1
0
mirror of https://github.com/esphome/esphome.git synced 2025-09-15 09:42:19 +01:00
Files
esphome/esphome/components/packet_transport/packet_transport.cpp

570 lines
17 KiB
C++

#include "esphome/core/log.h"
#include "esphome/core/application.h"
#include "packet_transport.h"
#include "esphome/components/xxtea/xxtea.h"
namespace esphome {
namespace packet_transport {
/**
* Structure of a data packet; everything is little-endian
*
* --- In clear text ---
* MAGIC_NUMBER: 16 bits
* host name length: 1 byte
* host name: (length) bytes
* padding: 0 or more null bytes to a 4 byte boundary
*
* --- Encrypted (if key set) ----
* DATA_KEY: 1 byte: OR ROLLING_CODE_KEY:
* Rolling code (if enabled): 8 bytes
* Ping keys: if any
* repeat:
* PING_KEY: 1 byte
* ping code: 4 bytes
* Sensors:
* repeat:
* SENSOR_KEY: 1 byte
* float value: 4 bytes
* name length: 1 byte
* name
* Binary Sensors:
* repeat:
* BINARY_SENSOR_KEY: 1 byte
* bool value: 1 bytes
* name length: 1 byte
* name
*
* Padded to a 4 byte boundary with nulls
*
* Structure of a ping request packet:
* --- In clear text ---
* MAGIC_PING: 16 bits
* host name length: 1 byte
* host name: (length) bytes
* Ping key (4 bytes)
*
*/
static const char *const TAG = "packet_transport";
static size_t round4(size_t value) { return (value + 3) & ~3; }
union FuData {
uint32_t u32;
float f32;
};
static const uint16_t MAGIC_NUMBER = 0x4553;
static const uint16_t MAGIC_PING = 0x5048;
static const uint32_t PREF_HASH = 0x45535043;
enum DataKey {
ZERO_FILL_KEY,
DATA_KEY,
SENSOR_KEY,
BINARY_SENSOR_KEY,
PING_KEY,
ROLLING_CODE_KEY,
};
enum DecodeResult {
DECODE_OK,
DECODE_UNMATCHED,
DECODE_ERROR,
DECODE_EMPTY,
};
static const size_t MAX_PING_KEYS = 4;
static inline void add(std::vector<uint8_t> &vec, uint32_t data) {
vec.push_back(data & 0xFF);
vec.push_back((data >> 8) & 0xFF);
vec.push_back((data >> 16) & 0xFF);
vec.push_back((data >> 24) & 0xFF);
}
class PacketDecoder {
public:
PacketDecoder(const uint8_t *buffer, size_t len) : buffer_(buffer), len_(len) {}
DecodeResult decode_string(char *data, size_t maxlen) {
if (this->position_ == this->len_)
return DECODE_EMPTY;
auto len = this->buffer_[this->position_];
if (len == 0 || this->position_ + 1 + len > this->len_ || len >= maxlen)
return DECODE_ERROR;
this->position_++;
memcpy(data, this->buffer_ + this->position_, len);
data[len] = 0;
this->position_ += len;
return DECODE_OK;
}
template<typename T> DecodeResult get(T &data) {
if (this->position_ + sizeof(T) > this->len_)
return DECODE_ERROR;
T value = 0;
for (size_t i = 0; i != sizeof(T); ++i) {
value += this->buffer_[this->position_++] << (i * 8);
}
data = value;
return DECODE_OK;
}
template<typename T> DecodeResult decode(uint8_t key, T &data) {
if (this->position_ == this->len_)
return DECODE_EMPTY;
if (this->buffer_[this->position_] != key)
return DECODE_UNMATCHED;
if (this->position_ + 1 + sizeof(T) > this->len_)
return DECODE_ERROR;
this->position_++;
T value = 0;
for (size_t i = 0; i != sizeof(T); ++i) {
value += this->buffer_[this->position_++] << (i * 8);
}
data = value;
return DECODE_OK;
}
template<typename T> DecodeResult decode(uint8_t key, char *buf, size_t buflen, T &data) {
if (this->position_ == this->len_)
return DECODE_EMPTY;
if (this->buffer_[this->position_] != key)
return DECODE_UNMATCHED;
this->position_++;
T value = 0;
for (size_t i = 0; i != sizeof(T); ++i) {
value += this->buffer_[this->position_++] << (i * 8);
}
data = value;
return this->decode_string(buf, buflen);
}
DecodeResult decode(uint8_t key) {
if (this->position_ == this->len_)
return DECODE_EMPTY;
if (this->buffer_[this->position_] != key)
return DECODE_UNMATCHED;
this->position_++;
return DECODE_OK;
}
size_t get_remaining_size() const { return this->len_ - this->position_; }
// align the pointer to the given byte boundary
bool bump_to(size_t boundary) {
auto newpos = this->position_;
auto offset = this->position_ % boundary;
if (offset != 0) {
newpos += boundary - offset;
}
if (newpos >= this->len_)
return false;
this->position_ = newpos;
return true;
}
bool decrypt(const uint32_t *key) {
if (this->get_remaining_size() % 4 != 0) {
return false;
}
xxtea::decrypt((uint32_t *) (this->buffer_ + this->position_), this->get_remaining_size() / 4, key);
return true;
}
protected:
const uint8_t *buffer_;
size_t len_;
size_t position_{};
};
static inline void add(std::vector<uint8_t> &vec, uint8_t data) { vec.push_back(data); }
static inline void add(std::vector<uint8_t> &vec, uint16_t data) {
vec.push_back((uint8_t) data);
vec.push_back((uint8_t) (data >> 8));
}
static inline void add(std::vector<uint8_t> &vec, DataKey data) { vec.push_back(data); }
static void add(std::vector<uint8_t> &vec, const char *str) {
auto len = strlen(str);
vec.push_back(len);
for (size_t i = 0; i != len; i++) {
vec.push_back(*str++);
}
}
void PacketTransport::setup() {
this->name_ = App.get_name().c_str();
if (strlen(this->name_) > 255) {
this->mark_failed();
this->status_set_error("Device name exceeds 255 chars");
return;
}
this->resend_ping_key_ = this->ping_pong_enable_;
this->pref_ = global_preferences->make_preference<uint32_t>(PREF_HASH, true);
if (this->rolling_code_enable_) {
// restore the upper 32 bits of the rolling code, increment and save.
this->pref_.load(&this->rolling_code_[1]);
this->rolling_code_[1]++;
this->pref_.save(&this->rolling_code_[1]);
// must make sure it's saved immediately
global_preferences->sync();
this->ping_key_ = random_uint32();
ESP_LOGV(TAG, "Rolling code incremented, upper part now %u", (unsigned) this->rolling_code_[1]);
}
#ifdef USE_SENSOR
for (auto &sensor : this->sensors_) {
sensor.sensor->add_on_state_callback([this, &sensor](float x) {
this->updated_ = true;
sensor.updated = true;
});
}
#endif
#ifdef USE_BINARY_SENSOR
for (auto &sensor : this->binary_sensors_) {
sensor.sensor->add_on_state_callback([this, &sensor](bool value) {
this->updated_ = true;
sensor.updated = true;
});
}
#endif
// initialise the header. This is invariant.
add(this->header_, MAGIC_NUMBER);
add(this->header_, this->name_);
// pad to a multiple of 4 bytes
while (this->header_.size() & 0x3)
this->header_.push_back(0);
}
void PacketTransport::init_data_() {
this->data_.clear();
if (this->rolling_code_enable_) {
add(this->data_, ROLLING_CODE_KEY);
add(this->data_, this->rolling_code_[0]);
add(this->data_, this->rolling_code_[1]);
this->increment_code_();
} else {
add(this->data_, DATA_KEY);
}
for (auto pkey : this->ping_keys_) {
add(this->data_, PING_KEY);
add(this->data_, pkey.second);
}
}
void PacketTransport::flush_() {
if (!this->should_send() || this->data_.empty())
return;
auto header_len = round4(this->header_.size());
auto len = round4(data_.size());
auto encode_buffer = std::vector<uint8_t>(round4(header_len + len));
memcpy(encode_buffer.data(), this->header_.data(), this->header_.size());
memcpy(encode_buffer.data() + header_len, this->data_.data(), this->data_.size());
if (this->is_encrypted_()) {
xxtea::encrypt((uint32_t *) (encode_buffer.data() + header_len), len / 4,
(uint32_t *) this->encryption_key_.data());
}
this->send_packet(encode_buffer);
}
void PacketTransport::add_binary_data_(uint8_t key, const char *id, bool data) {
auto len = 1 + 1 + 1 + strlen(id);
if (len + this->header_.size() + this->data_.size() > this->get_max_packet_size()) {
this->flush_();
}
add(this->data_, key);
add(this->data_, (uint8_t) data);
add(this->data_, id);
}
void PacketTransport::add_data_(uint8_t key, const char *id, float data) {
FuData udata{.f32 = data};
this->add_data_(key, id, udata.u32);
}
void PacketTransport::add_data_(uint8_t key, const char *id, uint32_t data) {
auto len = 4 + 1 + 1 + strlen(id);
if (len + this->header_.size() + this->data_.size() > this->get_max_packet_size()) {
this->flush_();
}
add(this->data_, key);
add(this->data_, data);
add(this->data_, id);
}
void PacketTransport::send_data_(bool all) {
if (!this->should_send())
return;
this->init_data_();
#ifdef USE_SENSOR
for (auto &sensor : this->sensors_) {
if (all || sensor.updated) {
sensor.updated = false;
this->add_data_(SENSOR_KEY, sensor.id, sensor.sensor->get_state());
}
}
#endif
#ifdef USE_BINARY_SENSOR
for (auto &sensor : this->binary_sensors_) {
if (all || sensor.updated) {
sensor.updated = false;
this->add_binary_data_(BINARY_SENSOR_KEY, sensor.id, sensor.sensor->state);
}
}
#endif
this->flush_();
this->updated_ = false;
}
void PacketTransport::update() {
if (!this->ping_pong_enable_) {
return;
}
auto now = millis() / 1000;
if (this->last_key_time_ + this->ping_pong_recyle_time_ < now) {
this->resend_ping_key_ = this->ping_pong_enable_;
ESP_LOGV(TAG, "Ping request, age %u", now - this->last_key_time_);
this->last_key_time_ = now;
}
for (const auto &provider : this->providers_) {
uint32_t key_response_age = now - provider.second.last_key_response_time;
if (key_response_age > (this->ping_pong_recyle_time_ * 2u)) {
#ifdef USE_STATUS_SENSOR
if (provider.second.status_sensor != nullptr && provider.second.status_sensor->state) {
ESP_LOGI(TAG, "Ping status for %s timeout at %u with age %u", provider.first.c_str(), now, key_response_age);
provider.second.status_sensor->publish_state(false);
}
#endif
#ifdef USE_SENSOR
for (auto &sensor : this->remote_sensors_[provider.first]) {
sensor.second->publish_state(NAN);
}
#endif
#ifdef USE_BINARY_SENSOR
for (auto &sensor : this->remote_binary_sensors_[provider.first]) {
sensor.second->invalidate_state();
}
#endif
} else {
#ifdef USE_STATUS_SENSOR
if (provider.second.status_sensor != nullptr && !provider.second.status_sensor->state) {
ESP_LOGI(TAG, "Ping status for %s restored at %u with age %u", provider.first.c_str(), now, key_response_age);
provider.second.status_sensor->publish_state(true);
}
#endif
}
}
}
void PacketTransport::add_key_(const char *name, uint32_t key) {
if (!this->is_encrypted_())
return;
if (this->ping_keys_.count(name) == 0 && this->ping_keys_.size() == MAX_PING_KEYS) {
ESP_LOGW(TAG, "Ping key from %s discarded", name);
return;
}
this->ping_keys_[name] = key;
this->updated_ = true;
ESP_LOGV(TAG, "Ping key from %s now %X", name, (unsigned) key);
}
static bool process_rolling_code(Provider &provider, PacketDecoder &decoder) {
uint32_t code0, code1;
if (decoder.get(code0) != DECODE_OK || decoder.get(code1) != DECODE_OK) {
ESP_LOGW(TAG, "Rolling code requires 8 bytes");
return false;
}
if (code1 < provider.last_code[1] || (code1 == provider.last_code[1] && code0 <= provider.last_code[0])) {
ESP_LOGW(TAG, "Rolling code for %s %08lX:%08lX is old", provider.name, (unsigned long) code1,
(unsigned long) code0);
return false;
}
provider.last_code[0] = code0;
provider.last_code[1] = code1;
ESP_LOGV(TAG, "Saw new rolling code for %s %08lX:%08lX", provider.name, (unsigned long) code1, (unsigned long) code0);
return true;
}
/**
* Process a received packet
*/
void PacketTransport::process_(const std::vector<uint8_t> &data) {
auto ping_key_seen = !this->ping_pong_enable_;
PacketDecoder decoder((data.data()), data.size());
char namebuf[256]{};
uint8_t byte;
FuData rdata{};
uint16_t magic;
if (decoder.get(magic) != DECODE_OK) {
ESP_LOGD(TAG, "Short buffer");
return;
}
if (magic != MAGIC_NUMBER && magic != MAGIC_PING) {
ESP_LOGV(TAG, "Bad magic %X", magic);
return;
}
if (decoder.decode_string(namebuf, sizeof namebuf) != DECODE_OK) {
ESP_LOGV(TAG, "Bad hostname length");
return;
}
if (strcmp(this->name_, namebuf) == 0) {
ESP_LOGVV(TAG, "Ignoring our own data");
return;
}
if (magic == MAGIC_PING) {
uint32_t key;
if (decoder.get(key) != DECODE_OK) {
ESP_LOGW(TAG, "Bad ping request");
return;
}
this->add_key_(namebuf, key);
ESP_LOGV(TAG, "Updated ping key for %s to %08X", namebuf, (unsigned) key);
return;
}
if (this->providers_.count(namebuf) == 0) {
ESP_LOGVV(TAG, "Unknown hostname %s", namebuf);
return;
}
ESP_LOGV(TAG, "Found hostname %s", namebuf);
#ifdef USE_SENSOR
auto &sensors = this->remote_sensors_[namebuf];
#endif
#ifdef USE_BINARY_SENSOR
auto &binary_sensors = this->remote_binary_sensors_[namebuf];
#endif
if (!decoder.bump_to(4)) {
ESP_LOGW(TAG, "Bad packet length %zu", data.size());
}
auto len = decoder.get_remaining_size();
if (round4(len) != len) {
ESP_LOGW(TAG, "Bad payload length %zu", len);
return;
}
auto &provider = this->providers_[namebuf];
// if encryption not used with this host, ping check is pointless since it would be easily spoofed.
if (provider.encryption_key.empty())
ping_key_seen = true;
if (!provider.encryption_key.empty()) {
decoder.decrypt((const uint32_t *) provider.encryption_key.data());
}
if (decoder.get(byte) != DECODE_OK) {
ESP_LOGV(TAG, "No key byte");
return;
}
if (byte == ROLLING_CODE_KEY) {
if (!process_rolling_code(provider, decoder))
return;
} else if (byte != DATA_KEY) {
ESP_LOGV(TAG, "Expected rolling_key or data_key, got %X", byte);
return;
}
uint32_t key;
while (decoder.get_remaining_size() != 0) {
if (decoder.decode(ZERO_FILL_KEY) == DECODE_OK)
continue;
if (decoder.decode(PING_KEY, key) == DECODE_OK) {
if (key == this->ping_key_) {
ping_key_seen = true;
provider.last_key_response_time = millis() / 1000;
ESP_LOGV(TAG, "Found good ping key %X at timestamp %" PRIu32, (unsigned) key, provider.last_key_response_time);
} else {
ESP_LOGV(TAG, "Unknown ping key %X", (unsigned) key);
}
continue;
}
if (!ping_key_seen) {
ESP_LOGW(TAG, "Ping key not seen");
this->resend_ping_key_ = true;
break;
}
if (decoder.decode(BINARY_SENSOR_KEY, namebuf, sizeof(namebuf), byte) == DECODE_OK) {
ESP_LOGV(TAG, "Got binary sensor %s %d", namebuf, byte);
#ifdef USE_BINARY_SENSOR
if (binary_sensors.count(namebuf) != 0)
binary_sensors[namebuf]->publish_state(byte != 0);
#endif
continue;
}
if (decoder.decode(SENSOR_KEY, namebuf, sizeof(namebuf), rdata.u32) == DECODE_OK) {
ESP_LOGV(TAG, "Got sensor %s %f", namebuf, rdata.f32);
#ifdef USE_SENSOR
if (sensors.count(namebuf) != 0)
sensors[namebuf]->publish_state(rdata.f32);
#endif
continue;
}
if (decoder.get(byte) == DECODE_OK) {
ESP_LOGW(TAG, "Unknown key %X", byte);
ESP_LOGD(TAG, "Buffer pos: %zu contents: %s", data.size() - decoder.get_remaining_size(),
format_hex_pretty(data).c_str());
}
break;
}
}
void PacketTransport::dump_config() {
ESP_LOGCONFIG(TAG,
"Packet Transport:\n"
" Platform: %s\n"
" Encrypted: %s\n"
" Ping-pong: %s",
this->platform_name_, YESNO(this->is_encrypted_()), YESNO(this->ping_pong_enable_));
#ifdef USE_SENSOR
for (auto sensor : this->sensors_)
ESP_LOGCONFIG(TAG, " Sensor: %s", sensor.id);
#endif
#ifdef USE_BINARY_SENSOR
for (auto sensor : this->binary_sensors_)
ESP_LOGCONFIG(TAG, " Binary Sensor: %s", sensor.id);
#endif
for (const auto &host : this->providers_) {
ESP_LOGCONFIG(TAG, " Remote host: %s", host.first.c_str());
ESP_LOGCONFIG(TAG, " Encrypted: %s", YESNO(!host.second.encryption_key.empty()));
#ifdef USE_SENSOR
for (const auto &sensor : this->remote_sensors_[host.first.c_str()])
ESP_LOGCONFIG(TAG, " Sensor: %s", sensor.first.c_str());
#endif
#ifdef USE_BINARY_SENSOR
for (const auto &sensor : this->remote_binary_sensors_[host.first.c_str()])
ESP_LOGCONFIG(TAG, " Binary Sensor: %s", sensor.first.c_str());
#endif
}
}
void PacketTransport::increment_code_() {
if (this->rolling_code_enable_) {
if (++this->rolling_code_[0] == 0) {
this->rolling_code_[1]++;
this->pref_.save(&this->rolling_code_[1]);
// must make sure it's saved immediately
global_preferences->sync();
}
}
}
void PacketTransport::loop() {
if (this->resend_ping_key_)
this->send_ping_pong_request_();
if (this->updated_) {
this->send_data_(this->resend_data_);
}
}
void PacketTransport::send_ping_pong_request_() {
if (!this->ping_pong_enable_ || !this->should_send())
return;
this->ping_key_ = random_uint32();
this->ping_header_.clear();
add(this->ping_header_, MAGIC_PING);
add(this->ping_header_, this->name_);
add(this->ping_header_, this->ping_key_);
this->send_packet(this->ping_header_);
this->resend_ping_key_ = false;
ESP_LOGV(TAG, "Sent new ping request %08X", (unsigned) this->ping_key_);
}
} // namespace packet_transport
} // namespace esphome