mirror of
https://github.com/ARM-software/workload-automation.git
synced 2025-02-23 05:18:41 +00:00
Add a workload that runs mongoperf benchmark that measures I/O performance on a MongoDB server. This workload assumes that mongoperf is already installed.
146 lines
5.6 KiB
Python
146 lines
5.6 KiB
Python
import json
|
||
import os
|
||
from collections import defaultdict
|
||
|
||
import pandas as pd
|
||
|
||
from wa import Workload, Parameter, ConfigError, TargetError, WorkloadError
|
||
from wa.utils.exec_control import once
|
||
|
||
|
||
class Mongoperf(Workload):
|
||
|
||
name = 'mongoperf'
|
||
description = """
|
||
A utility to check disk I/O performance independently of MongoDB.
|
||
|
||
It times tests of random disk I/O and presents the results. You can use
|
||
mongoperf for any case apart from MongoDB. The mmf true mode is completely
|
||
generic.
|
||
|
||
.. note:: ``mongoperf`` seems to ramp up threads in powers of two over a
|
||
period of tens of seconds (there doesn't appear to be a way to
|
||
change that). Bear this in mind when setting the ``duration``.
|
||
|
||
"""
|
||
|
||
parameters = [
|
||
Parameter('duration', kind=int, default=300,
|
||
description="""
|
||
Duration of of the workload.
|
||
"""),
|
||
Parameter('threads', kind=int, default=16,
|
||
description="""
|
||
Defines the number of threads mongoperf will use in the test.
|
||
To saturate your system’s storage system you will need
|
||
multiple threads.
|
||
"""),
|
||
Parameter('file_size_mb', kind=int, default=1,
|
||
description="""
|
||
Test file size in MB.
|
||
"""),
|
||
Parameter('sleep_micros', kind=int, default=0,
|
||
description="""
|
||
mongoperf will pause for this number of microseconds divided
|
||
by the the number of threads between each operation.
|
||
"""),
|
||
Parameter('mmf', kind=bool, default=True,
|
||
description="""
|
||
When ``True``, use memory mapped files for the tests.
|
||
Generally:
|
||
|
||
- when mmf is ``False``, mongoperf tests direct, physical, I/O,
|
||
without caching. Use a large file size to test heavy random
|
||
I/O load and to avoid I/O coalescing.
|
||
- when mmf is ``True``, mongoperf runs tests of the caching
|
||
system, and can use normal file system cache. Use mmf in
|
||
this mode to test file system cache behavior with memory
|
||
mapped files.
|
||
|
||
"""),
|
||
Parameter('read', kind=bool, default=True,
|
||
aliases=['r'],
|
||
description="""
|
||
When ``True``, perform reads as part of the test. Either
|
||
``read`` or ``write`` must be ``True``.
|
||
"""),
|
||
Parameter('write', kind=bool, default=True,
|
||
aliases=['w'],
|
||
description="""
|
||
When ``True``, perform writes as part of the test. Either
|
||
``read`` or ``write`` must be ``True``.
|
||
"""),
|
||
Parameter('rec_size_kb', kind=int, default=4,
|
||
description="""
|
||
The size of each write operation
|
||
"""),
|
||
Parameter('sync_delay', kind=int, default=0,
|
||
description="""
|
||
Seconds between disk flushes. Only use this if ``mmf`` is set
|
||
to ``True``.
|
||
"""),
|
||
]
|
||
|
||
def validate(self):
|
||
if not self.read and not self.write:
|
||
raise ConfigError('Either "read" or "write" must be True.')
|
||
if not self.mmf and self.sync_delay:
|
||
raise ConfigError('sync_delay can only be set if mmf is True')
|
||
|
||
@once
|
||
def initialize(self, context):
|
||
try:
|
||
self.target.execute('mongoperf -h')
|
||
except TargetError:
|
||
raise WorkloadError('Mongoperf must be installed an in $PATH on the target.')
|
||
|
||
def setup(self, context):
|
||
config = {}
|
||
config['nThreads'] = self.threads
|
||
config['fileSizeMB'] = self.file_size_mb
|
||
config['sleepMicros'] = self.sleep_micros
|
||
config['mmf'] = self.mmf
|
||
config['r'] = self.read
|
||
config['w'] = self.write
|
||
config['recSizeKB'] = self.rec_size_kb
|
||
config['syncDelay'] = self.sync_delay
|
||
|
||
config_text = json.dumps(config)
|
||
self.outfile = self.target.get_workpath('mongperf.out')
|
||
self.command = 'echo "{}" | mongoperf > {}'.format(config_text, self.outfile)
|
||
|
||
def run(self, context):
|
||
self.target.kick_off(self.command)
|
||
self.target.sleep(self.duration)
|
||
self.target.killall('mongoperf', signal='SIGTERM')
|
||
|
||
def extract_results(self, context):
|
||
host_outfile = os.path.join(context.output_directory, 'mongoperf.out')
|
||
self.target.pull(self.outfile, host_outfile)
|
||
context.add_artifact('mongoperf-output', host_outfile, kind='raw')
|
||
|
||
def update_output(self, context):
|
||
host_file = context.get_artifact_path('mongoperf-output')
|
||
results = defaultdict(list)
|
||
threads = None
|
||
with open(host_file) as fh:
|
||
for line in fh:
|
||
if 'new thread,' in line:
|
||
threads = int(line.split()[-1])
|
||
elif 'ops/sec' in line:
|
||
results[threads].append(int(line.split()[0]))
|
||
|
||
if not results:
|
||
raise WorkloadError('No mongoperf results found in the output.')
|
||
|
||
for threads, values in results.items():
|
||
rs = pd.Series(values)
|
||
context.add_metric('ops_per_sec', rs.mean(),
|
||
classifiers={'threads': threads})
|
||
context.add_metric('ops_per_sec_std', rs.std(), lower_is_better=True,
|
||
classifiers={'threads': threads})
|
||
|
||
def teardown(self, context):
|
||
if self.cleanup_assets:
|
||
self.target.remove(self.outfile)
|