1
0
mirror of https://github.com/esphome/esphome.git synced 2025-10-23 12:13:49 +01:00
This commit is contained in:
J. Nick Koston
2025-10-16 10:23:01 -10:00
parent b0cefbe507
commit 90c9cb98c6
2 changed files with 37 additions and 23 deletions

View File

@@ -344,6 +344,12 @@ void HOT Scheduler::call(uint32_t now) {
std::unique_ptr<SchedulerItem> item;
{
LockGuard lock(this->lock_);
// SAFETY: Moving out the unique_ptr leaves a nullptr in the vector at defer_queue_front_.
// This is intentional and safe because:
// 1. The vector is only cleaned up by cleanup_defer_queue_() at the end of this function
// 2. Any code iterating defer_queue_ MUST check for nullptr items (see mark_matching_items_removed_
// and has_cancelled_timeout_in_container_ in scheduler.h)
// 3. The lock protects concurrent access, but the nullptr remains until cleanup
item = std::move(this->defer_queue_[this->defer_queue_front_]);
this->defer_queue_front_++;
}
@@ -361,29 +367,7 @@ void HOT Scheduler::call(uint32_t now) {
// Single consumer (main loop), so no lock needed for this check
if (this->defer_queue_front_ >= defer_queue_end) {
LockGuard lock(this->lock_);
// Check if new items were added by producers during processing
if (this->defer_queue_front_ >= this->defer_queue_.size()) {
// Common case: no new items - clear everything
this->defer_queue_.clear();
} else {
// Rare case: new items were added during processing - compact the vector
// This only happens when:
// 1. A deferred callback calls defer() again, or
// 2. Another thread calls defer() while we're processing
//
// Move unprocessed items (added during this loop) to the front for next iteration
//
// SAFETY: Compacted items may include cancelled items (marked for removal via
// cancel_item_locked_() during execution). This is safe because should_skip_item_()
// checks is_item_removed_() before executing, so cancelled items will be skipped
// and recycled on the next loop iteration.
size_t remaining = this->defer_queue_.size() - this->defer_queue_front_;
for (size_t i = 0; i < remaining; i++) {
this->defer_queue_[i] = std::move(this->defer_queue_[this->defer_queue_front_ + i]);
}
this->defer_queue_.resize(remaining);
}
this->defer_queue_front_ = 0;
this->cleanup_defer_queue_locked_();
}
#endif /* not ESPHOME_THREAD_SINGLE */

View File

@@ -264,6 +264,36 @@ class Scheduler {
// Helper to recycle a SchedulerItem
void recycle_item_(std::unique_ptr<SchedulerItem> item);
#ifndef ESPHOME_THREAD_SINGLE
// Helper to cleanup defer_queue_ after processing
// IMPORTANT: Caller must hold the scheduler lock before calling this function.
inline void cleanup_defer_queue_locked_() {
// Check if new items were added by producers during processing
if (this->defer_queue_front_ >= this->defer_queue_.size()) {
// Common case: no new items - clear everything
this->defer_queue_.clear();
} else {
// Rare case: new items were added during processing - compact the vector
// This only happens when:
// 1. A deferred callback calls defer() again, or
// 2. Another thread calls defer() while we're processing
//
// Move unprocessed items (added during this loop) to the front for next iteration
//
// SAFETY: Compacted items may include cancelled items (marked for removal via
// cancel_item_locked_() during execution). This is safe because should_skip_item_()
// checks is_item_removed_() before executing, so cancelled items will be skipped
// and recycled on the next loop iteration.
size_t remaining = this->defer_queue_.size() - this->defer_queue_front_;
for (size_t i = 0; i < remaining; i++) {
this->defer_queue_[i] = std::move(this->defer_queue_[this->defer_queue_front_ + i]);
}
this->defer_queue_.resize(remaining);
}
this->defer_queue_front_ = 0;
}
#endif /* not ESPHOME_THREAD_SINGLE */
// Helper to check if item is marked for removal (platform-specific)
// Returns true if item should be skipped, handles platform-specific synchronization
// For ESPHOME_THREAD_MULTI_NO_ATOMICS platforms, the caller must hold the scheduler lock before calling this