1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-19 12:24:32 +00:00
Sergei Trofimov 2ee9b40527 classifiers: usability updates
- add IterationResult-level classifiers that get merged into every
  added metric (saves having to pass the same classifiers to each
  metric added).
- Added a global alias to csv result processor's  use_all_classifiers
  attribute.
2015-06-11 17:45:09 +01:00

163 lines
5.7 KiB
Python

# Copyright 2013-2015 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# pylint: disable=R0201
"""
This module contains a few "standard" result processors that write results to
text files in various formats.
"""
import os
import csv
import json
from wlauto import ResultProcessor, Parameter
from wlauto.exceptions import ConfigError
from wlauto.utils.types import list_of_strings
class StandardProcessor(ResultProcessor):
name = 'standard'
description = """
Creates a ``result.txt`` file for every iteration that contains metrics
for that iteration.
The metrics are written in ::
metric = value [units]
format.
"""
def process_iteration_result(self, result, context):
outfile = os.path.join(context.output_directory, 'result.txt')
with open(outfile, 'w') as wfh:
for metric in result.metrics:
line = '{} = {}'.format(metric.name, metric.value)
if metric.units:
line = ' '.join([line, metric.units])
line += '\n'
wfh.write(line)
context.add_artifact('iteration_result', 'result.txt', 'export')
class CsvReportProcessor(ResultProcessor):
"""
Creates a ``results.csv`` in the output directory containing results for
all iterations in CSV format, each line containing a single metric.
"""
name = 'csv'
parameters = [
Parameter('use_all_classifiers', kind=bool, default=False,
global_alias='use_all_classifiers',
description="""
If set to ``True``, this will add a column for every classifier
that features in at least one collected metric.
.. note:: This cannot be ``True`` if ``extra_columns`` is set.
"""),
Parameter('extra_columns', kind=list_of_strings,
description="""
List of classifiers to use as columns.
.. note:: This cannot be set if ``use_all_classifiers`` is ``True``.
"""),
]
def validate(self):
if self.use_all_classifiers and self.extra_columns:
raise ConfigError('extra_columns cannot be specified when use_all_classifiers is True')
def process_run_result(self, result, context):
if self.use_all_classifiers:
classifiers = set([])
for ir in result.iteration_results:
for metric in ir.metrics:
classifiers.update(metric.classifiers.keys())
extra_columns = list(classifiers)
elif self.extra_columns:
extra_columns = self.extra_columns
else:
extra_columns = []
outfile = os.path.join(context.run_output_directory, 'results.csv')
with open(outfile, 'wb') as wfh:
writer = csv.writer(wfh)
writer.writerow(['id', 'workload', 'iteration', 'metric', ] +
extra_columns + ['value', 'units'])
for ir in result.iteration_results:
for metric in ir.metrics:
row = ([ir.id, ir.spec.label, ir.iteration, metric.name] +
[str(metric.classifiers.get(c) or '') for c in extra_columns] +
[str(metric.value), metric.units or ''])
writer.writerow(row)
context.add_artifact('run_result_csv', 'results.csv', 'export')
class JsonReportProcessor(ResultProcessor):
"""
Creates a ``results.json`` in the output directory containing results for
all iterations in JSON format.
"""
name = 'json'
def process_run_result(self, result, context):
outfile = os.path.join(context.run_output_directory, 'results.json')
with open(outfile, 'wb') as wfh:
output = []
for result in result.iteration_results:
output.append({
'id': result.id,
'workload': result.workload.name,
'iteration': result.iteration,
'metrics': [dict([(k, v) for k, v in m.__dict__.iteritems()
if not k.startswith('_')])
for m in result.metrics],
})
json.dump(output, wfh, indent=4)
context.add_artifact('run_result_json', 'results.json', 'export')
class SummaryCsvProcessor(ResultProcessor):
"""
Similar to csv result processor, but only contains workloads' summary metrics.
"""
name = 'summary_csv'
def process_run_result(self, result, context):
outfile = os.path.join(context.run_output_directory, 'summary.csv')
with open(outfile, 'wb') as wfh:
writer = csv.writer(wfh)
writer.writerow(['id', 'workload', 'iteration', 'metric', 'value', 'units'])
for result in result.iteration_results:
for metric in result.metrics:
if metric.name in result.workload.summary_metrics:
row = [result.id, result.workload.name, result.iteration,
metric.name, str(metric.value), metric.units or '']
writer.writerow(row)
context.add_artifact('run_result_summary', 'summary.csv', 'export')