mirror of
https://github.com/esphome/esphome.git
synced 2025-10-22 03:33:52 +01:00
[docs] Add embedded systems optimization and state management best practices to CLAUDE.md
This commit is contained in:
@@ -221,6 +221,70 @@ This document provides essential context for AI models interacting with this pro
|
||||
* **Component Development:** Keep dependencies minimal, provide clear error messages, and write comprehensive docstrings and tests.
|
||||
* **Code Generation:** Generate minimal and efficient C++ code. Validate all user inputs thoroughly. Support multiple platform variations.
|
||||
* **Configuration Design:** Aim for simplicity with sensible defaults, while allowing for advanced customization.
|
||||
* **Embedded Systems Optimization:** ESPHome targets resource-constrained microcontrollers. Be mindful of flash size and RAM usage.
|
||||
|
||||
**STL Container Guidelines:**
|
||||
|
||||
ESPHome runs on embedded systems with limited resources. Choose containers carefully:
|
||||
|
||||
1. **Compile-time-known sizes:** Use `std::array` instead of `std::vector` when size is known at compile time.
|
||||
```cpp
|
||||
// Bad - generates STL realloc code
|
||||
std::vector<int> values;
|
||||
|
||||
// Good - no dynamic allocation
|
||||
std::array<int, MAX_VALUES> values;
|
||||
```
|
||||
Use `cg.add_define("MAX_VALUES", count)` to set the size from Python configuration.
|
||||
|
||||
**For byte buffers:** Avoid `std::vector<uint8_t>` unless the buffer needs to grow. Use `std::unique_ptr<uint8_t[]>` instead.
|
||||
```cpp
|
||||
// Bad - STL overhead for simple byte buffer
|
||||
std::vector<uint8_t> buffer;
|
||||
buffer.resize(256);
|
||||
|
||||
// Good - minimal overhead, single allocation
|
||||
std::unique_ptr<uint8_t[]> buffer = std::make_unique<uint8_t[]>(256);
|
||||
// Or if size is constant:
|
||||
std::array<uint8_t, 256> buffer;
|
||||
```
|
||||
|
||||
2. **Small datasets (1-16 elements):** Use `std::vector` or `std::array` with simple structs instead of `std::map`/`std::set`/`std::unordered_map`.
|
||||
```cpp
|
||||
// Bad - 2KB+ overhead for red-black tree/hash table
|
||||
std::map<std::string, int> small_lookup;
|
||||
std::unordered_map<int, std::string> tiny_map;
|
||||
|
||||
// Good - simple struct with linear search (std::vector is fine)
|
||||
struct LookupEntry {
|
||||
const char *key;
|
||||
int value;
|
||||
};
|
||||
std::vector<LookupEntry> small_lookup = {
|
||||
{"key1", 10},
|
||||
{"key2", 20},
|
||||
{"key3", 30},
|
||||
};
|
||||
// Or std::array if size is compile-time constant:
|
||||
// std::array<LookupEntry, 3> small_lookup = {{ ... }};
|
||||
```
|
||||
Linear search on small datasets (1-16 elements) is faster than hashing/tree overhead. `std::vector` with simple structs is perfectly fine - it's the heavy containers (`map`, `set`, `unordered_map`) that should be avoided for small datasets.
|
||||
|
||||
3. **Detection:** Look for these patterns in compiler output:
|
||||
- Large code sections with STL symbols (vector, map, set)
|
||||
- `alloc`, `realloc`, `dealloc` in symbol names
|
||||
- Red-black tree code (`rb_tree`, `_Rb_tree`)
|
||||
- Hash table infrastructure (`unordered_map`, `hash`)
|
||||
|
||||
**When to optimize:**
|
||||
- Core components (API, network, logger)
|
||||
- Widely-used components (mdns, wifi, ble)
|
||||
- Components causing flash size complaints
|
||||
|
||||
**When not to optimize:**
|
||||
- Single-use niche components
|
||||
- Code where readability matters more than bytes
|
||||
- Already using appropriate containers
|
||||
|
||||
* **Security:** Be mindful of security when making changes to the API, web server, or any other network-related code. Do not hardcode secrets or keys.
|
||||
|
||||
|
Reference in New Issue
Block a user