1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-18 20:11:20 +00:00

Merge pull request #281 from jimboatarm/uxperf-newfps

uxperf result_processor: updated for changes in FPS instrument
This commit is contained in:
setrofim 2016-11-08 13:20:31 +00:00 committed by GitHub
commit fce04d2938

142
wlauto/result_processors/uxperf.py Normal file → Executable file
View File

@ -20,8 +20,10 @@ import logging
from collections import defaultdict
from distutils.version import LooseVersion
from wlauto import ResultProcessor, Parameter
from wlauto.exceptions import ResultProcessorError
from wlauto.utils.fps import FpsProcessor
from wlauto.instrumentation import instrument_is_enabled
from wlauto.instrumentation.fps import VSYNC_INTERVAL
from wlauto.exceptions import ResultProcessorError, ConfigError
from wlauto.utils.fps import FpsProcessor, SurfaceFlingerFrame, GfxInfoFrame
from wlauto.utils.types import numeric, boolean
try:
@ -80,6 +82,8 @@ class UxPerfResultProcessor(ResultProcessor):
'(version 0.13.1 or higher) to be installed.\n'
'You can install it with pip, e.g. "sudo pip install pandas"')
raise ResultProcessorError(message)
if self.add_frames and not instrument_is_enabled('fps'):
raise ConfigError('fps instrument must be enabled in order to add frames.')
def export_iteration_result(self, result, context):
parser = UxPerfParser(context)
@ -121,7 +125,6 @@ class UxPerfParser(object):
self.context = context
self.actions = defaultdict(list)
self.logger = logging.getLogger('UxPerfParser')
# regex for matching logcat message format:
self.regex = re.compile(r'UX_PERF.*?:\s*(?P<message>.*\d+$)')
@ -133,8 +136,7 @@ class UxPerfParser(object):
actions mapped to timestamps.
'''
loglines = self._read(log)
timestamps = self._gen_action_timestamps(loglines)
self._group_timestamps(timestamps)
self._gen_action_timestamps(loglines)
def add_action_frames(self, frames, drop_threshold, generate_csv): # pylint: disable=too-many-locals
'''
@ -145,32 +147,36 @@ class UxPerfParser(object):
for action in self.actions:
# default values
fps = float('nan')
frame_count, janks, not_at_vsync = 0, 0, 0
metrics = fps, frame_count, janks, not_at_vsync
fps, frame_count, janks, not_at_vsync = float('nan'), 0, 0, 0
p90, p95, p99 = [float('nan')] * 3
metrics = (fps, frame_count, janks, not_at_vsync)
df = self._create_data_dict(action, frames)
fp = FpsProcessor(pd.DataFrame(df), action=action)
try:
per_frame_fps, metrics = fp.process(refresh_period, drop_threshold)
df = self._create_sub_df(self.actions[action], frames)
if not df.empty: # pylint: disable=maybe-no-member
fp = FpsProcessor(df, action=action)
try:
per_frame_fps, metrics = fp.process(refresh_period, drop_threshold)
fps, frame_count, janks, not_at_vsync = metrics
if generate_csv:
name = action + '_fps'
filename = name + '.csv'
fps_outfile = os.path.join(self.context.output_directory, filename)
per_frame_fps.to_csv(fps_outfile, index=False, header=True)
self.context.add_artifact(name, path=filename, kind='data')
except AttributeError:
self.logger.warning('Non-matched timestamps in dumpsys output: action={}'
.format(action))
if generate_csv:
name = action + '_fps'
filename = name + '.csv'
fps_outfile = os.path.join(self.context.output_directory, filename)
per_frame_fps.to_csv(fps_outfile, index=False, header=True)
self.context.add_artifact(name, path=filename, kind='data')
fps, frame_count, janks, not_at_vsync = metrics
result = self.context.result
p90, p95, p99 = fp.percentiles()
except AttributeError:
self.logger.warning('Non-matched timestamps in dumpsys output: action={}'
.format(action))
result.add_metric(action + '_FPS', fps)
result.add_metric(action + '_frame_count', frame_count)
result.add_metric(action + '_janks', janks)
result.add_metric(action + '_not_at_vsync', not_at_vsync)
self.context.result.add_metric(action + '_FPS', fps)
self.context.result.add_metric(action + '_frame_count', frame_count)
self.context.result.add_metric(action + '_janks', janks, lower_is_better=True)
self.context.result.add_metric(action + '_not_at_vsync', not_at_vsync, lower_is_better=True)
self.context.result.add_metric(action + '_frame_time_90percentile', p90, 'ms', lower_is_better=True)
self.context.result.add_metric(action + '_frame_time_95percentile', p95, 'ms', lower_is_better=True)
self.context.result.add_metric(action + '_frame_time_99percentile', p99, 'ms', lower_is_better=True)
def add_action_timings(self):
'''
@ -179,18 +185,23 @@ class UxPerfParser(object):
for action, timestamps in self.actions.iteritems():
# nanosecond precision, but not necessarily nanosecond resolution
# truncate to guarantee millisecond precision
start, finish = tuple(int(ts[:-6]) for ts in timestamps)
duration = finish - start
result = self.context.result
ts_ms = tuple(int(ts[:-6]) for ts in timestamps)
if len(ts_ms) == 2:
start, finish = ts_ms
duration = finish - start
result = self.context.result
result.add_metric(action + "_start", start, units='ms')
result.add_metric(action + "_finish", finish, units='ms')
result.add_metric(action + "_duration", duration, units='ms')
result.add_metric(action + "_start", start, units='ms')
result.add_metric(action + "_finish", finish, units='ms')
result.add_metric(action + "_duration", duration, units='ms', lower_is_better=True)
else:
self.logger.warning('Expected two timestamps. Received {}'.format(ts_ms))
def _gen_action_timestamps(self, lines):
'''
Parses lines and matches against logcat tag.
Yields tuple containing action and timestamp.
Groups timestamps by action name.
Creates a dictionary of lists with actions mapped to timestamps.
'''
for line in lines:
match = self.regex.search(line)
@ -199,44 +210,40 @@ class UxPerfParser(object):
message = match.group('message')
action_with_suffix, timestamp = message.rsplit(' ', 1)
action, _ = action_with_suffix.rsplit('_', 1)
yield action, timestamp
def _group_timestamps(self, markers):
'''
Groups timestamps by action name.
Creates a dictionary of lists with actions mapped to timestamps.
'''
for action, timestamp in markers:
self.actions[action].append(timestamp)
self.actions[action].append(timestamp)
def _parse_refresh_peroid(self):
'''
Reads the first line of the raw dumpsys output for the refresh period.
'''
raw_path = os.path.join(self.context.output_directory, 'surfaceflinger.raw')
raw_lines = self._read(raw_path)
refresh_period = raw_lines.next()
if os.path.isfile(raw_path):
raw_lines = self._read(raw_path)
refresh_period = int(raw_lines.next())
else:
refresh_period = VSYNC_INTERVAL
return int(refresh_period)
return refresh_period
def _create_data_dict(self, action, frames):
def _create_sub_df(self, action, frames):
'''
Creates a data dict containing surface flinger metrics for a captured
action. Used to create a DataFrame for use with the pandas library.
Creates a data frame containing fps metrics for a captured action.
'''
loglines = self._read(frames)
loglines.next() # skip csv header
d = defaultdict(list)
timestamps = self.actions[action]
for row in self._matched_rows(loglines, timestamps):
dpt, apt, frt = tuple(map(int, row.split(',')))
d["desired_present_time"].append(dpt)
d["actual_present_time"].append(apt)
d["frame_ready_time"].append(frt)
return d
start, end = map(int, action)
df = pd.read_csv(frames)
# SurfaceFlinger Algorithm
if df.columns.tolist() == list(SurfaceFlingerFrame._fields): # pylint: disable=maybe-no-member
field = 'actual_present_time'
# GfxInfo Algorithm
elif df.columns.tolist() == list(GfxInfoFrame._fields): # pylint: disable=maybe-no-member
field = 'FrameCompleted'
else:
field = ''
self.logger.error('frames.csv not in a recognised format. Cannot parse.')
if field:
df = df[start < df[field]]
df = df[df[field] <= end]
return df
def _read(self, log):
'''
@ -248,14 +255,3 @@ class UxPerfParser(object):
yield line.strip()
except IOError:
self.logger.error('Could not open {}'.format(log))
@staticmethod
def _matched_rows(rows, timestamps):
'''
Helper method for matching timestamps within rows.
'''
start, finish = tuple(timestamps)
for row in rows:
_, apt, _ = row.split(',')
if apt >= start and apt <= finish:
yield row