1
0
mirror of https://github.com/esphome/esphome.git synced 2025-09-19 03:32:20 +01:00
Files
esphome/esphome/components/gdk101/gdk101.cpp
J. Nick Koston 9360601f53 more
2025-09-05 22:07:20 -05:00

189 lines
5.1 KiB
C++

#include "gdk101.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
namespace esphome {
namespace gdk101 {
static const char *const TAG = "gdk101";
static const uint8_t NUMBER_OF_READ_RETRIES = 5;
void GDK101Component::update() {
uint8_t data[2];
if (!this->read_dose_1m_(data)) {
this->status_set_warning(LOG_STR("Failed to read dose 1m"));
return;
}
if (!this->read_dose_10m_(data)) {
this->status_set_warning(LOG_STR("Failed to read dose 10m"));
return;
}
if (!this->read_status_(data)) {
this->status_set_warning(LOG_STR("Failed to read status"));
return;
}
if (!this->read_measurement_duration_(data)) {
this->status_set_warning(LOG_STR("Failed to read measurement duration"));
return;
}
this->status_clear_warning();
}
void GDK101Component::setup() {
uint8_t data[2];
// first, reset the sensor
if (!this->reset_sensor_(data)) {
this->status_set_error("Reset failed!");
this->mark_failed();
return;
}
// sensor should acknowledge success of the reset procedure
if (data[0] != 1) {
this->status_set_error("Reset not acknowledged!");
this->mark_failed();
return;
}
delay(10);
// read firmware version
if (!this->read_fw_version_(data)) {
this->status_set_error("Failed to read firmware version");
this->mark_failed();
return;
}
}
void GDK101Component::dump_config() {
ESP_LOGCONFIG(TAG, "GDK101:");
LOG_I2C_DEVICE(this);
if (this->is_failed()) {
ESP_LOGE(TAG, ESP_LOG_MSG_COMM_FAIL);
}
#ifdef USE_SENSOR
LOG_SENSOR(" ", "Firmware Version", this->fw_version_sensor_);
LOG_SENSOR(" ", "Average Radaition Dose per 1 minute", this->rad_1m_sensor_);
LOG_SENSOR(" ", "Average Radaition Dose per 10 minutes", this->rad_10m_sensor_);
LOG_SENSOR(" ", "Status", this->status_sensor_);
LOG_SENSOR(" ", "Measurement Duration", this->measurement_duration_sensor_);
#endif // USE_SENSOR
#ifdef USE_BINARY_SENSOR
LOG_BINARY_SENSOR(" ", "Vibration Status", this->vibration_binary_sensor_);
#endif // USE_BINARY_SENSOR
}
float GDK101Component::get_setup_priority() const { return setup_priority::DATA; }
bool GDK101Component::read_bytes_with_retry_(uint8_t a_register, uint8_t *data, uint8_t len) {
uint8_t retry = NUMBER_OF_READ_RETRIES;
bool status = false;
while (!status && retry) {
status = this->read_bytes(a_register, data, len);
retry--;
}
return status;
}
bool GDK101Component::reset_sensor_(uint8_t *data) {
// It looks like reset is not so well designed in that sensor
// After sending reset command it looks that sensor start performing reset and is unresponsible during read
// after a while we can send another reset command and read "0x01" as confirmation
// Documentation not going in to such details unfortunately
if (!this->read_bytes_with_retry_(GDK101_REG_RESET, data, 2)) {
ESP_LOGE(TAG, "Updating GDK101 failed!");
return false;
}
return true;
}
bool GDK101Component::read_dose_1m_(uint8_t *data) {
#ifdef USE_SENSOR
if (this->rad_1m_sensor_ != nullptr) {
if (!this->read_bytes(GDK101_REG_READ_1MIN_AVG, data, 2)) {
ESP_LOGE(TAG, "Updating GDK101 failed!");
return false;
}
const float dose = data[0] + (data[1] / 100.0f);
this->rad_1m_sensor_->publish_state(dose);
}
#endif // USE_SENSOR
return true;
}
bool GDK101Component::read_dose_10m_(uint8_t *data) {
#ifdef USE_SENSOR
if (this->rad_10m_sensor_ != nullptr) {
if (!this->read_bytes(GDK101_REG_READ_10MIN_AVG, data, 2)) {
ESP_LOGE(TAG, "Updating GDK101 failed!");
return false;
}
const float dose = data[0] + (data[1] / 100.0f);
this->rad_10m_sensor_->publish_state(dose);
}
#endif // USE_SENSOR
return true;
}
bool GDK101Component::read_status_(uint8_t *data) {
if (!this->read_bytes(GDK101_REG_READ_STATUS, data, 2)) {
ESP_LOGE(TAG, "Updating GDK101 failed!");
return false;
}
#ifdef USE_SENSOR
if (this->status_sensor_ != nullptr) {
this->status_sensor_->publish_state(data[0]);
}
#endif // USE_SENSOR
#ifdef USE_BINARY_SENSOR
if (this->vibration_binary_sensor_ != nullptr) {
this->vibration_binary_sensor_->publish_state(data[1]);
}
#endif // USE_BINARY_SENSOR
return true;
}
bool GDK101Component::read_fw_version_(uint8_t *data) {
#ifdef USE_SENSOR
if (this->fw_version_sensor_ != nullptr) {
if (!this->read_bytes(GDK101_REG_READ_FIRMWARE, data, 2)) {
ESP_LOGE(TAG, "Updating GDK101 failed!");
return false;
}
const float fw_version = data[0] + (data[1] / 10.0f);
this->fw_version_sensor_->publish_state(fw_version);
}
#endif // USE_SENSOR
return true;
}
bool GDK101Component::read_measurement_duration_(uint8_t *data) {
#ifdef USE_SENSOR
if (this->measurement_duration_sensor_ != nullptr) {
if (!this->read_bytes(GDK101_REG_READ_MEASURING_TIME, data, 2)) {
ESP_LOGE(TAG, "Updating GDK101 failed!");
return false;
}
const float meas_time = (data[0] * 60) + data[1];
this->measurement_duration_sensor_->publish_state(meas_time);
}
#endif // USE_SENSOR
return true;
}
} // namespace gdk101
} // namespace esphome