mirror of
https://github.com/ARM-software/workload-automation.git
synced 2025-01-19 12:24:32 +00:00
f12cf6d557
- Corrected the depency for opencv bindings. Even though the library is imported as "cv2", the package containing it is called "opencv-python". - pylint: ignore no-member warnings; cv2 pulls it's memebers dynamically from the underlying libopencv, so pylint can't see them.
152 lines
5.1 KiB
Python
Executable File
152 lines
5.1 KiB
Python
Executable File
# Copyright 2013-2016 ARM Limited
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# pylint: disable=no-member
|
|
|
|
|
|
"""
|
|
State detection functionality for revent workloads. Uses OpenCV to analyse screenshots from the device.
|
|
Requires a 'statedetection' directory in the workload directory that includes the state definition yaml file,
|
|
and the 'templates' folder with PNGs of all templates mentioned in the yaml file.
|
|
|
|
Requires the following Python libraries:
|
|
numpy, pyyaml (yaml), imutils and opencv-python
|
|
|
|
"""
|
|
|
|
import os
|
|
|
|
import yaml
|
|
try:
|
|
import numpy as np
|
|
except ImportError:
|
|
np = None
|
|
try:
|
|
import cv2
|
|
except ImportError:
|
|
cv2 = None
|
|
try:
|
|
import imutils
|
|
except ImportError:
|
|
imutils = None
|
|
|
|
from wlauto.exceptions import HostError
|
|
|
|
|
|
class StateDefinitionError(RuntimeError):
|
|
pass
|
|
|
|
|
|
def auto_canny(image, sigma=0.33):
|
|
# compute the median of the single channel pixel intensities
|
|
v = np.median(image)
|
|
|
|
# apply automatic Canny edge detection using the computed median
|
|
lower = int(max(0, (1.0 - sigma) * v))
|
|
upper = int(min(255, (1.0 + sigma) * v))
|
|
edged = cv2.Canny(image, lower, upper)
|
|
|
|
# return the edged image
|
|
return edged
|
|
|
|
|
|
def check_match_state_dependencies():
|
|
if np is None or cv2 is None or imutils is None:
|
|
raise HostError("State detection requires numpy, opencv (cv2) and imutils.")
|
|
|
|
|
|
def match_state(screenshot_file, defpath, state_definitions): # pylint: disable=too-many-locals
|
|
# check dependencies
|
|
check_match_state_dependencies()
|
|
|
|
# check if file exists, then load screenshot into opencv and create edge map
|
|
if not os.path.isfile(screenshot_file):
|
|
raise StateDefinitionError("Screenshot file not found")
|
|
img_rgb = cv2.imread(screenshot_file)
|
|
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
|
|
img_edge = auto_canny(img_gray)
|
|
|
|
# make a list of all templates defined in the state definitions
|
|
template_list = []
|
|
for state in state_definitions["workload_states"]:
|
|
template_list.extend(state["templates"])
|
|
|
|
# check all template PNGs exist
|
|
for template_png in template_list:
|
|
if not os.path.isfile(os.path.join(defpath, 'templates', template_png + '.png')):
|
|
raise StateDefinitionError("Missing template PNG file: " + template_png + ".png")
|
|
|
|
# try to match each PNG
|
|
matched_templates = []
|
|
for template_png in template_list:
|
|
template = cv2.imread(os.path.join(defpath, 'templates', template_png + '.png'), 0)
|
|
template_edge = auto_canny(template)
|
|
template_height, template_width = template_edge.shape[:2]
|
|
|
|
# loop over the scales of the image
|
|
for scale in np.linspace(1.4, 0.6, 61):
|
|
resized = imutils.resize(img_edge, width=int(img_edge.shape[1] * scale))
|
|
|
|
# skip if the resized image is smaller than the template
|
|
if resized.shape[0] < template_height or resized.shape[1] < template_width:
|
|
break
|
|
|
|
res = cv2.matchTemplate(resized, template_edge, cv2.TM_CCOEFF_NORMED)
|
|
threshold = 0.4
|
|
loc = np.where(res >= threshold)
|
|
zipped = zip(*loc[::-1])
|
|
|
|
if len(zipped) > 0:
|
|
matched_templates.append(template_png)
|
|
break
|
|
|
|
# determine the state according to the matched templates
|
|
matched_state = "none"
|
|
for state in state_definitions["workload_states"]:
|
|
# look in the matched templates list for each template of this state
|
|
match_count = 0
|
|
for template in state["templates"]:
|
|
if template in matched_templates:
|
|
match_count += 1
|
|
|
|
if match_count >= state["matches"]:
|
|
# we have a match
|
|
matched_state = state["state_name"]
|
|
break
|
|
|
|
return matched_state
|
|
|
|
|
|
def verify_state(screenshot_file, state_defs_path, workload_phase):
|
|
# load and parse state definition file
|
|
statedefs_file = os.path.join(state_defs_path, 'definition.yaml')
|
|
if not os.path.isfile(statedefs_file):
|
|
raise StateDefinitionError("Missing state definitions yaml file: " + statedefs_file)
|
|
with open(statedefs_file) as fh:
|
|
state_definitions = yaml.load(fh)
|
|
|
|
# run a match on the screenshot
|
|
matched_state = match_state(screenshot_file, state_defs_path, state_definitions)
|
|
|
|
# find what the expected state is for the given workload phase
|
|
expected_state = None
|
|
for phase in state_definitions["workload_phases"]:
|
|
if phase["phase_name"] == workload_phase:
|
|
expected_state = phase["expected_state"]
|
|
|
|
if expected_state is None:
|
|
raise StateDefinitionError("Phase not defined")
|
|
|
|
return expected_state == matched_state
|