mirror of
https://github.com/ARM-software/workload-automation.git
synced 2025-02-07 13:41:24 +00:00
718f2c1c90
Expose the context to the initialize and finalize functions for Output Processors. This was found to be necessary for the upcoming PostgreSQL Output Processor.
114 lines
4.5 KiB
Python
114 lines
4.5 KiB
Python
# Copyright 2018 ARM Limited
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from devlib.utils.csvutil import csvwriter
|
|
|
|
from wa import OutputProcessor, Parameter
|
|
from wa.framework.exception import ConfigError
|
|
from wa.utils.types import list_of_strings
|
|
|
|
|
|
class CsvReportProcessor(OutputProcessor):
|
|
|
|
name = 'csv'
|
|
description = """
|
|
Creates a ``results.csv`` in the output directory containing results for
|
|
all iterations in CSV format, each line containing a single metric.
|
|
|
|
"""
|
|
|
|
parameters = [
|
|
Parameter('use_all_classifiers', kind=bool, default=False,
|
|
global_alias='use_all_classifiers',
|
|
description="""
|
|
If set to ``True``, this will add a column for every classifier
|
|
that features in at least one collected metric.
|
|
|
|
.. note:: This cannot be ``True`` if ``extra_columns`` is set.
|
|
|
|
"""),
|
|
Parameter('extra_columns', kind=list_of_strings,
|
|
description="""
|
|
List of classifiers to use as columns.
|
|
|
|
.. note:: This cannot be set if ``use_all_classifiers`` is
|
|
``True``.
|
|
|
|
"""),
|
|
]
|
|
|
|
def validate(self):
|
|
super(CsvReportProcessor, self).validate()
|
|
if self.use_all_classifiers and self.extra_columns:
|
|
msg = 'extra_columns cannot be specified when '\
|
|
'use_all_classifiers is True'
|
|
raise ConfigError(msg)
|
|
|
|
def initialize(self, context):
|
|
# pylint: disable=attribute-defined-outside-init
|
|
self.outputs_so_far = []
|
|
self.artifact_added = False
|
|
|
|
# pylint: disable=unused-argument
|
|
def process_job_output(self, output, target_info, run_output):
|
|
self.outputs_so_far.append(output)
|
|
self._write_outputs(self.outputs_so_far, run_output)
|
|
if not self.artifact_added:
|
|
run_output.add_artifact('run_result_csv', 'results.csv', 'export')
|
|
self.artifact_added = True # pylint: disable=attribute-defined-outside-init
|
|
|
|
def process_run_output(self, output, target_info): # pylint: disable=unused-argument
|
|
self.outputs_so_far.append(output)
|
|
self._write_outputs(self.outputs_so_far, output)
|
|
if not self.artifact_added:
|
|
output.add_artifact('run_result_csv', 'results.csv', 'export')
|
|
self.artifact_added = True # pylint: disable=attribute-defined-outside-init
|
|
|
|
def _write_outputs(self, outputs, output):
|
|
if self.use_all_classifiers:
|
|
classifiers = set([])
|
|
for out in outputs:
|
|
for metric in out.metrics:
|
|
classifiers.update(list(metric.classifiers.keys()))
|
|
extra_columns = list(classifiers)
|
|
elif self.extra_columns:
|
|
extra_columns = self.extra_columns
|
|
else:
|
|
extra_columns = []
|
|
|
|
outfile = output.get_path('results.csv')
|
|
with csvwriter(outfile) as writer:
|
|
writer.writerow(['id', 'workload', 'iteration', 'metric', ] +
|
|
extra_columns + ['value', 'units'])
|
|
|
|
for o in outputs:
|
|
if o.kind == 'job':
|
|
header = [o.id, o.label, o.iteration]
|
|
elif o.kind == 'run':
|
|
# Should be a RunOutput. Run-level metrics aren't attached
|
|
# to any job so we leave 'id' and 'iteration' blank, and use
|
|
# the run name for the 'label' field.
|
|
header = [None, o.info.run_name, None]
|
|
else:
|
|
raise RuntimeError(
|
|
'Output of kind "{}" unrecognised by csvproc'.format(o.kind))
|
|
|
|
for metric in o.result.metrics:
|
|
row = (header + [metric.name] +
|
|
[str(metric.classifiers.get(c, ''))
|
|
for c in extra_columns] +
|
|
[str(metric.value), metric.units or ''])
|
|
writer.writerow(row)
|