1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-03-25 03:59:11 +00:00
Jonathan Paynter dc64152188 configuration, types: Add support for sweeps
Sweeps are handled by one of three handlers, ``autofreq``, ``range`` and
``autoparam``. ``range`` allows the user to manually specify values for
a parameter in the agenda; ``autofreq`` allows cpu frequencies to be
swept through, and autoparam allows other parameters to be swept
through.

autoparam requries the parameter to have ``allowed_values`` specified,
and the sweep specification must supply the plugin name and parameter
name as:
``
	sweep(autoparam):
		param: <param name>
		plugin: <plugin name>
``

autofreq can be used with an empty value:
``
	sweep(autofreq):
``
to sweep through all values of ``frequency`` by default, although if
``plugin`` is specified, other parameters within cpufreq can be swept
through:
``
	sweep(autofreq):
		param: cpu0_frequency
``

For either of the above 'automatic' sweeps, a minimum and/or maximum can
be specified to limit the values generated in the sweep:
``
	sweep(autofreq):
		param: cpu0_frequency
		min: 1000000
		max: 1700000
``

``range`` sweeps support two specification syntaxes: one for manual
specification of a list, and another for a range of values. These sweeps
only accept the plugin name as a parameter:
``
	sweep(range):
		threads: [1, 3, 5, 7]
``
or
``
	sweep(range):
		threads: 1-8,2
		# start-stop[,step]
``
These both produce the same result. step is optional and defaults to 1.

Any sweep specified in a workload entry is equivalent to manually
specifying individual workload entries, each with one of the possible
values of the sweep.

Sweeps specified in sections will create the equivalent of a section
group, each section in that group with one of the sweep values. When the
group name is specified, the 'expanded' section entry will maintain that
group name, otherwise will generate its own.

If multiple sweeps are specified in one entry, then this will be
expanded to one entry for every combination of values of each sweep.
2020-09-10 18:07:16 +01:00

257 lines
8.4 KiB
Python

# Copyright 2018 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from itertools import groupby, chain
from future.moves.itertools import zip_longest
from devlib.utils.types import identifier
from wa.framework.configuration.core import (MetaConfiguration, RunConfiguration,
JobGenerator, settings)
from wa.framework.configuration.parsers import ConfigParser
from wa.framework.configuration.plugin_cache import PluginCache
from wa.framework.exception import NotFoundError, ConfigError
from wa.framework.job import Job
from wa.utils import log
from wa.utils.serializer import Podable
class CombinedConfig(Podable):
_pod_serialization_version = 1
@staticmethod
def from_pod(pod):
instance = super(CombinedConfig, CombinedConfig).from_pod(pod)
instance.settings = MetaConfiguration.from_pod(pod.get('settings', {}))
instance.run_config = RunConfiguration.from_pod(pod.get('run_config', {}))
return instance
def __init__(self, settings=None, run_config=None): # pylint: disable=redefined-outer-name
super(CombinedConfig, self).__init__()
self.settings = settings
self.run_config = run_config
def to_pod(self):
pod = super(CombinedConfig, self).to_pod()
pod['settings'] = self.settings.to_pod()
pod['run_config'] = self.run_config.to_pod()
return pod
@staticmethod
def _pod_upgrade_v1(pod):
pod['_pod_version'] = pod.get('_pod_version', 1)
return pod
class ConfigManager(object):
"""
Represents run-time state of WA. Mostly used as a container for loaded
configuration and discovered plugins.
This exists outside of any command or run and is associated with the running
instance of wA itself.
"""
@property
def enabled_instruments(self):
return self.jobs_config.enabled_instruments
@property
def enabled_processors(self):
return self.jobs_config.enabled_processors
@property
def job_specs(self):
if not self._jobs_generated:
msg = 'Attempting to access job specs before '\
'jobs have been generated'
raise RuntimeError(msg)
return [j.spec for j in self._jobs]
@property
def jobs(self):
if not self._jobs_generated:
msg = 'Attempting to access jobs before '\
'they have been generated'
raise RuntimeError(msg)
return self._jobs
def __init__(self, settings=settings): # pylint: disable=redefined-outer-name
self.settings = settings
self.run_config = RunConfiguration()
self.plugin_cache = PluginCache()
self.jobs_config = JobGenerator(self.plugin_cache)
self.loaded_config_sources = []
self._config_parser = ConfigParser()
self._jobs = []
self._jobs_generated = False
self.agenda = None
def load_config_file(self, filepath):
includes = self._config_parser.load_from_path(self, filepath)
self.loaded_config_sources.append(filepath)
self.loaded_config_sources.extend(includes)
def load_config(self, values, source):
self._config_parser.load(self, values, source)
self.loaded_config_sources.append(source)
def get_plugin(self, name=None, kind=None, *args, **kwargs):
return self.plugin_cache.get_plugin(identifier(name), kind, *args, **kwargs)
def get_instruments(self, target):
instruments = []
for name in self.enabled_instruments:
try:
instruments.append(self.get_plugin(name, kind='instrument',
target=target))
except NotFoundError:
msg = 'Instrument "{}" not found'
raise NotFoundError(msg.format(name))
return instruments
def get_processors(self):
processors = []
for name in self.enabled_processors:
try:
proc = self.plugin_cache.get_plugin(name, kind='output_processor')
except NotFoundError:
msg = 'Output Processor "{}" not found'
raise NotFoundError(msg.format(name))
processors.append(proc)
return processors
def get_config(self):
return CombinedConfig(self.settings, self.run_config)
def finalize(self):
if not self.agenda:
msg = 'Attempting to finalize config before agenda has been set'
raise RuntimeError(msg)
self.run_config.merge_device_config(self.plugin_cache)
return self.get_config()
def generate_jobs(self, context):
self.jobs_config.expand_sweeps(context.tm)
job_specs = self.jobs_config.generate_job_specs(context.tm)
if not job_specs:
msg = 'No jobs available for running.'
raise ConfigError(msg)
exec_order = self.run_config.execution_order
log.indent()
for spec, i in permute_iterations(job_specs, exec_order):
job = Job(spec, i, context)
job.load(context.tm.target)
self._jobs.append(job)
context.run_state.add_job(job)
log.dedent()
self._jobs_generated = True
def permute_by_workload(specs):
"""
This is that "classic" implementation that executes all iterations of a
workload spec before proceeding onto the next spec.
"""
for spec in specs:
for i in range(1, spec.iterations + 1):
yield (spec, i)
def permute_by_iteration(specs):
"""
Runs the first iteration for all benchmarks first, before proceeding to the
next iteration, i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2,
C1, C2...
If multiple sections where specified in the agenda, this will run all
sections for the first global spec first, followed by all sections for the
second spec, etc.
e.g. given sections X and Y, and global specs A and B, with 2 iterations,
this will run
X.A1, Y.A1, X.B1, Y.B1, X.A2, Y.A2, X.B2, Y.B2
"""
groups = [list(g) for _, g in groupby(specs, lambda s: s.workload_id)]
all_tuples = []
for spec in chain(*groups):
all_tuples.append([(spec, i + 1)
for i in range(spec.iterations)])
for t in chain(*list(map(list, zip_longest(*all_tuples)))):
if t is not None:
yield t
def permute_by_section(specs):
"""
Runs the first iteration for all benchmarks first, before proceeding to the
next iteration, i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2,
C1, C2...
If multiple sections where specified in the agenda, this will run all specs
for the first section followed by all specs for the seciod section, etc.
e.g. given sections X and Y, and global specs A and B, with 2 iterations,
this will run
X.A1, X.B1, Y.A1, Y.B1, X.A2, X.B2, Y.A2, Y.B2
"""
groups = [list(g) for _, g in groupby(specs, lambda s: s.section_id)]
all_tuples = []
for spec in chain(*groups):
all_tuples.append([(spec, i + 1)
for i in range(spec.iterations)])
for t in chain(*list(map(list, zip_longest(*all_tuples)))):
if t is not None:
yield t
def permute_randomly(specs):
"""
This will generate a random permutation of specs/iteration tuples.
"""
result = []
for spec in specs:
for i in range(1, spec.iterations + 1):
result.append((spec, i))
random.shuffle(result)
for t in result:
yield t
permute_map = {
'by_iteration': permute_by_iteration,
'by_workload': permute_by_workload,
'by_section': permute_by_section,
'random': permute_randomly,
}
def permute_iterations(specs, exec_order):
if exec_order not in permute_map:
msg = 'Unknown execution order "{}"; must be in: {}'
raise ValueError(msg.format(exec_order, list(permute_map.keys())))
return permute_map[exec_order](specs)