mirror of
				https://github.com/esphome/esphome.git
				synced 2025-10-31 15:12:06 +00:00 
			
		
		
		
	core/scheduler: Make millis_64_ rollover monotonic on SMP
The current implementation uses only memory_order_relaxed on all atomic
accesses. That protects each variable individually but not the semantic
link between the low word (last_millis_) and the high-word epoch counter
(millis_major_). On a multi-core target a reader could observe a freshly
stored low word before seeing the matching increment of the epoch,
causing a ~49-day negative jump.
Key fixes
- Release/acquire pairing
  - writer: compare_exchange_weak(..., memory_order_release, …)
  - reader: first load of last_millis_ now uses memory_order_acquire
  - ensures any core that sees the new low word also sees the updated
    high word
- Epoch-coherency retry loop
  - re-loads millis_major_ after the update and retries if it changed,
    guaranteeing monotonicity even when another core rolls over
    concurrently
- millis_major_ promoted to std::atomic<uint16_t> on SMP platforms
  - removes the formal data race at negligible cost
- new macros for better readability
  - ESPHOME_SINGLE_CORE – currently ESP8266/RP2040 only
  - ESPHOME_ATOMIC_SCHEDULER – all others except LibreTiny
- Logging and comments
  - loads atomics safely in debug output
  - updated inline docs to match the memory ordering
Behavior on single-core or non-atomic platforms is unchanged; multi-core
targets now get a provably monotonic 64-bit millisecond clock with
minimal overhead.
			
			
This commit is contained in:
		| @@ -229,6 +229,16 @@ | ||||
| #define USE_SOCKET_SELECT_SUPPORT | ||||
| #endif | ||||
|  | ||||
| // Helper macro for platforms that lack atomic scheduler support | ||||
| #if defined(USE_ESP8266) || defined(USE_RP2040) | ||||
| #define ESPHOME_SINGLE_CORE | ||||
| #endif | ||||
|  | ||||
| // Helper macro for platforms with atomic scheduler support | ||||
| #if !defined(ESPHOME_SINGLE_CORE) && !defined(USE_LIBRETINY) | ||||
| #define ESPHOME_ATOMIC_SCHEDULER | ||||
| #endif | ||||
|  | ||||
| // Disabled feature flags | ||||
| // #define USE_BSEC   // Requires a library with proprietary license | ||||
| // #define USE_BSEC2  // Requires a library with proprietary license | ||||
|   | ||||
| @@ -54,7 +54,7 @@ static void validate_static_string(const char *name) { | ||||
|     ESP_LOGW(TAG, "WARNING: Scheduler name '%s' at %p might be on heap (static ref at %p)", name, name, static_str); | ||||
|   } | ||||
| } | ||||
| #endif | ||||
| #endif /* ESPHOME_DEBUG_SCHEDULER */ | ||||
|  | ||||
| // A note on locking: the `lock_` lock protects the `items_` and `to_add_` containers. It must be taken when writing to | ||||
| // them (i.e. when adding/removing items, but not when changing items). As items are only deleted from the loop task, | ||||
| @@ -82,9 +82,9 @@ void HOT Scheduler::set_timer_common_(Component *component, SchedulerItem::Type | ||||
|   item->callback = std::move(func); | ||||
|   item->remove = false; | ||||
|  | ||||
| #if !defined(USE_ESP8266) && !defined(USE_RP2040) | ||||
| #ifndef ESPHOME_SINGLE_CORE | ||||
|   // Special handling for defer() (delay = 0, type = TIMEOUT) | ||||
|   // ESP8266 and RP2040 are excluded because they don't need thread-safe defer handling | ||||
|   // Single-core platforms don't need thread-safe defer handling | ||||
|   if (delay == 0 && type == SchedulerItem::TIMEOUT) { | ||||
|     // Put in defer queue for guaranteed FIFO execution | ||||
|     LockGuard guard{this->lock_}; | ||||
| @@ -92,7 +92,7 @@ void HOT Scheduler::set_timer_common_(Component *component, SchedulerItem::Type | ||||
|     this->defer_queue_.push_back(std::move(item)); | ||||
|     return; | ||||
|   } | ||||
| #endif | ||||
| #endif /* not ESPHOME_SINGLE_CORE */ | ||||
|  | ||||
|   // Get fresh timestamp for new timer/interval - ensures accurate scheduling | ||||
|   const auto now = this->millis_64_(millis());  // Fresh millis() call | ||||
| @@ -123,7 +123,7 @@ void HOT Scheduler::set_timer_common_(Component *component, SchedulerItem::Type | ||||
|     ESP_LOGD(TAG, "set_%s(name='%s/%s', %s=%" PRIu32 ", offset=%" PRIu32 ")", type_str, item->get_source(), | ||||
|              name_cstr ? name_cstr : "(null)", type_str, delay, static_cast<uint32_t>(item->next_execution_ - now)); | ||||
|   } | ||||
| #endif | ||||
| #endif /* ESPHOME_DEBUG_SCHEDULER */ | ||||
|  | ||||
|   LockGuard guard{this->lock_}; | ||||
|   // If name is provided, do atomic cancel-and-add | ||||
| @@ -231,7 +231,7 @@ optional<uint32_t> HOT Scheduler::next_schedule_in(uint32_t now) { | ||||
|   return item->next_execution_ - now_64; | ||||
| } | ||||
| void HOT Scheduler::call(uint32_t now) { | ||||
| #if !defined(USE_ESP8266) && !defined(USE_RP2040) | ||||
| #ifndef ESPHOME_SINGLE_CORE | ||||
|   // Process defer queue first to guarantee FIFO execution order for deferred items. | ||||
|   // Previously, defer() used the heap which gave undefined order for equal timestamps, | ||||
|   // causing race conditions on multi-core systems (ESP32, BK7200). | ||||
| @@ -239,8 +239,7 @@ void HOT Scheduler::call(uint32_t now) { | ||||
|   // - Deferred items (delay=0) go directly to defer_queue_ in set_timer_common_ | ||||
|   // - Items execute in exact order they were deferred (FIFO guarantee) | ||||
|   // - No deferred items exist in to_add_, so processing order doesn't affect correctness | ||||
|   // ESP8266 and RP2040 don't use this queue - they fall back to the heap-based approach | ||||
|   // (ESP8266: single-core, RP2040: empty mutex implementation). | ||||
|   // Single-core platforms don't use this queue and fall back to the heap-based approach. | ||||
|   // | ||||
|   // Note: Items cancelled via cancel_item_locked_() are marked with remove=true but still | ||||
|   // processed here. They are removed from the queue normally via pop_front() but skipped | ||||
| @@ -262,7 +261,7 @@ void HOT Scheduler::call(uint32_t now) { | ||||
|       this->execute_item_(item.get(), now); | ||||
|     } | ||||
|   } | ||||
| #endif | ||||
| #endif /* not ESPHOME_SINGLE_CORE */ | ||||
|  | ||||
|   // Convert the fresh timestamp from main loop to 64-bit for scheduler operations | ||||
|   const auto now_64 = this->millis_64_(now);  // 'now' from parameter - fresh from Application::loop() | ||||
| @@ -274,13 +273,15 @@ void HOT Scheduler::call(uint32_t now) { | ||||
|   if (now_64 - last_print > 2000) { | ||||
|     last_print = now_64; | ||||
|     std::vector<std::unique_ptr<SchedulerItem>> old_items; | ||||
| #if !defined(USE_ESP8266) && !defined(USE_RP2040) && !defined(USE_LIBRETINY) | ||||
|     ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%u, %" PRIu32 ")", this->items_.size(), now_64, | ||||
|              this->millis_major_, this->last_millis_.load(std::memory_order_relaxed)); | ||||
| #else | ||||
|     ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%u, %" PRIu32 ")", this->items_.size(), now_64, | ||||
| #ifdef ESPHOME_ATOMIC_SCHEDULER | ||||
|     const auto last_dbg = this->last_millis_.load(std::memory_order_relaxed); | ||||
|     const auto major_dbg = this->millis_major_.load(std::memory_order_relaxed); | ||||
|     ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%" PRIu16 ", %" PRIu32 ")", this->items_.size(), now_64, | ||||
|              major_dbg, last_dbg); | ||||
| #else  /* not ESPHOME_ATOMIC_SCHEDULER */ | ||||
|     ESP_LOGD(TAG, "Items: count=%zu, now=%" PRIu64 " (%" PRIu16 ", %" PRIu32 ")", this->items_.size(), now_64, | ||||
|              this->millis_major_, this->last_millis_); | ||||
| #endif | ||||
| #endif /* else ESPHOME_ATOMIC_SCHEDULER */ | ||||
|     while (!this->empty_()) { | ||||
|       std::unique_ptr<SchedulerItem> item; | ||||
|       { | ||||
| @@ -305,7 +306,7 @@ void HOT Scheduler::call(uint32_t now) { | ||||
|       std::make_heap(this->items_.begin(), this->items_.end(), SchedulerItem::cmp); | ||||
|     } | ||||
|   } | ||||
| #endif  // ESPHOME_DEBUG_SCHEDULER | ||||
| #endif /* ESPHOME_DEBUG_SCHEDULER */ | ||||
|  | ||||
|   // If we have too many items to remove | ||||
|   if (this->to_remove_ > MAX_LOGICALLY_DELETED_ITEMS) { | ||||
| @@ -352,7 +353,7 @@ void HOT Scheduler::call(uint32_t now) { | ||||
|       ESP_LOGV(TAG, "Running %s '%s/%s' with interval=%" PRIu32 " next_execution=%" PRIu64 " (now=%" PRIu64 ")", | ||||
|                item->get_type_str(), item->get_source(), item_name ? item_name : "(null)", item->interval, | ||||
|                item->next_execution_, now_64); | ||||
| #endif | ||||
| #endif /* ESPHOME_DEBUG_SCHEDULER */ | ||||
|  | ||||
|       // Warning: During callback(), a lot of stuff can happen, including: | ||||
|       //  - timeouts/intervals get added, potentially invalidating vector pointers | ||||
| @@ -460,7 +461,7 @@ bool HOT Scheduler::cancel_item_locked_(Component *component, const char *name_c | ||||
|   size_t total_cancelled = 0; | ||||
|  | ||||
|   // Check all containers for matching items | ||||
| #if !defined(USE_ESP8266) && !defined(USE_RP2040) | ||||
| #ifndef ESPHOME_SINGLE_CORE | ||||
|   // Only check defer queue for timeouts (intervals never go there) | ||||
|   if (type == SchedulerItem::TIMEOUT) { | ||||
|     for (auto &item : this->defer_queue_) { | ||||
| @@ -470,7 +471,7 @@ bool HOT Scheduler::cancel_item_locked_(Component *component, const char *name_c | ||||
|       } | ||||
|     } | ||||
|   } | ||||
| #endif | ||||
| #endif /* not ESPHOME_SINGLE_CORE */ | ||||
|  | ||||
|   // Cancel items in the main heap | ||||
|   for (auto &item : this->items_) { | ||||
| @@ -496,7 +497,7 @@ bool HOT Scheduler::cancel_item_locked_(Component *component, const char *name_c | ||||
| uint64_t Scheduler::millis_64_(uint32_t now) { | ||||
|   // THREAD SAFETY NOTE: | ||||
|   // This function can be called from multiple threads simultaneously on ESP32/LibreTiny. | ||||
|   // On single-threaded platforms (ESP8266, RP2040), atomics are not needed. | ||||
|   // On single-core platforms, atomics are not needed. | ||||
|   // | ||||
|   // IMPORTANT: Always pass fresh millis() values to this function. The implementation | ||||
|   // handles out-of-order timestamps between threads, but minimizing time differences | ||||
| @@ -508,99 +509,128 @@ uint64_t Scheduler::millis_64_(uint32_t now) { | ||||
|   // This prevents race conditions at the rollover boundary without requiring | ||||
|   // 64-bit atomics or locking on every call. | ||||
|  | ||||
| #ifdef ESPHOME_ATOMIC_SCHEDULER | ||||
|   for (;;) { | ||||
|     uint16_t major = this->millis_major_.load(std::memory_order_acquire); | ||||
| #else  /* not ESPHOME_ATOMIC_SCHEDULER */ | ||||
|   uint16_t major = this->millis_major_; | ||||
| #endif /* else ESPHOME_ATOMIC_SCHEDULER */ | ||||
|  | ||||
| #ifdef USE_LIBRETINY | ||||
|   // LibreTiny: Multi-threaded but lacks atomic operation support | ||||
|   // TODO: If LibreTiny ever adds atomic support, remove this entire block and | ||||
|   // let it fall through to the atomic-based implementation below | ||||
|   // We need to use a lock when near the rollover boundary to prevent races | ||||
|   uint32_t last = this->last_millis_; | ||||
|     // LibreTiny: Multi-threaded but lacks atomic operation support | ||||
|     // TODO: If LibreTiny ever adds atomic support, remove this entire block and | ||||
|     // let it fall through to the atomic-based implementation below | ||||
|     // We need to use a lock when near the rollover boundary to prevent races | ||||
|     uint32_t last = this->last_millis_; | ||||
|  | ||||
|   // Define a safe window around the rollover point (10 seconds) | ||||
|   // This covers any reasonable scheduler delays or thread preemption | ||||
|   static const uint32_t ROLLOVER_WINDOW = 10000;  // 10 seconds in milliseconds | ||||
|     // Define a safe window around the rollover point (10 seconds) | ||||
|     // This covers any reasonable scheduler delays or thread preemption | ||||
|     static const uint32_t ROLLOVER_WINDOW = 10000;  // 10 seconds in milliseconds | ||||
|  | ||||
|   // Check if we're near the rollover boundary (close to std::numeric_limits<uint32_t>::max() or just past 0) | ||||
|   bool near_rollover = (last > (std::numeric_limits<uint32_t>::max() - ROLLOVER_WINDOW)) || (now < ROLLOVER_WINDOW); | ||||
|     // Check if we're near the rollover boundary (close to std::numeric_limits<uint32_t>::max() or just past 0) | ||||
|     bool near_rollover = (last > (std::numeric_limits<uint32_t>::max() - ROLLOVER_WINDOW)) || (now < ROLLOVER_WINDOW); | ||||
|  | ||||
|   if (near_rollover || (now < last && (last - now) > HALF_MAX_UINT32)) { | ||||
|     // Near rollover or detected a rollover - need lock for safety | ||||
|     LockGuard guard{this->lock_}; | ||||
|     // Re-read with lock held | ||||
|     last = this->last_millis_; | ||||
|     if (near_rollover || (now < last && (last - now) > HALF_MAX_UINT32)) { | ||||
|       // Near rollover or detected a rollover - need lock for safety | ||||
|       LockGuard guard{this->lock_}; | ||||
|       // Re-read with lock held | ||||
|       last = this->last_millis_; | ||||
|  | ||||
|     if (now < last && (last - now) > HALF_MAX_UINT32) { | ||||
|       // True rollover detected (happens every ~49.7 days) | ||||
|       this->millis_major_++; | ||||
|       if (now < last && (last - now) > HALF_MAX_UINT32) { | ||||
|         // True rollover detected (happens every ~49.7 days) | ||||
|         this->millis_major_++; | ||||
|         major++; | ||||
| #ifdef ESPHOME_DEBUG_SCHEDULER | ||||
|       ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last); | ||||
| #endif | ||||
|         ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last); | ||||
| #endif /* ESPHOME_DEBUG_SCHEDULER */ | ||||
|       } | ||||
|       // Update last_millis_ while holding lock | ||||
|       this->last_millis_ = now; | ||||
|     } else if (now > last) { | ||||
|       // Normal case: Not near rollover and time moved forward | ||||
|       // Update without lock. While this may cause minor races (microseconds of | ||||
|       // backwards time movement), they're acceptable because: | ||||
|       // 1. The scheduler operates at millisecond resolution, not microsecond | ||||
|       // 2. We've already prevented the critical rollover race condition | ||||
|       // 3. Any backwards movement is orders of magnitude smaller than scheduler delays | ||||
|       this->last_millis_ = now; | ||||
|     } | ||||
|     // Update last_millis_ while holding lock | ||||
|     this->last_millis_ = now; | ||||
|   } else if (now > last) { | ||||
|     // Normal case: Not near rollover and time moved forward | ||||
|     // Update without lock. While this may cause minor races (microseconds of | ||||
|     // backwards time movement), they're acceptable because: | ||||
|     // 1. The scheduler operates at millisecond resolution, not microsecond | ||||
|     // 2. We've already prevented the critical rollover race condition | ||||
|     // 3. Any backwards movement is orders of magnitude smaller than scheduler delays | ||||
|     this->last_millis_ = now; | ||||
|   } | ||||
|   // If now <= last and we're not near rollover, don't update | ||||
|   // This minimizes backwards time movement | ||||
|     // If now <= last and we're not near rollover, don't update | ||||
|     // This minimizes backwards time movement | ||||
|  | ||||
| #elif !defined(USE_ESP8266) && !defined(USE_RP2040) | ||||
|   // Multi-threaded platforms with atomic support (ESP32) | ||||
|   uint32_t last = this->last_millis_.load(std::memory_order_relaxed); | ||||
| #elif defined(ESPHOME_ATOMIC_SCHEDULER) | ||||
|   /* | ||||
|    * Multi-threaded platforms with atomic support (ESP32) | ||||
|    * Acquire so that if we later decide **not** to take the lock we still | ||||
|    * observe a `millis_major_` value coherent with the loaded `last_millis_`. | ||||
|    * The acquire load ensures any later read of `millis_major_` sees its | ||||
|    * corresponding increment. | ||||
|    */ | ||||
|   uint32_t last = this->last_millis_.load(std::memory_order_acquire); | ||||
|  | ||||
|   // If we might be near a rollover (large backwards jump), take the lock for the entire operation | ||||
|   // This ensures rollover detection and last_millis_ update are atomic together | ||||
|   if (now < last && (last - now) > HALF_MAX_UINT32) { | ||||
|     // Potential rollover - need lock for atomic rollover detection + update | ||||
|     LockGuard guard{this->lock_}; | ||||
|     // Re-read with lock held | ||||
|     // Re-read with lock held; mutex already provides ordering | ||||
|     last = this->last_millis_.load(std::memory_order_relaxed); | ||||
|  | ||||
|     if (now < last && (last - now) > HALF_MAX_UINT32) { | ||||
|       // True rollover detected (happens every ~49.7 days) | ||||
|       this->millis_major_++; | ||||
|       this->millis_major_.fetch_add(1, std::memory_order_relaxed); | ||||
|       major++; | ||||
| #ifdef ESPHOME_DEBUG_SCHEDULER | ||||
|       ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last); | ||||
| #endif | ||||
| #endif /* ESPHOME_DEBUG_SCHEDULER */ | ||||
|     } | ||||
|     // Update last_millis_ while holding lock to prevent races | ||||
|     this->last_millis_.store(now, std::memory_order_relaxed); | ||||
|     /* | ||||
|      * Update last_millis_ while holding the lock to prevent races | ||||
|      * Publish the new low-word *after* bumping `millis_major_` (done above) | ||||
|      * so readers never see a mismatched pair. | ||||
|      */ | ||||
|     this->last_millis_.store(now, std::memory_order_release); | ||||
|   } else { | ||||
|     // Normal case: Try lock-free update, but only allow forward movement within same epoch | ||||
|     // This prevents accidentally moving backwards across a rollover boundary | ||||
|     while (now > last && (now - last) < HALF_MAX_UINT32) { | ||||
|       if (this->last_millis_.compare_exchange_weak(last, now, std::memory_order_relaxed)) { | ||||
|       if (this->last_millis_.compare_exchange_weak(last, now, | ||||
|                                                    std::memory_order_release,     // success | ||||
|                                                    std::memory_order_relaxed)) {  // failure | ||||
|         break; | ||||
|       } | ||||
|       // CAS failure means no data was published; relaxed is fine | ||||
|       // last is automatically updated by compare_exchange_weak if it fails | ||||
|     } | ||||
|   } | ||||
|  | ||||
| #else | ||||
|   // Single-threaded platforms (ESP8266, RP2040): No atomics needed | ||||
| #else  /* not USE_LIBRETINY; not ESPHOME_ATOMIC_SCHEDULER */ | ||||
|   // Single-core platforms: No atomics needed | ||||
|   uint32_t last = this->last_millis_; | ||||
|  | ||||
|   // Check for rollover | ||||
|   if (now < last && (last - now) > HALF_MAX_UINT32) { | ||||
|     this->millis_major_++; | ||||
|     major++; | ||||
| #ifdef ESPHOME_DEBUG_SCHEDULER | ||||
|     ESP_LOGD(TAG, "Detected true 32-bit rollover at %" PRIu32 "ms (was %" PRIu32 ")", now, last); | ||||
| #endif | ||||
| #endif /* ESPHOME_DEBUG_SCHEDULER */ | ||||
|   } | ||||
|  | ||||
|   // Only update if time moved forward | ||||
|   if (now > last) { | ||||
|     this->last_millis_ = now; | ||||
|   } | ||||
| #endif | ||||
| #endif /* else (USE_LIBRETINY / ESPHOME_ATOMIC_SCHEDULER) */ | ||||
|  | ||||
| #ifdef ESPHOME_ATOMIC_SCHEDULER | ||||
|     uint16_t major_end = this->millis_major_.load(std::memory_order_relaxed); | ||||
|     if (major_end == major) | ||||
|       return now + (static_cast<uint64_t>(major) << 32); | ||||
|   } | ||||
| #else  /* not ESPHOME_ATOMIC_SCHEDULER */ | ||||
|   // Combine major (high 32 bits) and now (low 32 bits) into 64-bit time | ||||
|   return now + (static_cast<uint64_t>(this->millis_major_) << 32); | ||||
|   return now + (static_cast<uint64_t>(major) << 32); | ||||
| #endif /* ESPHOME_ATOMIC_SCHEDULER */ | ||||
| } | ||||
|  | ||||
| bool HOT Scheduler::SchedulerItem::cmp(const std::unique_ptr<SchedulerItem> &a, | ||||
|   | ||||
| @@ -1,10 +1,11 @@ | ||||
| #pragma once | ||||
|  | ||||
| #include "esphome/core/defines.h" | ||||
| #include <vector> | ||||
| #include <memory> | ||||
| #include <cstring> | ||||
| #include <deque> | ||||
| #if !defined(USE_ESP8266) && !defined(USE_RP2040) && !defined(USE_LIBRETINY) | ||||
| #ifdef ESPHOME_ATOMIC_SCHEDULER | ||||
| #include <atomic> | ||||
| #endif | ||||
|  | ||||
| @@ -204,22 +205,37 @@ class Scheduler { | ||||
|   Mutex lock_; | ||||
|   std::vector<std::unique_ptr<SchedulerItem>> items_; | ||||
|   std::vector<std::unique_ptr<SchedulerItem>> to_add_; | ||||
| #if !defined(USE_ESP8266) && !defined(USE_RP2040) | ||||
|   // ESP8266 and RP2040 don't need the defer queue because: | ||||
|   // ESP8266: Single-core with no preemptive multitasking | ||||
|   // RP2040: Currently has empty mutex implementation in ESPHome | ||||
|   // Both platforms save 40 bytes of RAM by excluding this | ||||
| #ifndef ESPHOME_SINGLE_CORE | ||||
|   // Single-core platforms don't need the defer queue and save 40 bytes of RAM | ||||
|   std::deque<std::unique_ptr<SchedulerItem>> defer_queue_;  // FIFO queue for defer() calls | ||||
| #endif | ||||
| #if !defined(USE_ESP8266) && !defined(USE_RP2040) && !defined(USE_LIBRETINY) | ||||
|   // Multi-threaded platforms with atomic support: last_millis_ needs atomic for lock-free updates | ||||
| #endif                                                      /* ESPHOME_SINGLE_CORE */ | ||||
| #ifdef ESPHOME_ATOMIC_SCHEDULER | ||||
|   /* | ||||
|    * Multi-threaded platforms with atomic support: last_millis_ needs atomic for lock-free updates | ||||
|    * | ||||
|    * MEMORY-ORDERING NOTE | ||||
|    * -------------------- | ||||
|    * `last_millis_` and `millis_major_` form a single 64-bit timestamp split in half. | ||||
|    * Writers publish `last_millis_` with memory_order_release and readers use | ||||
|    * memory_order_acquire. This ensures that once a reader sees the new low word, | ||||
|    * it also observes the corresponding increment of `millis_major_`. | ||||
|    */ | ||||
|   std::atomic<uint32_t> last_millis_{0}; | ||||
| #else | ||||
| #else  /* not ESPHOME_ATOMIC_SCHEDULER */ | ||||
|   // Platforms without atomic support or single-threaded platforms | ||||
|   uint32_t last_millis_{0}; | ||||
| #endif | ||||
|   // millis_major_ is protected by lock when incrementing | ||||
| #endif /* else ESPHOME_ATOMIC_SCHEDULER */ | ||||
|   /* | ||||
|    * Upper 16 bits of the 64-bit millis counter. Incremented only while holding | ||||
|    * `lock_`; read concurrently. Atomic (relaxed) avoids a formal data race. | ||||
|    * Ordering relative to `last_millis_` is provided by its release store and the | ||||
|    * corresponding acquire loads. | ||||
|    */ | ||||
| #ifdef ESPHOME_ATOMIC_SCHEDULER | ||||
|   std::atomic<uint16_t> millis_major_{0}; | ||||
| #else  /* not ESPHOME_ATOMIC_SCHEDULER */ | ||||
|   uint16_t millis_major_{0}; | ||||
| #endif /* else ESPHOME_ATOMIC_SCHEDULER */ | ||||
|   uint32_t to_remove_{0}; | ||||
| }; | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user