1
0
mirror of https://github.com/esphome/esphome.git synced 2025-09-01 19:02:18 +01:00
This commit is contained in:
J. Nick Koston
2025-08-15 15:39:33 -05:00
parent 6c5632a0b3
commit 405ebe90f5

View File

@@ -256,30 +256,63 @@ void Application::run_powerdown_hooks() {
void Application::teardown_components(uint32_t timeout_ms) {
uint32_t start_time = millis();
// Copy all components in reverse order using reverse iterators
// Use a StaticVector instead of std::vector to avoid heap allocation
// since we know the maximum size at compile time
StaticVector<Component *, ESPHOME_COMPONENT_COUNT> pending_components;
// Copy all components in reverse order
// Reverse order matches the behavior of run_safe_shutdown_hooks() above and ensures
// components are torn down in the opposite order of their setup_priority (which is
// used to sort components during Application::setup())
std::vector<Component *> pending_components(this->components_.rbegin(), this->components_.rend());
size_t num_components = this->components_.size();
for (size_t i = 0; i < num_components; ++i) {
pending_components[i] = this->components_[num_components - 1 - i];
}
uint32_t now = start_time;
while (!pending_components.empty() && (now - start_time) < timeout_ms) {
size_t pending_count = pending_components.size();
// Compaction algorithm for teardown
// ==================================
// We repeatedly call teardown() on each component until it returns true.
// Components that are done are removed using array compaction:
//
// Initial state (all components pending):
// pending_components: [A, B, C, D, E, F]
// pending_count: 6 ^
//
// After first iteration (B and D finish teardown):
// pending_components: [A, C, E, F | B, D] (B, D are still in memory but ignored)
// pending_count: 4 ^
//
// After second iteration (A finishes):
// pending_components: [C, E, F | A, B, D]
// pending_count: 3 ^
//
// The algorithm compacts remaining components to the front of the array,
// tracking only the count of pending components. This avoids expensive
// erase operations while maintaining O(n) complexity per iteration.
while (pending_count > 0 && (now - start_time) < timeout_ms) {
// Feed watchdog during teardown to prevent triggering
this->feed_wdt(now);
// Use iterator to safely erase elements
for (auto it = pending_components.begin(); it != pending_components.end();) {
if ((*it)->teardown()) {
// Component finished teardown, erase it
it = pending_components.erase(it);
} else {
// Component still needs time
++it;
// Process components and compact the array, keeping only those still pending
size_t still_pending = 0;
for (size_t i = 0; i < pending_count; ++i) {
if (!pending_components[i]->teardown()) {
// Component still needs time, keep it in the list
if (still_pending != i) {
pending_components[still_pending] = pending_components[i];
}
++still_pending;
}
// Component finished teardown, skip it (don't increment still_pending)
}
pending_count = still_pending;
// Give some time for I/O operations if components are still pending
if (!pending_components.empty()) {
if (pending_count > 0) {
this->yield_with_select_(1);
}
@@ -287,11 +320,11 @@ void Application::teardown_components(uint32_t timeout_ms) {
now = millis();
}
if (!pending_components.empty()) {
if (pending_count > 0) {
// Note: At this point, connections are either disconnected or in a bad state,
// so this warning will only appear via serial rather than being transmitted to clients
for (auto *component : pending_components) {
ESP_LOGW(TAG, "%s did not complete teardown within %" PRIu32 " ms", component->get_component_source(),
for (size_t i = 0; i < pending_count; ++i) {
ESP_LOGW(TAG, "%s did not complete teardown within %" PRIu32 " ms", pending_components[i]->get_component_source(),
timeout_ms);
}
}