1
0
mirror of https://github.com/esphome/esphome.git synced 2025-10-22 19:53:46 +01:00

[docs] Add embedded systems optimization and state management best practices to CLAUDE.md

This commit is contained in:
J. Nick Koston
2025-10-13 18:26:45 -10:00
parent 8e9a68a107
commit 0f43f4cbbf

View File

@@ -221,6 +221,70 @@ This document provides essential context for AI models interacting with this pro
* **Component Development:** Keep dependencies minimal, provide clear error messages, and write comprehensive docstrings and tests.
* **Code Generation:** Generate minimal and efficient C++ code. Validate all user inputs thoroughly. Support multiple platform variations.
* **Configuration Design:** Aim for simplicity with sensible defaults, while allowing for advanced customization.
* **Embedded Systems Optimization:** ESPHome targets resource-constrained microcontrollers. Be mindful of flash size and RAM usage.
**STL Container Guidelines:**
ESPHome runs on embedded systems with limited resources. Choose containers carefully:
1. **Compile-time-known sizes:** Use `std::array` instead of `std::vector` when size is known at compile time.
```cpp
// Bad - generates STL realloc code
std::vector<int> values;
// Good - no dynamic allocation
std::array<int, MAX_VALUES> values;
```
Use `cg.add_define("MAX_VALUES", count)` to set the size from Python configuration.
**For byte buffers:** Avoid `std::vector<uint8_t>` unless the buffer needs to grow. Use `std::unique_ptr<uint8_t[]>` instead.
```cpp
// Bad - STL overhead for simple byte buffer
std::vector<uint8_t> buffer;
buffer.resize(256);
// Good - minimal overhead, single allocation
std::unique_ptr<uint8_t[]> buffer = std::make_unique<uint8_t[]>(256);
// Or if size is constant:
std::array<uint8_t, 256> buffer;
```
2. **Small datasets (1-16 elements):** Use `std::vector` or `std::array` with simple structs instead of `std::map`/`std::set`/`std::unordered_map`.
```cpp
// Bad - 2KB+ overhead for red-black tree/hash table
std::map<std::string, int> small_lookup;
std::unordered_map<int, std::string> tiny_map;
// Good - simple struct with linear search (std::vector is fine)
struct LookupEntry {
const char *key;
int value;
};
std::vector<LookupEntry> small_lookup = {
{"key1", 10},
{"key2", 20},
{"key3", 30},
};
// Or std::array if size is compile-time constant:
// std::array<LookupEntry, 3> small_lookup = {{ ... }};
```
Linear search on small datasets (1-16 elements) is faster than hashing/tree overhead. `std::vector` with simple structs is perfectly fine - it's the heavy containers (`map`, `set`, `unordered_map`) that should be avoided for small datasets.
3. **Detection:** Look for these patterns in compiler output:
- Large code sections with STL symbols (vector, map, set)
- `alloc`, `realloc`, `dealloc` in symbol names
- Red-black tree code (`rb_tree`, `_Rb_tree`)
- Hash table infrastructure (`unordered_map`, `hash`)
**When to optimize:**
- Core components (API, network, logger)
- Widely-used components (mdns, wifi, ble)
- Components causing flash size complaints
**When not to optimize:**
- Single-use niche components
- Code where readability matters more than bytes
- Already using appropriate containers
* **Security:** Be mindful of security when making changes to the API, web server, or any other network-related code. Do not hardcode secrets or keys.