mirror of
https://github.com/esphome/esphome.git
synced 2025-11-03 08:31:47 +00:00
[scheduler] Refactor call() for improved code organization
This commit is contained in:
@@ -316,59 +316,37 @@ optional<uint32_t> HOT Scheduler::next_schedule_in(uint32_t now) {
|
||||
return 0;
|
||||
return next_exec - now_64;
|
||||
}
|
||||
|
||||
void Scheduler::full_cleanup_removed_items_() {
|
||||
// We hold the lock for the entire cleanup operation because:
|
||||
// 1. We're rebuilding the entire items_ list, so we need exclusive access throughout
|
||||
// 2. Other threads must see either the old state or the new state, not intermediate states
|
||||
// 3. The operation is already expensive (O(n)), so lock overhead is negligible
|
||||
// 4. No operations inside can block or take other locks, so no deadlock risk
|
||||
LockGuard guard{this->lock_};
|
||||
|
||||
std::vector<std::unique_ptr<SchedulerItem>> valid_items;
|
||||
|
||||
// Move all non-removed items to valid_items, recycle removed ones
|
||||
for (auto &item : this->items_) {
|
||||
if (!is_item_removed_(item.get())) {
|
||||
valid_items.push_back(std::move(item));
|
||||
} else {
|
||||
// Recycle removed items
|
||||
this->recycle_item_(std::move(item));
|
||||
}
|
||||
}
|
||||
|
||||
// Replace items_ with the filtered list
|
||||
this->items_ = std::move(valid_items);
|
||||
// Rebuild the heap structure since items are no longer in heap order
|
||||
std::make_heap(this->items_.begin(), this->items_.end(), SchedulerItem::cmp);
|
||||
this->to_remove_ = 0;
|
||||
}
|
||||
|
||||
void HOT Scheduler::call(uint32_t now) {
|
||||
#ifndef ESPHOME_THREAD_SINGLE
|
||||
// Process defer queue first to guarantee FIFO execution order for deferred items.
|
||||
// Previously, defer() used the heap which gave undefined order for equal timestamps,
|
||||
// causing race conditions on multi-core systems (ESP32, BK7200).
|
||||
// With the defer queue:
|
||||
// - Deferred items (delay=0) go directly to defer_queue_ in set_timer_common_
|
||||
// - Items execute in exact order they were deferred (FIFO guarantee)
|
||||
// - No deferred items exist in to_add_, so processing order doesn't affect correctness
|
||||
// Single-core platforms don't use this queue and fall back to the heap-based approach.
|
||||
//
|
||||
// Note: Items cancelled via cancel_item_locked_() are marked with remove=true but still
|
||||
// processed here. They are skipped during execution by should_skip_item_().
|
||||
// This is intentional - no memory leak occurs.
|
||||
//
|
||||
// We use an index (defer_queue_front_) to track the read position instead of calling
|
||||
// erase() on every pop, which would be O(n). The queue is processed once per loop -
|
||||
// any items added during processing are left for the next loop iteration.
|
||||
|
||||
// Snapshot the queue end point - only process items that existed at loop start
|
||||
// Items added during processing (by callbacks or other threads) run next loop
|
||||
// No lock needed: single consumer (main loop), stale read just means we process less this iteration
|
||||
size_t defer_queue_end = this->defer_queue_.size();
|
||||
|
||||
while (this->defer_queue_front_ < defer_queue_end) {
|
||||
std::unique_ptr<SchedulerItem> item;
|
||||
{
|
||||
LockGuard lock(this->lock_);
|
||||
// SAFETY: Moving out the unique_ptr leaves a nullptr in the vector at defer_queue_front_.
|
||||
// This is intentional and safe because:
|
||||
// 1. The vector is only cleaned up by cleanup_defer_queue_locked_() at the end of this function
|
||||
// 2. Any code iterating defer_queue_ MUST check for nullptr items (see mark_matching_items_removed_
|
||||
// and has_cancelled_timeout_in_container_ in scheduler.h)
|
||||
// 3. The lock protects concurrent access, but the nullptr remains until cleanup
|
||||
item = std::move(this->defer_queue_[this->defer_queue_front_]);
|
||||
this->defer_queue_front_++;
|
||||
}
|
||||
|
||||
// Execute callback without holding lock to prevent deadlocks
|
||||
// if the callback tries to call defer() again
|
||||
if (!this->should_skip_item_(item.get())) {
|
||||
now = this->execute_item_(item.get(), now);
|
||||
}
|
||||
// Recycle the defer item after execution
|
||||
this->recycle_item_(std::move(item));
|
||||
}
|
||||
|
||||
// If we've consumed all items up to the snapshot point, clean up the dead space
|
||||
// Single consumer (main loop), so no lock needed for this check
|
||||
if (this->defer_queue_front_ >= defer_queue_end) {
|
||||
LockGuard lock(this->lock_);
|
||||
this->cleanup_defer_queue_locked_();
|
||||
}
|
||||
this->process_defer_queue_(now);
|
||||
#endif /* not ESPHOME_THREAD_SINGLE */
|
||||
|
||||
// Convert the fresh timestamp from main loop to 64-bit for scheduler operations
|
||||
@@ -429,30 +407,7 @@ void HOT Scheduler::call(uint32_t now) {
|
||||
// If we still have too many cancelled items, do a full cleanup
|
||||
// This only happens if cancelled items are stuck in the middle/bottom of the heap
|
||||
if (this->to_remove_ >= MAX_LOGICALLY_DELETED_ITEMS) {
|
||||
// We hold the lock for the entire cleanup operation because:
|
||||
// 1. We're rebuilding the entire items_ list, so we need exclusive access throughout
|
||||
// 2. Other threads must see either the old state or the new state, not intermediate states
|
||||
// 3. The operation is already expensive (O(n)), so lock overhead is negligible
|
||||
// 4. No operations inside can block or take other locks, so no deadlock risk
|
||||
LockGuard guard{this->lock_};
|
||||
|
||||
std::vector<std::unique_ptr<SchedulerItem>> valid_items;
|
||||
|
||||
// Move all non-removed items to valid_items, recycle removed ones
|
||||
for (auto &item : this->items_) {
|
||||
if (!is_item_removed_(item.get())) {
|
||||
valid_items.push_back(std::move(item));
|
||||
} else {
|
||||
// Recycle removed items
|
||||
this->recycle_item_(std::move(item));
|
||||
}
|
||||
}
|
||||
|
||||
// Replace items_ with the filtered list
|
||||
this->items_ = std::move(valid_items);
|
||||
// Rebuild the heap structure since items are no longer in heap order
|
||||
std::make_heap(this->items_.begin(), this->items_.end(), SchedulerItem::cmp);
|
||||
this->to_remove_ = 0;
|
||||
this->full_cleanup_removed_items_();
|
||||
}
|
||||
while (!this->items_.empty()) {
|
||||
// Don't copy-by value yet
|
||||
|
||||
@@ -263,7 +263,65 @@ class Scheduler {
|
||||
// Helper to recycle a SchedulerItem
|
||||
void recycle_item_(std::unique_ptr<SchedulerItem> item);
|
||||
|
||||
// Helper to perform full cleanup when too many items are cancelled
|
||||
void full_cleanup_removed_items_();
|
||||
|
||||
#ifndef ESPHOME_THREAD_SINGLE
|
||||
// Helper to process defer queue - inline for performance in hot path
|
||||
inline void process_defer_queue_(uint32_t &now) {
|
||||
// Process defer queue first to guarantee FIFO execution order for deferred items.
|
||||
// Previously, defer() used the heap which gave undefined order for equal timestamps,
|
||||
// causing race conditions on multi-core systems (ESP32, BK7200).
|
||||
// With the defer queue:
|
||||
// - Deferred items (delay=0) go directly to defer_queue_ in set_timer_common_
|
||||
// - Items execute in exact order they were deferred (FIFO guarantee)
|
||||
// - No deferred items exist in to_add_, so processing order doesn't affect correctness
|
||||
// Single-core platforms don't use this queue and fall back to the heap-based approach.
|
||||
//
|
||||
// Note: Items cancelled via cancel_item_locked_() are marked with remove=true but still
|
||||
// processed here. They are skipped during execution by should_skip_item_().
|
||||
// This is intentional - no memory leak occurs.
|
||||
//
|
||||
// We use an index (defer_queue_front_) to track the read position instead of calling
|
||||
// erase() on every pop, which would be O(n). The queue is processed once per loop -
|
||||
// any items added during processing are left for the next loop iteration.
|
||||
|
||||
// Snapshot the queue end point - only process items that existed at loop start
|
||||
// Items added during processing (by callbacks or other threads) run next loop
|
||||
// No lock needed: single consumer (main loop), stale read just means we process less this iteration
|
||||
size_t defer_queue_end = this->defer_queue_.size();
|
||||
|
||||
while (this->defer_queue_front_ < defer_queue_end) {
|
||||
std::unique_ptr<SchedulerItem> item;
|
||||
{
|
||||
LockGuard lock(this->lock_);
|
||||
// SAFETY: Moving out the unique_ptr leaves a nullptr in the vector at defer_queue_front_.
|
||||
// This is intentional and safe because:
|
||||
// 1. The vector is only cleaned up by cleanup_defer_queue_locked_() at the end of this function
|
||||
// 2. Any code iterating defer_queue_ MUST check for nullptr items (see mark_matching_items_removed_
|
||||
// and has_cancelled_timeout_in_container_ in scheduler.h)
|
||||
// 3. The lock protects concurrent access, but the nullptr remains until cleanup
|
||||
item = std::move(this->defer_queue_[this->defer_queue_front_]);
|
||||
this->defer_queue_front_++;
|
||||
}
|
||||
|
||||
// Execute callback without holding lock to prevent deadlocks
|
||||
// if the callback tries to call defer() again
|
||||
if (!this->should_skip_item_(item.get())) {
|
||||
now = this->execute_item_(item.get(), now);
|
||||
}
|
||||
// Recycle the defer item after execution
|
||||
this->recycle_item_(std::move(item));
|
||||
}
|
||||
|
||||
// If we've consumed all items up to the snapshot point, clean up the dead space
|
||||
// Single consumer (main loop), so no lock needed for this check
|
||||
if (this->defer_queue_front_ >= defer_queue_end) {
|
||||
LockGuard lock(this->lock_);
|
||||
this->cleanup_defer_queue_locked_();
|
||||
}
|
||||
}
|
||||
|
||||
// Helper to cleanup defer_queue_ after processing
|
||||
// IMPORTANT: Caller must hold the scheduler lock before calling this function.
|
||||
inline void cleanup_defer_queue_locked_() {
|
||||
|
||||
Reference in New Issue
Block a user