1
0
mirror of https://github.com/esphome/esphome.git synced 2025-10-31 07:03:55 +00:00

Merge branch 'integration' into memory_api

This commit is contained in:
J. Nick Koston
2025-10-25 14:59:11 -07:00
2 changed files with 62 additions and 51 deletions

View File

@@ -175,11 +175,66 @@ void USBUartComponent::reset_input_state_(USBUartChannel *channel) {
}
void USBUartComponent::restart_input_(USBUartChannel *channel) {
// Atomically check if still started and clear it before calling start_input
// This prevents race with concurrent restart attempts from different threads
// Atomically verify it's still started (true) and keep it started
// This prevents the race window of toggling true->false->true
bool expected = true;
if (channel->input_started_.compare_exchange_strong(expected, false)) {
if (channel->input_started_.compare_exchange_strong(expected, true)) {
// Still started - do the actual restart work without toggling the flag
this->do_start_input_(channel);
}
}
void USBUartComponent::do_start_input_(USBUartChannel *channel) {
// This function does the actual work of starting input
// Caller must ensure input_started_ is already set to true
const auto *ep = channel->cdc_dev_.in_ep;
// CALLBACK CONTEXT: This lambda is executed in USB task via transfer_callback
auto callback = [this, channel](const usb_host::TransferStatus &status) {
ESP_LOGV(TAG, "Transfer result: length: %u; status %X", status.data_len, status.error_code);
if (!status.success) {
ESP_LOGE(TAG, "Control transfer failed, status=%s", esp_err_to_name(status.error_code));
// Transfer failed, slot already released
// Reset state so normal operations can restart later
this->reset_input_state_(channel);
return;
}
if (!channel->dummy_receiver_ && status.data_len > 0) {
// Allocate a chunk from the pool
UsbDataChunk *chunk = this->chunk_pool_.allocate();
if (chunk == nullptr) {
// No chunks available - queue is full, data dropped, slot already released
this->usb_data_queue_.increment_dropped_count();
// Reset state so normal operations can restart later
this->reset_input_state_(channel);
return;
}
// Copy data to chunk (this is fast, happens in USB task)
memcpy(chunk->data, status.data, status.data_len);
chunk->length = status.data_len;
chunk->channel = channel;
// Push to lock-free queue for main loop processing
// Push always succeeds because pool size == queue size
this->usb_data_queue_.push(chunk);
}
// On success, reset retry count and restart input immediately from USB task for performance
// The lock-free queue will handle backpressure
channel->input_retry_count_.store(0);
channel->input_started_.store(false);
this->start_input(channel);
};
// input_started_ already set to true by caller
auto result = this->transfer_in(ep->bEndpointAddress, callback, ep->wMaxPacketSize);
if (result == usb_host::TRANSFER_ERROR_NO_SLOTS) {
// No slots available - defer retry to main loop
this->defer_input_retry_(channel);
} else if (result != usb_host::TRANSFER_OK) {
// Other error (submit failed) - don't retry, just reset state
// Error already logged by transfer_in()
this->reset_input_state_(channel);
}
}
@@ -251,6 +306,7 @@ void USBUartComponent::start_input(USBUartChannel *channel) {
bool expected = false;
if (!channel->input_started_.compare_exchange_strong(expected, true))
return; // Already started - prevents duplicate transfers from concurrent threads
// THREAD CONTEXT: Called from both USB task and main loop threads
// - USB task: Immediate restart after successful transfer for continuous data flow
// - Main loop: Controlled restart after consuming data (backpressure mechanism)
@@ -261,55 +317,9 @@ void USBUartComponent::start_input(USBUartChannel *channel) {
//
// The underlying transfer_in() uses lock-free atomic allocation from the
// TransferRequest pool, making this multi-threaded access safe
const auto *ep = channel->cdc_dev_.in_ep;
// CALLBACK CONTEXT: This lambda is executed in USB task via transfer_callback
auto callback = [this, channel](const usb_host::TransferStatus &status) {
ESP_LOGV(TAG, "Transfer result: length: %u; status %X", status.data_len, status.error_code);
if (!status.success) {
ESP_LOGE(TAG, "Control transfer failed, status=%s", esp_err_to_name(status.error_code));
// Transfer failed, slot already released
// Reset state so normal operations can restart later
this->reset_input_state_(channel);
return;
}
if (!channel->dummy_receiver_ && status.data_len > 0) {
// Allocate a chunk from the pool
UsbDataChunk *chunk = this->chunk_pool_.allocate();
if (chunk == nullptr) {
// No chunks available - queue is full, data dropped, slot already released
this->usb_data_queue_.increment_dropped_count();
// Reset state so normal operations can restart later
this->reset_input_state_(channel);
return;
}
// Copy data to chunk (this is fast, happens in USB task)
memcpy(chunk->data, status.data, status.data_len);
chunk->length = status.data_len;
chunk->channel = channel;
// Push to lock-free queue for main loop processing
// Push always succeeds because pool size == queue size
this->usb_data_queue_.push(chunk);
}
// On success, reset retry count and restart input immediately from USB task for performance
// The lock-free queue will handle backpressure
channel->input_retry_count_.store(0);
channel->input_started_.store(false);
this->start_input(channel);
};
// input_started_ already set to true by compare_exchange_strong above
auto result = this->transfer_in(ep->bEndpointAddress, callback, ep->wMaxPacketSize);
if (result == usb_host::TRANSFER_ERROR_NO_SLOTS) {
// No slots available - defer retry to main loop
this->defer_input_retry_(channel);
} else if (result != usb_host::TRANSFER_OK) {
// Other error (submit failed) - don't retry, just reset state
// Error already logged by transfer_in()
this->reset_input_state_(channel);
}
// Do the actual work (input_started_ already set to true by CAS above)
this->do_start_input_(channel);
}
void USBUartComponent::start_output(USBUartChannel *channel) {

View File

@@ -144,6 +144,7 @@ class USBUartComponent : public usb_host::USBClient {
void defer_input_retry_(USBUartChannel *channel);
void reset_input_state_(USBUartChannel *channel);
void restart_input_(USBUartChannel *channel);
void do_start_input_(USBUartChannel *channel);
std::vector<USBUartChannel *> channels_{};
};