1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-19 04:21:17 +00:00
Marc Bonnici 16a0e84469 Runner: Now finalizes all completed workloads at the end of a run.
Previously when finalizing a run the workloads themselves were not included.
This ensures that each completed workloads finalize method is called.
2017-04-25 10:35:02 +01:00

459 lines
16 KiB
Python

# Copyright 2013-2015 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# pylint: disable=no-member
import logging
import os
import random
import subprocess
import uuid
from collections import Counter, defaultdict, OrderedDict
from contextlib import contextmanager
from copy import copy
from datetime import datetime
from itertools import izip_longest
import wa.framework.signal as signal
from wa.framework import instrumentation, pluginloader
from wa.framework.configuration.core import settings, Status
from wa.framework.exception import (WAError, ConfigError, TimeoutError,
InstrumentError, TargetError, HostError,
TargetNotRespondingError)
from wa.framework.output import init_job_output
from wa.framework.plugin import Artifact
from wa.framework.processor import ProcessorManager
from wa.framework.resource import ResourceResolver
from wa.framework.run import RunState
from wa.framework.target.info import TargetInfo
from wa.framework.target.manager import TargetManager
from wa.utils import log
from wa.utils.misc import (ensure_directory_exists as _d, merge_config_values,
get_traceback, format_duration)
from wa.utils.serializer import json
class ExecutionContext(object):
@property
def previous_job(self):
if not self.job_queue:
return None
return self.job_queue[0]
@property
def next_job(self):
if not self.completed_jobs:
return None
return self.completed_jobs[-1]
@property
def spec_changed(self):
if self.previous_job is None and self.current_job is not None: # Start of run
return True
if self.previous_job is not None and self.current_job is None: # End of run
return True
return self.current_job.spec.id != self.previous_job.spec.id
@property
def spec_will_change(self):
if self.current_job is None and self.next_job is not None: # Start of run
return True
if self.current_job is not None and self.next_job is None: # End of run
return True
return self.current_job.spec.id != self.next_job.spec.id
@property
def job_output(self):
if self.current_job:
return self.current_job.output
@property
def output(self):
if self.current_job:
return self.job_output
return self.run_output
@property
def output_directory(self):
return self.output.basepath
def __init__(self, cm, tm, output):
self.logger = logging.getLogger('context')
self.cm = cm
self.tm = tm
self.run_output = output
self.run_state = output.state
self.target_info = self.tm.get_target_info()
self.logger.debug('Loading resource discoverers')
self.resolver = ResourceResolver(cm.plugin_cache)
self.resolver.load()
self.job_queue = None
self.completed_jobs = None
self.current_job = None
self.successful_jobs = 0
self.failed_jobs = 0
def start_run(self):
self.output.info.start_time = datetime.utcnow()
self.output.write_info()
self.job_queue = copy(self.cm.jobs)
self.completed_jobs = []
self.run_state.status = Status.STARTED
self.output.status = Status.STARTED
self.output.write_state()
def end_run(self):
if self.successful_jobs:
if self.failed_jobs:
status = Status.PARTIAL
else:
status = Status.OK
else:
status = Status.FAILED
self.run_state.status = status
self.output.status = status
self.output.info.end_time = datetime.utcnow()
self.output.info.duration = self.output.info.end_time -\
self.output.info.start_time
self.output.write_info()
self.output.write_state()
self.output.write_result()
def start_job(self):
if not self.job_queue:
raise RuntimeError('No jobs to run')
self.current_job = self.job_queue.pop(0)
self.current_job.output = init_job_output(self.run_output, self.current_job)
self.update_job_state(self.current_job)
self.tm.start()
return self.current_job
def end_job(self):
if not self.current_job:
raise RuntimeError('No jobs in progress')
self.tm.stop()
self.completed_jobs.append(self.current_job)
self.update_job_state(self.current_job)
self.output.write_result()
self.current_job = None
def extract_results(self):
self.tm.extract_results(self)
def move_failed(self, job):
self.run_output.move_failed(job.output)
def update_job_state(self, job):
self.run_state.update_job(job)
self.run_output.write_state()
def skip_remaining_jobs(self):
while self.job_queue:
job = self.job_queue.pop(0)
job.status = Status.SKIPPED
self.run_state.update_job(job)
self.completed_jobs.append(job)
self.write_state()
def write_state(self):
self.run_output.write_state()
def add_metric(self, name, value, units=None, lower_is_better=False,
classifiers=None):
if self.current_job:
classifiers = merge_config_values(self.current_job.classifiers,
classifiers)
self.output.add_metric(name, value, units, lower_is_better, classifiers)
def get_artifact(self, name):
try:
return self.output.get_artifact(name)
except HostError:
if not self.current_job:
raise
return self.run_output.get_artifact(name)
def get_artifact_path(self, name):
try:
return self.output.get_artifact_path(name)
except HostError:
if not self.current_job:
raise
return self.run_output.get_artifact_path(name)
def add_artifact(self, name, path, kind, description=None, classifiers=None):
self.output.add_artifact(name, path, kind, description, classifiers)
def add_run_artifact(self, name, path, kind, description=None,
classifiers=None):
self.run_output.add_artifact(name, path, kind, description, classifiers)
def add_event(self, message):
self.output.add_event(message)
class Executor(object):
"""
The ``Executor``'s job is to set up the execution context and pass to a
``Runner`` along with a loaded run specification. Once the ``Runner`` has
done its thing, the ``Executor`` performs some final reporting before
returning.
The initial context set up involves combining configuration from various
sources, loading of requided workloads, loading and installation of
instruments and result processors, etc. Static validation of the combined
configuration is also performed.
"""
# pylint: disable=R0915
def __init__(self):
self.logger = logging.getLogger('executor')
self.error_logged = False
self.warning_logged = False
pluginloader = None
self.target_manager = None
self.device = None
def execute(self, config_manager, output):
"""
Execute the run specified by an agenda. Optionally, selectors may be
used to only selecute a subset of the specified agenda.
Params::
:state: a ``ConfigManager`` containing processed configuraiton
:output: an initialized ``RunOutput`` that will be used to
store the results.
"""
signal.connect(self._error_signalled_callback, signal.ERROR_LOGGED)
signal.connect(self._warning_signalled_callback, signal.WARNING_LOGGED)
self.logger.info('Initializing run')
self.logger.debug('Finalizing run configuration.')
config = config_manager.finalize()
output.write_config(config)
self.logger.info('Connecting to target')
self.target_manager = TargetManager(config.run_config.device,
config.run_config.device_config)
output.write_target_info(self.target_manager.get_target_info())
self.logger.info('Initializing execution conetext')
context = ExecutionContext(config_manager, self.target_manager, output)
self.logger.info('Generating jobs')
config_manager.generate_jobs(context)
output.write_job_specs(config_manager.job_specs)
output.write_state()
self.logger.info('Installing instrumentation')
for instrument in config_manager.get_instruments(self.target_manager.target):
instrumentation.install(instrument)
instrumentation.validate()
self.logger.info('Installing result processors')
pm = ProcessorManager()
for proc in config_manager.get_processors():
pm.install(proc)
pm.validate()
self.logger.info('Starting run')
runner = Runner(context, pm)
signal.send(signal.RUN_STARTED, self)
runner.run()
self.execute_postamble(context, output)
signal.send(signal.RUN_COMPLETED, self)
def execute_postamble(self, context, output):
self.logger.info('Done.')
duration = format_duration(output.info.duration)
self.logger.info('Run duration: {}'.format(duration))
num_ran = context.run_state.num_completed_jobs
status_summary = 'Ran a total of {} iterations: '.format(num_ran)
counter = context.run_state.get_status_counts()
parts = []
for status in reversed(Status.values):
if status in counter:
parts.append('{} {}'.format(counter[status], status))
self.logger.info(status_summary + ', '.join(parts))
self.logger.info('Results can be found in {}'.format(output.basepath))
if self.error_logged:
self.logger.warn('There were errors during execution.')
self.logger.warn('Please see {}'.format(output.logfile))
elif self.warning_logged:
self.logger.warn('There were warnings during execution.')
self.logger.warn('Please see {}'.format(output.logfile))
def _error_signalled_callback(self):
self.error_logged = True
signal.disconnect(self._error_signalled_callback, signal.ERROR_LOGGED)
def _warning_signalled_callback(self):
self.warning_logged = True
signal.disconnect(self._warning_signalled_callback, signal.WARNING_LOGGED)
class Runner(object):
"""
"""
def __init__(self, context, pm):
self.logger = logging.getLogger('runner')
self.context = context
self.pm = pm
self.output = self.context.output
self.config = self.context.cm
def run(self):
try:
self.initialize_run()
self.send(signal.RUN_INITIALIZED)
while self.context.job_queue:
try:
with signal.wrap('JOB_EXECUTION', self):
self.run_next_job(self.context)
except KeyboardInterrupt:
self.context.skip_remaining_jobs()
except Exception as e:
self.context.add_event(e.message)
if (not getattr(e, 'logged', None) and
not isinstance(e, KeyboardInterrupt)):
log.log_error(e, self.logger)
e.logged = True
raise e
finally:
self.finalize_run()
self.send(signal.RUN_FINALIZED)
def initialize_run(self):
self.logger.info('Initializing run')
self.context.start_run()
self.pm.initialize()
log.indent()
for job in self.context.job_queue:
job.initialize(self.context)
log.dedent()
self.context.write_state()
def finalize_run(self):
self.logger.info('Finalizing run')
self.context.end_run()
self.pm.process_run_output(self.context)
self.pm.export_run_output(self.context)
self.pm.finalize()
log.indent()
for job in self.context.completed_jobs:
job.finalize(self.context)
log.dedent()
def run_next_job(self, context):
job = context.start_job()
self.logger.info('Running job {}'.format(job.id))
try:
log.indent()
self.do_run_job(job, context)
job.status = Status.OK
except KeyboardInterrupt:
job.status = Status.ABORTED
raise
except Exception as e:
job.status = Status.FAILED
context.add_event(e.message)
if not getattr(e, 'logged', None):
log.log_error(e, self.logger)
e.logged = True
finally:
self.logger.info('Completing job {}'.format(job.id))
self.send(signal.JOB_COMPLETED)
context.end_job()
log.dedent()
self.check_job(job)
def do_run_job(self, job, context):
job.status = Status.RUNNING
self.send(signal.JOB_STARTED)
with signal.wrap('JOB_TARGET_CONFIG', self):
job.configure_target(context)
with signal.wrap('JOB_SETUP', self):
job.setup(context)
try:
with signal.wrap('JOB_EXECUTION', self):
job.run(context)
try:
with signal.wrap('JOB_OUTPUT_PROCESSED', self):
job.process_output(context)
self.pm.process_job_output(context)
self.pm.export_job_output(context)
except Exception:
job.status = Status.PARTIAL
raise
except KeyboardInterrupt:
job.status = Status.ABORTED
self.logger.info('Got CTRL-C. Aborting.')
raise
except Exception as e:
job.status = Status.FAILED
if not getattr(e, 'logged', None):
log.log_error(e, self.logger)
e.logged = True
raise e
finally:
# If setup was successfully completed, teardown must
# run even if the job failed
with signal.wrap('JOB_TEARDOWN', self):
job.teardown(context)
def check_job(self, job):
rc = self.context.cm.run_config
if job.status in rc.retry_on_status:
if job.retries < rc.max_retries:
msg = 'Job {} iteration {} completed with status {}. retrying...'
self.logger.error(msg.format(job.id, job.status, job.iteration))
self.context.move_failed(job)
job.retries += 1
job.status = Status.PENDING
self.context.job_queue.insert(0, job)
self.context.write_state()
else:
msg = 'Job {} iteration {} completed with status {}. '\
'Max retries exceeded.'
self.logger.error(msg.format(job.id, job.status, job.iteration))
self.context.failed_jobs += 1
else: # status not in retry_on_status
self.logger.info('Job completed with status {}'.format(job.status))
self.context.successful_jobs += 1
def send(self, s):
signal.send(s, self, self.context)
def __str__(self):
return 'runner'