7 @@ class SX126x : public Component,
void set_payload_length(uint8_t payload_length) { this->payload_length_ = payload_length; }
void set_preamble_detect(uint16_t preamble_detect) { this->preamble_detect_ = preamble_detect; }
void set_preamble_size(uint16_t preamble_size) { this->preamble_size_ = preamble_size; }
void set_rst_pin(GPIOPin *rst_pin) { this->rst_pin_ = rst_pin; }
void set_rst_pin(InternalGPIOPin *rst_pin) { this->rst_pin_ = rst_pin; }
void set_rx_start(bool rx_start) { this->rx_start_ = rx_start; }
void set_rf_switch(bool rf_switch) { this->rf_switch_ = rf_switch; }
void set_shaping(uint8_t shaping) { this->shaping_ = shaping; }
@@ -115,9 +115,9 @@ class SX126x : public Component,
std::vector<SX126xListener *> listeners_;
std::vector<uint8_t> packet_;
std::vector<uint8_t> sync_value_;
GPIOPin *busy_pin_{nullptr};
GPIOPin *dio1_pin_{nullptr};
GPIOPin *rst_pin_{nullptr};
InternalGPIOPin *busy_pin_{nullptr};
InternalGPIOPin *dio1_pin_{nullptr};
InternalGPIOPin *rst_pin_{nullptr};
std::string hw_version_;
char version_[16];
SX126xBw bandwidth_{SX126X_BW_125000};

View File

@@ -3,7 +3,6 @@ import esphome.codegen as cg
from esphome.components import spi
import esphome.config_validation as cv
from esphome.const import CONF_DATA, CONF_FREQUENCY, CONF_ID
from esphome.core import ID
MULTI_CONF = True
CODEOWNERS = ["@swoboda1337"]
@@ -322,8 +321,5 @@ async def send_packet_action_to_code(config, action_id, template_arg, args):
templ = await cg.templatable(data, args, cg.std_vector.template(cg.uint8))
cg.add(var.set_data_template(templ))
else:
# Generate static array in flash to avoid RAM copy
arr_id = ID(f"{action_id}_data", is_declaration=True, type=cg.uint8)
arr = cg.static_const_array(arr_id, cg.ArrayInitializer(*data))
cg.add(var.set_data_static(arr, len(data)))
cg.add(var.set_data_static(data))
return var

View File

@@ -14,34 +14,28 @@ template<typename... Ts> class RunImageCalAction : public Action<Ts...>, public
template<typename... Ts> class SendPacketAction : public Action<Ts...>, public Parented<SX127x> {
public:
void set_data_template(std::vector<uint8_t> (*func)(Ts...)) {
this->data_.func = func;
this->len_ = -1; // Sentinel value indicates template mode
void set_data_template(std::function<std::vector<uint8_t>(Ts...)> func) {
this->data_func_ = func;
this->static_ = false;
}
void set_data_static(const uint8_t *data, size_t len) {
this->data_.data = data;
this->len_ = len; // Length >= 0 indicates static mode
void set_data_static(const std::vector<uint8_t> &data) {
this->data_static_ = data;
this->static_ = true;
}
void play(const Ts &...x) override {
std::vector<uint8_t> data;
if (this->len_ >= 0) {
// Static mode: copy from flash to vector
data.assign(this->data_.data, this->data_.data + this->len_);
if (this->static_) {
this->parent_->transmit_packet(this->data_static_);
} else {
// Template mode: call function
data = this->data_.func(x...);
this->parent_->transmit_packet(this->data_func_(x...));
}
this->parent_->transmit_packet(data);
}
protected:
ssize_t len_{-1}; // -1 = template mode, >=0 = static mode with length
union Data {
std::vector<uint8_t> (*func)(Ts...); // Function pointer (stateless lambdas)
const uint8_t *data; // Pointer to static data in flash
} data_;
bool static_{false};
std::function<std::vector<uint8_t>(Ts...)> data_func_{};
std::vector<uint8_t> data_static_{};
};
template<typename... Ts> class SetModeTxAction : public Action<Ts...>, public Parented<SX127x> {

View File

@@ -137,11 +137,7 @@ async def to_code(config):
cg.add(var.set_arming_night_time(config[CONF_ARMING_NIGHT_TIME]))
supports_arm_night = True
if sensors := config.get(CONF_BINARY_SENSORS, []):
# Initialize FixedVector with the exact number of sensors
cg.add(var.init_sensors(len(sensors)))
for sensor in sensors:
for sensor in config.get(CONF_BINARY_SENSORS, []):
bs = await cg.get_variable(sensor[CONF_INPUT])
flags = BinarySensorFlags[FLAG_NORMAL]

View File

@@ -20,13 +20,10 @@ void TemplateAlarmControlPanel::add_sensor(binary_sensor::BinarySensor *sensor,
// Save the flags and type. Assign a store index for the per sensor data type.
SensorDataStore sd;
sd.last_chime_state = false;
AlarmSensor alarm_sensor;
alarm_sensor.sensor = sensor;
alarm_sensor.info.flags = flags;
alarm_sensor.info.type = type;
alarm_sensor.info.store_index = this->next_store_index_++;
this->sensors_.push_back(alarm_sensor);
this->sensor_map_[sensor].flags = flags;
this->sensor_map_[sensor].type = type;
this->sensor_data_.push_back(sd);
this->sensor_map_[sensor].store_index = this->next_store_index_++;
};
static const LogString *sensor_type_to_string(AlarmSensorType type) {
@@ -48,7 +45,7 @@ void TemplateAlarmControlPanel::dump_config() {
ESP_LOGCONFIG(TAG,
"TemplateAlarmControlPanel:\n"
" Current State: %s\n"
" Number of Codes: %zu\n"
" Number of Codes: %u\n"
" Requires Code To Arm: %s\n"
" Arming Away Time: %" PRIu32 "s\n"
" Arming Home Time: %" PRIu32 "s\n"
@@ -61,8 +58,7 @@ void TemplateAlarmControlPanel::dump_config() {
(this->arming_home_time_ / 1000), (this->arming_night_time_ / 1000), (this->pending_time_ / 1000),
(this->trigger_time_ / 1000), this->get_supported_features());
#ifdef USE_BINARY_SENSOR
for (const auto &alarm_sensor : this->sensors_) {
const uint16_t flags = alarm_sensor.info.flags;
for (auto const &[sensor, info] : this->sensor_map_) {
ESP_LOGCONFIG(TAG,
" Binary Sensor:\n"
" Name: %s\n"
@@ -71,10 +67,11 @@ void TemplateAlarmControlPanel::dump_config() {
" Armed night bypass: %s\n"
" Auto bypass: %s\n"
" Chime mode: %s",
alarm_sensor.sensor->get_name().c_str(), LOG_STR_ARG(sensor_type_to_string(alarm_sensor.info.type)),
TRUEFALSE(flags & BINARY_SENSOR_MODE_BYPASS_ARMED_HOME),
TRUEFALSE(flags & BINARY_SENSOR_MODE_BYPASS_ARMED_NIGHT),
TRUEFALSE(flags & BINARY_SENSOR_MODE_BYPASS_AUTO), TRUEFALSE(flags & BINARY_SENSOR_MODE_CHIME));
sensor->get_name().c_str(), LOG_STR_ARG(sensor_type_to_string(info.type)),
TRUEFALSE(info.flags & BINARY_SENSOR_MODE_BYPASS_ARMED_HOME),
TRUEFALSE(info.flags & BINARY_SENSOR_MODE_BYPASS_ARMED_NIGHT),
TRUEFALSE(info.flags & BINARY_SENSOR_MODE_BYPASS_AUTO),
TRUEFALSE(info.flags & BINARY_SENSOR_MODE_CHIME));
}
#endif
}
@@ -124,9 +121,7 @@ void TemplateAlarmControlPanel::loop() {
#ifdef USE_BINARY_SENSOR
// Test all of the sensors regardless of the alarm panel state
for (const auto &alarm_sensor : this->sensors_) {
const auto &info = alarm_sensor.info;
auto *sensor = alarm_sensor.sensor;
for (auto const &[sensor, info] : this->sensor_map_) {
// Check for chime zones
if (info.flags & BINARY_SENSOR_MODE_CHIME) {
// Look for the transition from closed to open
@@ -247,11 +242,11 @@ void TemplateAlarmControlPanel::arm_(optional<std::string> code, alarm_control_p
void TemplateAlarmControlPanel::bypass_before_arming() {
#ifdef USE_BINARY_SENSOR
for (const auto &alarm_sensor : this->sensors_) {
for (auto const &[sensor, info] : this->sensor_map_) {
// Check for faulted bypass_auto sensors and remove them from monitoring
if ((alarm_sensor.info.flags & BINARY_SENSOR_MODE_BYPASS_AUTO) && (alarm_sensor.sensor->state)) {
ESP_LOGW(TAG, "'%s' is faulted and will be automatically bypassed", alarm_sensor.sensor->get_name().c_str());
this->bypassed_sensor_indicies_.push_back(alarm_sensor.info.store_index);
if ((info.flags & BINARY_SENSOR_MODE_BYPASS_AUTO) && (sensor->state)) {
ESP_LOGW(TAG, "'%s' is faulted and will be automatically bypassed", sensor->get_name().c_str());
this->bypassed_sensor_indicies_.push_back(info.store_index);
}
}
#endif

View File

@@ -1,12 +1,11 @@
#pragma once
#include <cinttypes>
#include <vector>
#include <map>
#include "esphome/core/automation.h"
#include "esphome/core/component.h"
#include "esphome/core/defines.h"
#include "esphome/core/helpers.h"
#include "esphome/components/alarm_control_panel/alarm_control_panel.h"
@@ -50,13 +49,6 @@ struct SensorInfo {
uint8_t store_index;
};
#ifdef USE_BINARY_SENSOR
struct AlarmSensor {
binary_sensor::BinarySensor *sensor;
SensorInfo info;
};
#endif
class TemplateAlarmControlPanel final : public alarm_control_panel::AlarmControlPanel, public Component {
public:
TemplateAlarmControlPanel();
@@ -71,12 +63,6 @@ class TemplateAlarmControlPanel final : public alarm_control_panel::AlarmControl
void bypass_before_arming();
#ifdef USE_BINARY_SENSOR
/** Initialize the sensors vector with the specified capacity.
*
* @param capacity The number of sensors to allocate space for.
*/
void init_sensors(size_t capacity) { this->sensors_.init(capacity); }
/** Add a binary_sensor to the alarm_panel.
*
* @param sensor The BinarySensor instance.
@@ -136,8 +122,8 @@ class TemplateAlarmControlPanel final : public alarm_control_panel::AlarmControl
protected:
void control(const alarm_control_panel::AlarmControlPanelCall &call) override;
#ifdef USE_BINARY_SENSOR
// List of binary sensors with their alarm-specific info
FixedVector<AlarmSensor> sensors_;
// This maps a binary sensor to its alarm specific info
std::map<binary_sensor::BinarySensor *, SensorInfo> sensor_map_;
// a list of automatically bypassed sensors
std::vector<uint8_t> bypassed_sensor_indicies_;
#endif

View File

@@ -26,9 +26,9 @@ void log_text_sensor(const char *tag, const char *prefix, const char *type, Text
void TextSensor::publish_state(const std::string &state) {
this->raw_state = state;
// Call raw callbacks (before filters)
this->callbacks_.call_first(this->raw_count_, state);
if (this->raw_callback_) {
this->raw_callback_->call(state);
}
ESP_LOGV(TAG, "'%s': Received new state %s", this->name_.c_str(), state.c_str());
@@ -70,11 +70,13 @@ void TextSensor::clear_filters() {
}
void TextSensor::add_on_state_callback(std::function<void(std::string)> callback) {
this->callbacks_.add_second(std::move(callback));
this->callback_.add(std::move(callback));
}
void TextSensor::add_on_raw_state_callback(std::function<void(std::string)> callback) {
this->callbacks_.add_first(std::move(callback), &this->raw_count_);
if (!this->raw_callback_) {
this->raw_callback_ = make_unique<CallbackManager<void(std::string)>>();
}
this->raw_callback_->add(std::move(callback));
}
std::string TextSensor::get_state() const { return this->state; }
@@ -83,10 +85,7 @@ void TextSensor::internal_send_state_to_frontend(const std::string &state) {
this->state = state;
this->set_has_state(true);
ESP_LOGD(TAG, "'%s': Sending state '%s'", this->name_.c_str(), state.c_str());
// Call filtered callbacks (after filters)
this->callbacks_.call_second(this->raw_count_, state);
this->callback_.call(state);
#if defined(USE_TEXT_SENSOR) && defined(USE_CONTROLLER_REGISTRY)
ControllerRegistry::notify_text_sensor_update(this);
#endif

View File

@@ -58,11 +58,11 @@ class TextSensor : public EntityBase, public EntityBase_DeviceClass {
void internal_send_state_to_frontend(const std::string &state);
protected:
PartitionedCallbackManager<void(std::string)> callbacks_;
std::unique_ptr<CallbackManager<void(std::string)>>
raw_callback_; ///< Storage for raw state callbacks (lazy allocated).
CallbackManager<void(std::string)> callback_; ///< Storage for filtered state callbacks.
Filter *filter_list_{nullptr}; ///< Store all active filters.
uint8_t raw_count_{0}; ///< Number of raw callbacks (partition point in callbacks_ vector)
};
} // namespace text_sensor

View File

@@ -945,10 +945,6 @@ async def to_code(config):
cg.add(var.set_humidity_hysteresis(config[CONF_HUMIDITY_HYSTERESIS]))
if CONF_PRESET in config:
# Separate standard and custom presets, and build preset config variables
standard_presets: list[tuple[cg.MockObj, cg.MockObj]] = []
custom_presets: list[tuple[str, cg.MockObj]] = []
for preset_config in config[CONF_PRESET]:
name = preset_config[CONF_NAME]
standard_preset = None
@@ -991,39 +987,9 @@ async def to_code(config):
)
if standard_preset is not None:
standard_presets.append((standard_preset, preset_target_variable))
cg.add(var.set_preset_config(standard_preset, preset_target_variable))
else:
custom_presets.append((name, preset_target_variable))
# Build initializer list for standard presets
if standard_presets:
cg.add(
var.set_preset_config(
[
cg.StructInitializer(
thermostat_ns.struct("ThermostatPresetEntry"),
("preset", preset),
("config", preset_var),
)
for preset, preset_var in standard_presets
]
)
)
# Build initializer list for custom presets
if custom_presets:
cg.add(
var.set_custom_preset_config(
[
cg.StructInitializer(
thermostat_ns.struct("ThermostatCustomPresetEntry"),
("name", cg.RawExpression(f'"{name}"')),
("config", preset_var),
)
for name, preset_var in custom_presets
]
)
)
cg.add(var.set_custom_preset_config(name, preset_target_variable))
if CONF_DEFAULT_PRESET in config:
default_preset_name = config[CONF_DEFAULT_PRESET]

View File

@@ -53,8 +53,8 @@ void ThermostatClimate::setup() {
if (use_default_preset) {
if (this->default_preset_ != climate::ClimatePreset::CLIMATE_PRESET_NONE) {
this->change_preset_(this->default_preset_);
} else if (this->default_custom_preset_ != nullptr) {
this->change_custom_preset_(this->default_custom_preset_);
} else if (!this->default_custom_preset_.empty()) {
this->change_custom_preset_(this->default_custom_preset_.c_str());
}
}
@@ -319,16 +319,16 @@ climate::ClimateTraits ThermostatClimate::traits() {
if (this->supports_swing_mode_vertical_)
traits.add_supported_swing_mode(climate::CLIMATE_SWING_VERTICAL);
for (const auto &entry : this->preset_config_) {
traits.add_supported_preset(entry.preset);
for (auto &it : this->preset_config_) {
traits.add_supported_preset(it.first);
}
// Extract custom preset names from the custom_preset_config_ vector
// Extract custom preset names from the custom_preset_config_ map
if (!this->custom_preset_config_.empty()) {
std::vector<const char *> custom_preset_names;
custom_preset_names.reserve(this->custom_preset_config_.size());
for (const auto &entry : this->custom_preset_config_) {
custom_preset_names.push_back(entry.name);
for (const auto &it : this->custom_preset_config_) {
custom_preset_names.push_back(it.first.c_str());
}
traits.set_supported_custom_presets(custom_preset_names);
}
@@ -1154,18 +1154,12 @@ void ThermostatClimate::dump_preset_config_(const char *preset_name, const Therm
}
void ThermostatClimate::change_preset_(climate::ClimatePreset preset) {
// Linear search through preset configurations
const ThermostatClimateTargetTempConfig *config = nullptr;
for (const auto &entry : this->preset_config_) {
if (entry.preset == preset) {
config = &entry.config;
break;
}
}
auto config = this->preset_config_.find(preset);
if (config != nullptr) {
if (config != this->preset_config_.end()) {
ESP_LOGV(TAG, "Preset %s requested", LOG_STR_ARG(climate::climate_preset_to_string(preset)));
if (this->change_preset_internal_(*config) || (!this->preset.has_value()) || this->preset.value() != preset) {
if (this->change_preset_internal_(config->second) || (!this->preset.has_value()) ||
this->preset.value() != preset) {
// Fire any preset changed trigger if defined
Trigger<> *trig = this->preset_change_trigger_;
this->set_preset_(preset);
@@ -1184,18 +1178,11 @@ void ThermostatClimate::change_preset_(climate::ClimatePreset preset) {
}
void ThermostatClimate::change_custom_preset_(const char *custom_preset) {
// Linear search through custom preset configurations
const ThermostatClimateTargetTempConfig *config = nullptr;
for (const auto &entry : this->custom_preset_config_) {
if (strcmp(entry.name, custom_preset) == 0) {
config = &entry.config;
break;
}
}
auto config = this->custom_preset_config_.find(custom_preset);
if (config != nullptr) {
if (config != this->custom_preset_config_.end()) {
ESP_LOGV(TAG, "Custom preset %s requested", custom_preset);
if (this->change_preset_internal_(*config) || !this->has_custom_preset() ||
if (this->change_preset_internal_(config->second) || !this->has_custom_preset() ||
strcmp(this->get_custom_preset(), custom_preset) != 0) {
// Fire any preset changed trigger if defined
Trigger<> *trig = this->preset_change_trigger_;
@@ -1260,12 +1247,14 @@ bool ThermostatClimate::change_preset_internal_(const ThermostatClimateTargetTem
return something_changed;
}
void ThermostatClimate::set_preset_config(std::initializer_list<PresetEntry> presets) {
this->preset_config_ = presets;
void ThermostatClimate::set_preset_config(climate::ClimatePreset preset,
const ThermostatClimateTargetTempConfig &config) {
this->preset_config_[preset] = config;
}
void ThermostatClimate::set_custom_preset_config(std::initializer_list<CustomPresetEntry> presets) {
this->custom_preset_config_ = presets;
void ThermostatClimate::set_custom_preset_config(const std::string &name,
const ThermostatClimateTargetTempConfig &config) {
this->custom_preset_config_[name] = config;
}
ThermostatClimate::ThermostatClimate()
@@ -1304,16 +1293,8 @@ ThermostatClimate::ThermostatClimate()
humidity_control_humidify_action_trigger_(new Trigger<>()),
humidity_control_off_action_trigger_(new Trigger<>()) {}
void ThermostatClimate::set_default_preset(const char *custom_preset) {
// Find the preset in custom_preset_config_ and store pointer from there
for (const auto &entry : this->custom_preset_config_) {
if (strcmp(entry.name, custom_preset) == 0) {
this->default_custom_preset_ = entry.name;
return;
}
}
// If not found, it will be caught during validation
this->default_custom_preset_ = nullptr;
void ThermostatClimate::set_default_preset(const std::string &custom_preset) {
this->default_custom_preset_ = custom_preset;
}
void ThermostatClimate::set_default_preset(climate::ClimatePreset preset) { this->default_preset_ = preset; }
@@ -1624,22 +1605,19 @@ void ThermostatClimate::dump_config() {
if (!this->preset_config_.empty()) {
ESP_LOGCONFIG(TAG, " Supported PRESETS:");
for (const auto &entry : this->preset_config_) {
const auto *preset_name = LOG_STR_ARG(climate::climate_preset_to_string(entry.preset));
ESP_LOGCONFIG(TAG, " %s:%s", preset_name, entry.preset == this->default_preset_ ? " (default)" : "");
this->dump_preset_config_(preset_name, entry.config);
for (auto &it : this->preset_config_) {
const auto *preset_name = LOG_STR_ARG(climate::climate_preset_to_string(it.first));
ESP_LOGCONFIG(TAG, " %s:%s", preset_name, it.first == this->default_preset_ ? " (default)" : "");
this->dump_preset_config_(preset_name, it.second);
}
}
if (!this->custom_preset_config_.empty()) {
ESP_LOGCONFIG(TAG, " Supported CUSTOM PRESETS:");
for (const auto &entry : this->custom_preset_config_) {
const auto *preset_name = entry.name;
ESP_LOGCONFIG(TAG, " %s:%s", preset_name,
(this->default_custom_preset_ != nullptr && strcmp(entry.name, this->default_custom_preset_) == 0)
? " (default)"
: "");
this->dump_preset_config_(preset_name, entry.config);
for (auto &it : this->custom_preset_config_) {
const auto *preset_name = it.first.c_str();
ESP_LOGCONFIG(TAG, " %s:%s", preset_name, it.first == this->default_custom_preset_ ? " (default)" : "");
this->dump_preset_config_(preset_name, it.second);
}
}
}

View File

@@ -3,12 +3,12 @@
#include "esphome/core/automation.h"
#include "esphome/core/component.h"
#include "esphome/core/hal.h"
#include "esphome/core/helpers.h"
#include "esphome/components/climate/climate.h"
#include "esphome/components/sensor/sensor.h"
#include <array>
#include <cinttypes>
#include <map>
namespace esphome {
namespace thermostat {
@@ -72,29 +72,14 @@ struct ThermostatClimateTargetTempConfig {
optional<climate::ClimateMode> mode_{};
};
/// Entry for standard preset lookup
struct ThermostatPresetEntry {
climate::ClimatePreset preset;
ThermostatClimateTargetTempConfig config;
};
/// Entry for custom preset lookup
struct ThermostatCustomPresetEntry {
const char *name;
ThermostatClimateTargetTempConfig config;
};
class ThermostatClimate : public climate::Climate, public Component {
public:
using PresetEntry = ThermostatPresetEntry;
using CustomPresetEntry = ThermostatCustomPresetEntry;
ThermostatClimate();
void setup() override;
void dump_config() override;
void loop() override;
void set_default_preset(const char *custom_preset);
void set_default_preset(const std::string &custom_preset);
void set_default_preset(climate::ClimatePreset preset);
void set_on_boot_restore_from(OnBootRestoreFrom on_boot_restore_from);
void set_set_point_minimum_differential(float differential);
@@ -146,8 +131,8 @@ class ThermostatClimate : public climate::Climate, public Component {
void set_supports_humidification(bool supports_humidification);
void set_supports_two_points(bool supports_two_points);
void set_preset_config(std::initializer_list<PresetEntry> presets);
void set_custom_preset_config(std::initializer_list<CustomPresetEntry> presets);
void set_preset_config(climate::ClimatePreset preset, const ThermostatClimateTargetTempConfig &config);
void set_custom_preset_config(const std::string &name, const ThermostatClimateTargetTempConfig &config);
Trigger<> *get_cool_action_trigger() const;
Trigger<> *get_supplemental_cool_action_trigger() const;
@@ -531,6 +516,9 @@ class ThermostatClimate : public climate::Climate, public Component {
Trigger<> *prev_swing_mode_trigger_{nullptr};
Trigger<> *prev_humidity_control_trigger_{nullptr};
/// Default custom preset to use on start up
std::string default_custom_preset_{};
/// Climate action timers
std::array<ThermostatClimateTimer, THERMOSTAT_TIMER_COUNT> timer_{
ThermostatClimateTimer(false, 0, 0, std::bind(&ThermostatClimate::cooling_max_run_time_timer_callback_, this)),
@@ -546,12 +534,9 @@ class ThermostatClimate : public climate::Climate, public Component {
};
/// The set of standard preset configurations this thermostat supports (Eg. AWAY, ECO, etc)
FixedVector<PresetEntry> preset_config_{};
std::map<climate::ClimatePreset, ThermostatClimateTargetTempConfig> preset_config_{};
/// The set of custom preset configurations this thermostat supports (eg. "My Custom Preset")
FixedVector<CustomPresetEntry> custom_preset_config_{};
/// Default custom preset to use on start up (pointer to entry in custom_preset_config_)
private:
const char *default_custom_preset_{nullptr};
std::map<std::string, ThermostatClimateTargetTempConfig> custom_preset_config_{};
};
} // namespace thermostat

View File

@@ -23,13 +23,6 @@ namespace time {
static const char *const TAG = "time";
RealTimeClock::RealTimeClock() = default;
void RealTimeClock::dump_config() {
#ifdef USE_TIME_TIMEZONE
ESP_LOGCONFIG(TAG, "Timezone: '%s'", this->timezone_.c_str());
#endif
}
void RealTimeClock::synchronize_epoch_(uint32_t epoch) {
ESP_LOGVV(TAG, "Got epoch %" PRIu32, epoch);
// Update UTC epoch time.

View File

@@ -52,8 +52,6 @@ class RealTimeClock : public PollingComponent {
this->time_sync_callback_.add(std::move(callback));
};
void dump_config() override;
protected:
/// Report a unix epoch as current time.
void synchronize_epoch_(uint32_t epoch);

View File

@@ -1,4 +1,3 @@
from logging import getLogger
import math
import re
@@ -32,12 +31,10 @@ from esphome.const import (
PLATFORM_HOST,
PlatformFramework,
)
from esphome.core import CORE, ID
from esphome.core import CORE
import esphome.final_validate as fv
from esphome.yaml_util import make_data_base
_LOGGER = getLogger(__name__)
CODEOWNERS = ["@esphome/core"]
uart_ns = cg.esphome_ns.namespace("uart")
UARTComponent = uart_ns.class_("UARTComponent")
@@ -133,21 +130,6 @@ def validate_host_config(config):
return config
def validate_rx_buffer_size(config):
if CORE.is_esp32:
# ESP32 UART hardware FIFO is 128 bytes (LP UART is 16 bytes, but we use 128 as safe minimum)
# rx_buffer_size must be greater than the hardware FIFO length
min_buffer_size = 128
if config[CONF_RX_BUFFER_SIZE] <= min_buffer_size:
_LOGGER.warning(
"UART rx_buffer_size (%d bytes) is too small and must be greater than the hardware "
"FIFO size (%d bytes). The buffer size will be automatically adjusted at runtime.",
config[CONF_RX_BUFFER_SIZE],
min_buffer_size,
)
return config
def _uart_declare_type(value):
if CORE.is_esp8266:
return cv.declare_id(ESP8266UartComponent)(value)
@@ -265,7 +247,6 @@ CONFIG_SCHEMA = cv.All(
).extend(cv.COMPONENT_SCHEMA),
cv.has_at_least_one_key(CONF_TX_PIN, CONF_RX_PIN, CONF_PORT),
validate_host_config,
validate_rx_buffer_size,
)
@@ -465,10 +446,7 @@ async def uart_write_to_code(config, action_id, template_arg, args):
templ = await cg.templatable(data, args, cg.std_vector.template(cg.uint8))
cg.add(var.set_data_template(templ))
else:
# Generate static array in flash to avoid RAM copy
arr_id = ID(f"{action_id}_data", is_declaration=True, type=cg.uint8)
arr = cg.static_const_array(arr_id, cg.ArrayInitializer(*data))
cg.add(var.set_data_static(arr, len(data)))
cg.add(var.set_data_static(cg.ArrayInitializer(*data)))
return var

View File

@@ -10,35 +10,32 @@ namespace uart {
template<typename... Ts> class UARTWriteAction : public Action<Ts...>, public Parented<UARTComponent> {
public:
void set_data_template(std::vector<uint8_t> (*func)(Ts...)) {
// Stateless lambdas (generated by ESPHome) implicitly convert to function pointers
this->code_.func = func;
this->len_ = -1; // Sentinel value indicates template mode
void set_data_template(std::function<std::vector<uint8_t>(Ts...)> func) {
this->data_func_ = func;
this->static_ = false;
}
// Store pointer to static data in flash (no RAM copy)
void set_data_static(const uint8_t *data, size_t len) {
this->code_.data = data;
this->len_ = len; // Length >= 0 indicates static mode
void set_data_static(std::vector<uint8_t> &&data) {
this->data_static_ = std::move(data);
this->static_ = true;
}
void set_data_static(std::initializer_list<uint8_t> data) {
this->data_static_ = std::vector<uint8_t>(data);
this->static_ = true;
}
void play(const Ts &...x) override {
if (this->len_ >= 0) {
// Static mode: use pointer and length
this->parent_->write_array(this->code_.data, static_cast<size_t>(this->len_));
if (this->static_) {
this->parent_->write_array(this->data_static_);
} else {
// Template mode: call function
auto val = this->code_.func(x...);
auto val = this->data_func_(x...);
this->parent_->write_array(val);
}
}
protected:
ssize_t len_{-1}; // -1 = template mode, >=0 = static mode with length
union Code {
std::vector<uint8_t> (*func)(Ts...); // Function pointer (stateless lambdas)
const uint8_t *data; // Pointer to static data in flash
} code_;
bool static_{false};
std::function<std::vector<uint8_t>(Ts...)> data_func_{};
std::vector<uint8_t> data_static_{};
};
} // namespace uart

View File

@@ -91,16 +91,6 @@ void IDFUARTComponent::setup() {
this->uart_num_ = static_cast<uart_port_t>(next_uart_num++);
this->lock_ = xSemaphoreCreateMutex();
#if (SOC_UART_LP_NUM >= 1)
size_t fifo_len = ((this->uart_num_ < SOC_UART_HP_NUM) ? SOC_UART_FIFO_LEN : SOC_LP_UART_FIFO_LEN);
#else
size_t fifo_len = SOC_UART_FIFO_LEN;
#endif
if (this->rx_buffer_size_ <= fifo_len) {
ESP_LOGW(TAG, "rx_buffer_size is too small, must be greater than %zu", fifo_len);
this->rx_buffer_size_ = fifo_len * 2;
}
xSemaphoreTake(this->lock_, portMAX_DELAY);
this->load_settings(false);
@@ -247,12 +237,8 @@ void IDFUARTComponent::set_rx_timeout(size_t rx_timeout) {
void IDFUARTComponent::write_array(const uint8_t *data, size_t len) {
xSemaphoreTake(this->lock_, portMAX_DELAY);
int32_t write_len = uart_write_bytes(this->uart_num_, data, len);
uart_write_bytes(this->uart_num_, data, len);
xSemaphoreGive(this->lock_);
if (write_len != (int32_t) len) {
ESP_LOGW(TAG, "uart_write_bytes failed: %d != %zu", write_len, len);
this->mark_failed();
}
#ifdef USE_UART_DEBUGGER
for (size_t i = 0; i < len; i++) {
this->debug_callback_.call(UART_DIRECTION_TX, data[i]);
@@ -281,7 +267,6 @@ bool IDFUARTComponent::peek_byte(uint8_t *data) {
bool IDFUARTComponent::read_array(uint8_t *data, size_t len) {
size_t length_to_read = len;
int32_t read_len = 0;
if (!this->check_read_timeout_(len))
return false;
xSemaphoreTake(this->lock_, portMAX_DELAY);
@@ -292,31 +277,25 @@ bool IDFUARTComponent::read_array(uint8_t *data, size_t len) {
this->has_peek_ = false;
}
if (length_to_read > 0)
read_len = uart_read_bytes(this->uart_num_, data, length_to_read, 20 / portTICK_PERIOD_MS);
uart_read_bytes(this->uart_num_, data, length_to_read, 20 / portTICK_PERIOD_MS);
xSemaphoreGive(this->lock_);
#ifdef USE_UART_DEBUGGER
for (size_t i = 0; i < len; i++) {
this->debug_callback_.call(UART_DIRECTION_RX, data[i]);
}
#endif
return read_len == (int32_t) length_to_read;
return true;
}
int IDFUARTComponent::available() {
size_t available = 0;
esp_err_t err;
size_t available;
xSemaphoreTake(this->lock_, portMAX_DELAY);
err = uart_get_buffered_data_len(this->uart_num_, &available);
uart_get_buffered_data_len(this->uart_num_, &available);
if (this->has_peek_)
available++;
xSemaphoreGive(this->lock_);
if (err != ESP_OK) {
ESP_LOGW(TAG, "uart_get_buffered_data_len failed: %s", esp_err_to_name(err));
this->mark_failed();
}
if (this->has_peek_) {
available++;
}
return available;
}

View File

@@ -12,7 +12,7 @@ from esphome.components.packet_transport import (
)
import esphome.config_validation as cv
from esphome.const import CONF_DATA, CONF_ID, CONF_PORT, CONF_TRIGGER_ID
from esphome.core import ID, Lambda
from esphome.core import Lambda
from esphome.cpp_generator import ExpressionStatement, MockObj
CODEOWNERS = ["@clydebarrow"]
@@ -158,8 +158,5 @@ async def udp_write_to_code(config, action_id, template_arg, args):
templ = await cg.templatable(data, args, cg.std_vector.template(cg.uint8))
cg.add(var.set_data_template(templ))
else:
# Generate static array in flash to avoid RAM copy
arr_id = ID(f"{action_id}_data", is_declaration=True, type=cg.uint8)
arr = cg.static_const_array(arr_id, cg.ArrayInitializer(*data))
cg.add(var.set_data_static(arr, len(data)))
cg.add(var.set_data_static(data))
return var

Some files were not shown because too many files have changed in this diff Show More