mirror of
https://github.com/ARM-software/workload-automation.git
synced 2025-01-19 04:21:17 +00:00
d3872716ed
Lengthen timeout for gemm and conv tests to be the same as for sparse test. While the former two usually take a lot less time, their execution time will vary significantly depending on the target and the runtime environment (e.g. cpu frequencies might be forced to lowest values).
179 lines
5.5 KiB
Python
179 lines
5.5 KiB
Python
# Copyright 2018 ARM Limited
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
#pylint: disable=E1101,W0201
|
|
|
|
import os
|
|
import re
|
|
|
|
import pandas as pd
|
|
|
|
from wa import Workload, Parameter, Alias, Executable
|
|
from wa.utils.types import numeric
|
|
|
|
|
|
class Deepbench(Workload):
|
|
|
|
name = 'deepbench'
|
|
description = """
|
|
Benchmarks operations that are important to deep learning. Including GEMM
|
|
and convolution.
|
|
|
|
The benchmark and its documentation are available here:
|
|
|
|
https://github.com/baidu-research/DeepBench
|
|
|
|
|
|
.. note:: parameters of matrices used in each sub-test are added as
|
|
classifiers to the metrics. See the benchmark documentation
|
|
for the explanation of the various parameters
|
|
|
|
.. note:: at the moment only the "Arm Benchmarks" subset of DeepBench
|
|
is supported.
|
|
|
|
"""
|
|
|
|
parameters = [
|
|
Parameter('test', default='gemm',
|
|
allowed_values=['gemm', 'conv', 'sparse'],
|
|
description='''
|
|
Specifies which of the available benchmarks will be run.
|
|
|
|
gemm
|
|
Performs GEneral Matrix Multiplication of dense matrices
|
|
of varying sizes.
|
|
|
|
conv
|
|
Performs convolutions on inputs in NCHW format.
|
|
|
|
sparse
|
|
Performs GEneral Matrix Multiplication of sparse matrices
|
|
of varying sizes, and compares them to corresponding dense
|
|
operations.
|
|
|
|
'''),
|
|
]
|
|
|
|
aliases = [
|
|
Alias('deep-gemm', test='gemm'),
|
|
Alias('deep-conv', test='conv'),
|
|
Alias('deep-sparse', test='sparse'),
|
|
]
|
|
|
|
test_metrics = {
|
|
'gemm': ['time (msec)', 'GOPS'],
|
|
'conv': ['fwd_time (usec)'],
|
|
'sparse': ['sparse time (usec)', 'dense time (usec)', 'speedup'],
|
|
}
|
|
|
|
lower_is_better = {
|
|
'time (msec)': True,
|
|
'GOPS': False,
|
|
'fwd_time (usec)': True,
|
|
'sparse time (usec)': True,
|
|
'dense time (usec)': True,
|
|
'speedup': False,
|
|
}
|
|
|
|
installed = {}
|
|
|
|
def initialize(self, context):
|
|
self.exe_name = '{}_bench'.format(self.test)
|
|
if self.exe_name not in self.installed:
|
|
resource = Executable(self, self.target.abi, self.exe_name)
|
|
host_exe = context.get_resource(resource)
|
|
self.target.killall(self.exe_name)
|
|
self.installed[self.exe_name] = self.target.install(host_exe)
|
|
self.target_exe = self.installed[self.exe_name]
|
|
|
|
def setup(self, context):
|
|
self.target.killall(self.exe_name)
|
|
|
|
def run(self, context):
|
|
self.output = None
|
|
try:
|
|
timeout = 10800
|
|
self.output = self.target.execute(self.target_exe, timeout=timeout)
|
|
except KeyboardInterrupt:
|
|
self.target.killall(self.exe_name)
|
|
raise
|
|
|
|
def extract_results(self, context):
|
|
if self.output:
|
|
outfile = os.path.join(context.output_directory, '{}.output'.format(self.test))
|
|
with open(outfile, 'w') as wfh:
|
|
wfh.write(self.output)
|
|
context.add_artifact('deepbench-output', outfile, 'raw', "deepbench's stdout")
|
|
|
|
def update_output(self, context):
|
|
raw_file = context.get_artifact_path('deepbench-output')
|
|
if not raw_file:
|
|
return
|
|
table = read_result_table(raw_file)
|
|
for _, row in table.iterrows():
|
|
items = dict(row)
|
|
|
|
metrics = []
|
|
for metric_name in self.test_metrics[self.test]:
|
|
metrics.append((metric_name, items.pop(metric_name)))
|
|
|
|
for name, value in metrics:
|
|
context.add_metric(name, value,
|
|
lower_is_better=self.lower_is_better[name],
|
|
classifiers=items)
|
|
|
|
def finalize(self, context):
|
|
if self.cleanup_assets:
|
|
if self.exe_name in self.installed:
|
|
self.target.uninstall(self.exe_name)
|
|
del self.installed[self.exe_name]
|
|
|
|
|
|
def numeric_best_effort(value):
|
|
try:
|
|
return numeric(value)
|
|
except ValueError:
|
|
return value
|
|
|
|
|
|
def read_result_table(filepath):
|
|
columns = []
|
|
entries = []
|
|
with open(filepath) as fh:
|
|
try:
|
|
# fast-forward to the header
|
|
line = next(fh)
|
|
while not line.startswith('----'):
|
|
line = next(fh)
|
|
header_line = next(fh)
|
|
haader_sep = re.compile(r'(?<=[) ]) ')
|
|
# Since headers can contain spaces, use two spaces as column separator
|
|
parts = [p.strip() for p in haader_sep.split(header_line)]
|
|
columns = [p for p in parts if p]
|
|
|
|
line = next(fh)
|
|
while line.strip():
|
|
if line.startswith('----'):
|
|
line = next(fh)
|
|
row = [numeric_best_effort(i) for i in line.strip().split()]
|
|
entries.append(row)
|
|
line = next(fh)
|
|
except StopIteration:
|
|
pass
|
|
|
|
return pd.DataFrame(entries, columns=columns)
|
|
|
|
|