#include "esphome/core/log.h" #include "esphome/core/application.h" #include "packet_transport.h" #include "esphome/components/xxtea/xxtea.h" namespace esphome { namespace packet_transport { /** * Structure of a data packet; everything is little-endian * * --- In clear text --- * MAGIC_NUMBER: 16 bits * host name length: 1 byte * host name: (length) bytes * padding: 0 or more null bytes to a 4 byte boundary * * --- Encrypted (if key set) ---- * DATA_KEY: 1 byte: OR ROLLING_CODE_KEY: * Rolling code (if enabled): 8 bytes * Ping keys: if any * repeat: * PING_KEY: 1 byte * ping code: 4 bytes * Sensors: * repeat: * SENSOR_KEY: 1 byte * float value: 4 bytes * name length: 1 byte * name * Binary Sensors: * repeat: * BINARY_SENSOR_KEY: 1 byte * bool value: 1 bytes * name length: 1 byte * name * * Padded to a 4 byte boundary with nulls * * Structure of a ping request packet: * --- In clear text --- * MAGIC_PING: 16 bits * host name length: 1 byte * host name: (length) bytes * Ping key (4 bytes) * */ static const char *const TAG = "packet_transport"; static size_t round4(size_t value) { return (value + 3) & ~3; } union FuData { uint32_t u32; float f32; }; static const uint16_t MAGIC_NUMBER = 0x4553; static const uint16_t MAGIC_PING = 0x5048; static const uint32_t PREF_HASH = 0x45535043; enum DataKey { ZERO_FILL_KEY, DATA_KEY, SENSOR_KEY, BINARY_SENSOR_KEY, PING_KEY, ROLLING_CODE_KEY, }; enum DecodeResult { DECODE_OK, DECODE_UNMATCHED, DECODE_ERROR, DECODE_EMPTY, }; static const size_t MAX_PING_KEYS = 4; static inline void add(std::vector &vec, uint32_t data) { vec.push_back(data & 0xFF); vec.push_back((data >> 8) & 0xFF); vec.push_back((data >> 16) & 0xFF); vec.push_back((data >> 24) & 0xFF); } class PacketDecoder { public: PacketDecoder(const uint8_t *buffer, size_t len) : buffer_(buffer), len_(len) {} DecodeResult decode_string(char *data, size_t maxlen) { if (this->position_ == this->len_) return DECODE_EMPTY; auto len = this->buffer_[this->position_]; if (len == 0 || this->position_ + 1 + len > this->len_ || len >= maxlen) return DECODE_ERROR; this->position_++; memcpy(data, this->buffer_ + this->position_, len); data[len] = 0; this->position_ += len; return DECODE_OK; } template DecodeResult get(T &data) { if (this->position_ + sizeof(T) > this->len_) return DECODE_ERROR; T value = 0; for (size_t i = 0; i != sizeof(T); ++i) { value += this->buffer_[this->position_++] << (i * 8); } data = value; return DECODE_OK; } template DecodeResult decode(uint8_t key, T &data) { if (this->position_ == this->len_) return DECODE_EMPTY; if (this->buffer_[this->position_] != key) return DECODE_UNMATCHED; if (this->position_ + 1 + sizeof(T) > this->len_) return DECODE_ERROR; this->position_++; T value = 0; for (size_t i = 0; i != sizeof(T); ++i) { value += this->buffer_[this->position_++] << (i * 8); } data = value; return DECODE_OK; } template DecodeResult decode(uint8_t key, char *buf, size_t buflen, T &data) { if (this->position_ == this->len_) return DECODE_EMPTY; if (this->buffer_[this->position_] != key) return DECODE_UNMATCHED; this->position_++; T value = 0; for (size_t i = 0; i != sizeof(T); ++i) { value += this->buffer_[this->position_++] << (i * 8); } data = value; return this->decode_string(buf, buflen); } DecodeResult decode(uint8_t key) { if (this->position_ == this->len_) return DECODE_EMPTY; if (this->buffer_[this->position_] != key) return DECODE_UNMATCHED; this->position_++; return DECODE_OK; } size_t get_remaining_size() const { return this->len_ - this->position_; } // align the pointer to the given byte boundary bool bump_to(size_t boundary) { auto newpos = this->position_; auto offset = this->position_ % boundary; if (offset != 0) { newpos += boundary - offset; } if (newpos >= this->len_) return false; this->position_ = newpos; return true; } bool decrypt(const uint32_t *key) { if (this->get_remaining_size() % 4 != 0) { return false; } xxtea::decrypt((uint32_t *) (this->buffer_ + this->position_), this->get_remaining_size() / 4, key); return true; } protected: const uint8_t *buffer_; size_t len_; size_t position_{}; }; static inline void add(std::vector &vec, uint8_t data) { vec.push_back(data); } static inline void add(std::vector &vec, uint16_t data) { vec.push_back((uint8_t) data); vec.push_back((uint8_t) (data >> 8)); } static inline void add(std::vector &vec, DataKey data) { vec.push_back(data); } static void add(std::vector &vec, const char *str) { auto len = strlen(str); vec.push_back(len); for (size_t i = 0; i != len; i++) { vec.push_back(*str++); } } void PacketTransport::setup() { this->name_ = App.get_name().c_str(); if (strlen(this->name_) > 255) { this->mark_failed(); this->status_set_error("Device name exceeds 255 chars"); return; } this->resend_ping_key_ = this->ping_pong_enable_; this->pref_ = global_preferences->make_preference(PREF_HASH, true); if (this->rolling_code_enable_) { // restore the upper 32 bits of the rolling code, increment and save. this->pref_.load(&this->rolling_code_[1]); this->rolling_code_[1]++; this->pref_.save(&this->rolling_code_[1]); // must make sure it's saved immediately global_preferences->sync(); this->ping_key_ = random_uint32(); ESP_LOGV(TAG, "Rolling code incremented, upper part now %u", (unsigned) this->rolling_code_[1]); } #ifdef USE_SENSOR for (auto &sensor : this->sensors_) { sensor.sensor->add_on_state_callback([this, &sensor](float x) { this->updated_ = true; sensor.updated = true; }); } #endif #ifdef USE_BINARY_SENSOR for (auto &sensor : this->binary_sensors_) { sensor.sensor->add_on_state_callback([this, &sensor](bool value) { this->updated_ = true; sensor.updated = true; }); } #endif // initialise the header. This is invariant. add(this->header_, MAGIC_NUMBER); add(this->header_, this->name_); // pad to a multiple of 4 bytes while (this->header_.size() & 0x3) this->header_.push_back(0); } void PacketTransport::init_data_() { this->data_.clear(); if (this->rolling_code_enable_) { add(this->data_, ROLLING_CODE_KEY); add(this->data_, this->rolling_code_[0]); add(this->data_, this->rolling_code_[1]); this->increment_code_(); } else { add(this->data_, DATA_KEY); } for (auto pkey : this->ping_keys_) { add(this->data_, PING_KEY); add(this->data_, pkey.second); } } void PacketTransport::flush_() { if (!this->should_send() || this->data_.empty()) return; auto header_len = round4(this->header_.size()); auto len = round4(data_.size()); auto encode_buffer = std::vector(round4(header_len + len)); memcpy(encode_buffer.data(), this->header_.data(), this->header_.size()); memcpy(encode_buffer.data() + header_len, this->data_.data(), this->data_.size()); if (this->is_encrypted_()) { xxtea::encrypt((uint32_t *) (encode_buffer.data() + header_len), len / 4, (uint32_t *) this->encryption_key_.data()); } this->send_packet(encode_buffer); } void PacketTransport::add_binary_data_(uint8_t key, const char *id, bool data) { auto len = 1 + 1 + 1 + strlen(id); if (len + this->header_.size() + this->data_.size() > this->get_max_packet_size()) { this->flush_(); } add(this->data_, key); add(this->data_, (uint8_t) data); add(this->data_, id); } void PacketTransport::add_data_(uint8_t key, const char *id, float data) { FuData udata{.f32 = data}; this->add_data_(key, id, udata.u32); } void PacketTransport::add_data_(uint8_t key, const char *id, uint32_t data) { auto len = 4 + 1 + 1 + strlen(id); if (len + this->header_.size() + this->data_.size() > this->get_max_packet_size()) { this->flush_(); } add(this->data_, key); add(this->data_, data); add(this->data_, id); } void PacketTransport::send_data_(bool all) { if (!this->should_send()) return; this->init_data_(); #ifdef USE_SENSOR for (auto &sensor : this->sensors_) { if (all || sensor.updated) { sensor.updated = false; this->add_data_(SENSOR_KEY, sensor.id, sensor.sensor->get_state()); } } #endif #ifdef USE_BINARY_SENSOR for (auto &sensor : this->binary_sensors_) { if (all || sensor.updated) { sensor.updated = false; this->add_binary_data_(BINARY_SENSOR_KEY, sensor.id, sensor.sensor->state); } } #endif this->flush_(); this->updated_ = false; } void PacketTransport::update() { if (!this->ping_pong_enable_) { return; } auto now = millis() / 1000; if (this->last_key_time_ + this->ping_pong_recyle_time_ < now) { this->resend_ping_key_ = this->ping_pong_enable_; ESP_LOGV(TAG, "Ping request, age %u", now - this->last_key_time_); this->last_key_time_ = now; } for (const auto &provider : this->providers_) { uint32_t key_response_age = now - provider.second.last_key_response_time; if (key_response_age > (this->ping_pong_recyle_time_ * 2u)) { #ifdef USE_STATUS_SENSOR if (provider.second.status_sensor != nullptr && provider.second.status_sensor->state) { ESP_LOGI(TAG, "Ping status for %s timeout at %u with age %u", provider.first.c_str(), now, key_response_age); provider.second.status_sensor->publish_state(false); } #endif #ifdef USE_SENSOR for (auto &sensor : this->remote_sensors_[provider.first]) { sensor.second->publish_state(NAN); } #endif #ifdef USE_BINARY_SENSOR for (auto &sensor : this->remote_binary_sensors_[provider.first]) { sensor.second->invalidate_state(); } #endif } else { #ifdef USE_STATUS_SENSOR if (provider.second.status_sensor != nullptr && !provider.second.status_sensor->state) { ESP_LOGI(TAG, "Ping status for %s restored at %u with age %u", provider.first.c_str(), now, key_response_age); provider.second.status_sensor->publish_state(true); } #endif } } } void PacketTransport::add_key_(const char *name, uint32_t key) { if (!this->is_encrypted_()) return; if (this->ping_keys_.count(name) == 0 && this->ping_keys_.size() == MAX_PING_KEYS) { ESP_LOGW(TAG, "Ping key from %s discarded", name); return; } this->ping_keys_[name] = key; this->updated_ = true; ESP_LOGV(TAG, "Ping key from %s now %X", name, (unsigned) key); } static bool process_rolling_code(Provider &provider, PacketDecoder &decoder) { uint32_t code0, code1; if (decoder.get(code0) != DECODE_OK || decoder.get(code1) != DECODE_OK) { ESP_LOGW(TAG, "Rolling code requires 8 bytes"); return false; } if (code1 < provider.last_code[1] || (code1 == provider.last_code[1] && code0 <= provider.last_code[0])) { ESP_LOGW(TAG, "Rolling code for %s %08lX:%08lX is old", provider.name, (unsigned long) code1, (unsigned long) code0); return false; } provider.last_code[0] = code0; provider.last_code[1] = code1; ESP_LOGV(TAG, "Saw new rolling code for %s %08lX:%08lX", provider.name, (unsigned long) code1, (unsigned long) code0); return true; } /** * Process a received packet */ void PacketTransport::process_(const std::vector &data) { auto ping_key_seen = !this->ping_pong_enable_; PacketDecoder decoder((data.data()), data.size()); char namebuf[256]{}; uint8_t byte; FuData rdata{}; uint16_t magic; if (decoder.get(magic) != DECODE_OK) { ESP_LOGD(TAG, "Short buffer"); return; } if (magic != MAGIC_NUMBER && magic != MAGIC_PING) { ESP_LOGV(TAG, "Bad magic %X", magic); return; } if (decoder.decode_string(namebuf, sizeof namebuf) != DECODE_OK) { ESP_LOGV(TAG, "Bad hostname length"); return; } if (strcmp(this->name_, namebuf) == 0) { ESP_LOGVV(TAG, "Ignoring our own data"); return; } if (magic == MAGIC_PING) { uint32_t key; if (decoder.get(key) != DECODE_OK) { ESP_LOGW(TAG, "Bad ping request"); return; } this->add_key_(namebuf, key); ESP_LOGV(TAG, "Updated ping key for %s to %08X", namebuf, (unsigned) key); return; } if (this->providers_.count(namebuf) == 0) { ESP_LOGVV(TAG, "Unknown hostname %s", namebuf); return; } ESP_LOGV(TAG, "Found hostname %s", namebuf); #ifdef USE_SENSOR auto &sensors = this->remote_sensors_[namebuf]; #endif #ifdef USE_BINARY_SENSOR auto &binary_sensors = this->remote_binary_sensors_[namebuf]; #endif if (!decoder.bump_to(4)) { ESP_LOGW(TAG, "Bad packet length %zu", data.size()); } auto len = decoder.get_remaining_size(); if (round4(len) != len) { ESP_LOGW(TAG, "Bad payload length %zu", len); return; } auto &provider = this->providers_[namebuf]; // if encryption not used with this host, ping check is pointless since it would be easily spoofed. if (provider.encryption_key.empty()) ping_key_seen = true; if (!provider.encryption_key.empty()) { decoder.decrypt((const uint32_t *) provider.encryption_key.data()); } if (decoder.get(byte) != DECODE_OK) { ESP_LOGV(TAG, "No key byte"); return; } if (byte == ROLLING_CODE_KEY) { if (!process_rolling_code(provider, decoder)) return; } else if (byte != DATA_KEY) { ESP_LOGV(TAG, "Expected rolling_key or data_key, got %X", byte); return; } uint32_t key; while (decoder.get_remaining_size() != 0) { if (decoder.decode(ZERO_FILL_KEY) == DECODE_OK) continue; if (decoder.decode(PING_KEY, key) == DECODE_OK) { if (key == this->ping_key_) { ping_key_seen = true; provider.last_key_response_time = millis() / 1000; ESP_LOGV(TAG, "Found good ping key %X at timestamp %" PRIu32, (unsigned) key, provider.last_key_response_time); } else { ESP_LOGV(TAG, "Unknown ping key %X", (unsigned) key); } continue; } if (!ping_key_seen) { ESP_LOGW(TAG, "Ping key not seen"); this->resend_ping_key_ = true; break; } if (decoder.decode(BINARY_SENSOR_KEY, namebuf, sizeof(namebuf), byte) == DECODE_OK) { ESP_LOGV(TAG, "Got binary sensor %s %d", namebuf, byte); #ifdef USE_BINARY_SENSOR if (binary_sensors.count(namebuf) != 0) binary_sensors[namebuf]->publish_state(byte != 0); #endif continue; } if (decoder.decode(SENSOR_KEY, namebuf, sizeof(namebuf), rdata.u32) == DECODE_OK) { ESP_LOGV(TAG, "Got sensor %s %f", namebuf, rdata.f32); #ifdef USE_SENSOR if (sensors.count(namebuf) != 0) sensors[namebuf]->publish_state(rdata.f32); #endif continue; } if (decoder.get(byte) == DECODE_OK) { ESP_LOGW(TAG, "Unknown key %X", byte); ESP_LOGD(TAG, "Buffer pos: %zu contents: %s", data.size() - decoder.get_remaining_size(), format_hex_pretty(data).c_str()); } break; } } void PacketTransport::dump_config() { ESP_LOGCONFIG(TAG, "Packet Transport:\n" " Platform: %s\n" " Encrypted: %s\n" " Ping-pong: %s", this->platform_name_, YESNO(this->is_encrypted_()), YESNO(this->ping_pong_enable_)); #ifdef USE_SENSOR for (auto sensor : this->sensors_) ESP_LOGCONFIG(TAG, " Sensor: %s", sensor.id); #endif #ifdef USE_BINARY_SENSOR for (auto sensor : this->binary_sensors_) ESP_LOGCONFIG(TAG, " Binary Sensor: %s", sensor.id); #endif for (const auto &host : this->providers_) { ESP_LOGCONFIG(TAG, " Remote host: %s", host.first.c_str()); ESP_LOGCONFIG(TAG, " Encrypted: %s", YESNO(!host.second.encryption_key.empty())); #ifdef USE_SENSOR for (const auto &sensor : this->remote_sensors_[host.first.c_str()]) ESP_LOGCONFIG(TAG, " Sensor: %s", sensor.first.c_str()); #endif #ifdef USE_BINARY_SENSOR for (const auto &sensor : this->remote_binary_sensors_[host.first.c_str()]) ESP_LOGCONFIG(TAG, " Binary Sensor: %s", sensor.first.c_str()); #endif } } void PacketTransport::increment_code_() { if (this->rolling_code_enable_) { if (++this->rolling_code_[0] == 0) { this->rolling_code_[1]++; this->pref_.save(&this->rolling_code_[1]); // must make sure it's saved immediately global_preferences->sync(); } } } void PacketTransport::loop() { if (this->resend_ping_key_) this->send_ping_pong_request_(); if (this->updated_) { this->send_data_(this->resend_data_); } } void PacketTransport::send_ping_pong_request_() { if (!this->ping_pong_enable_ || !this->should_send()) return; this->ping_key_ = random_uint32(); this->ping_header_.clear(); add(this->ping_header_, MAGIC_PING); add(this->ping_header_, this->name_); add(this->ping_header_, this->ping_key_); this->send_packet(this->ping_header_); this->resend_ping_key_ = false; ESP_LOGV(TAG, "Sent new ping request %08X", (unsigned) this->ping_key_); } } // namespace packet_transport } // namespace esphome