1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-19 12:24:32 +00:00

179 lines
5.5 KiB
Python
Raw Normal View History

# Copyright 2018 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#pylint: disable=E1101,W0201
import os
import re
import pandas as pd
from wa import Workload, Parameter, Alias, Executable
from wa.utils.types import numeric
class Deepbench(Workload):
name = 'deepbench'
description = """
Benchmarks operations that are important to deep learning. Including GEMM
and convolution.
The benchmark and its documentation are available here:
https://github.com/baidu-research/DeepBench
.. note:: parameters of matrices used in each sub-test are added as
classifiers to the metrics. See the benchmark documentation
for the explanation of the various parameters
.. note:: at the moment only the "Arm Benchmarks" subset of DeepBench
is supported.
"""
parameters = [
Parameter('test', default='gemm',
allowed_values=['gemm', 'conv', 'sparse'],
description='''
Specifies which of the available benchmarks will be run.
gemm
Performs GEneral Matrix Multiplication of dense matrices
of varying sizes.
conv
Performs convolutions on inputs in NCHW format.
sparse
Performs GEneral Matrix Multiplication of sparse matrices
of varying sizes, and compares them to corresponding dense
operations.
'''),
]
aliases = [
Alias('deep-gemm', test='gemm'),
Alias('deep-conv', test='conv'),
Alias('deep-sparse', test='sparse'),
]
test_metrics = {
'gemm': ['time (msec)', 'GOPS'],
'conv': ['fwd_time (usec)'],
'sparse': ['sparse time (usec)', 'dense time (usec)', 'speedup'],
}
lower_is_better = {
'time (msec)': True,
'GOPS': False,
'fwd_time (usec)': True,
'sparse time (usec)': True,
'dense time (usec)': True,
'speedup': False,
}
installed = {}
def initialize(self, context):
self.exe_name = '{}_bench'.format(self.test)
if self.exe_name not in self.installed:
resource = Executable(self, self.target.abi, self.exe_name)
host_exe = context.get_resource(resource)
self.target.killall(self.exe_name)
self.installed[self.exe_name] = self.target.install(host_exe)
self.target_exe = self.installed[self.exe_name]
def setup(self, context):
self.target.killall(self.exe_name)
def run(self, context):
self.output = None
try:
timeout = 10800
self.output = self.target.execute(self.target_exe, timeout=timeout)
except KeyboardInterrupt:
self.target.killall(self.exe_name)
raise
def extract_results(self, context):
if self.output:
outfile = os.path.join(context.output_directory, '{}.output'.format(self.test))
with open(outfile, 'w') as wfh:
wfh.write(self.output)
context.add_artifact('deepbench-output', outfile, 'raw', "deepbench's stdout")
def update_output(self, context):
raw_file = context.get_artifact_path('deepbench-output')
if not raw_file:
return
table = read_result_table(raw_file)
for _, row in table.iterrows():
items = dict(row)
metrics = []
for metric_name in self.test_metrics[self.test]:
metrics.append((metric_name, items.pop(metric_name)))
for name, value in metrics:
context.add_metric(name, value,
lower_is_better=self.lower_is_better[name],
classifiers=items)
def finalize(self, context):
if self.cleanup_assets:
if self.exe_name in self.installed:
self.target.uninstall(self.exe_name)
del self.installed[self.exe_name]
def numeric_best_effort(value):
try:
return numeric(value)
except ValueError:
return value
def read_result_table(filepath):
columns = []
entries = []
with open(filepath) as fh:
try:
# fast-forward to the header
line = next(fh)
while not line.startswith('----'):
line = next(fh)
header_line = next(fh)
haader_sep = re.compile(r'(?<=[) ]) ')
# Since headers can contain spaces, use two spaces as column separator
parts = [p.strip() for p in haader_sep.split(header_line)]
columns = [p for p in parts if p]
line = next(fh)
while line.strip():
if line.startswith('----'):
line = next(fh)
row = [numeric_best_effort(i) for i in line.strip().split()]
entries.append(row)
line = next(fh)
except StopIteration:
pass
return pd.DataFrame(entries, columns=columns)