mirror of
https://github.com/ARM-software/workload-automation.git
synced 2025-01-19 12:24:32 +00:00
88 lines
3.2 KiB
Python
88 lines
3.2 KiB
Python
import csv
|
|
|
|
from wa import ResultProcessor, Parameter
|
|
from wa.framework.exception import ConfigError
|
|
from wa.utils.types import list_of_strings
|
|
|
|
|
|
class CsvReportProcessor(ResultProcessor):
|
|
|
|
name = 'csv'
|
|
description = """
|
|
Creates a ``results.csv`` in the output directory containing results for
|
|
all iterations in CSV format, each line containing a single metric.
|
|
|
|
"""
|
|
|
|
parameters = [
|
|
Parameter('use_all_classifiers', kind=bool, default=False,
|
|
global_alias='use_all_classifiers',
|
|
description="""
|
|
If set to ``True``, this will add a column for every classifier
|
|
that features in at least one collected metric.
|
|
|
|
.. note:: This cannot be ``True`` if ``extra_columns`` is set.
|
|
|
|
"""),
|
|
Parameter('extra_columns', kind=list_of_strings,
|
|
description="""
|
|
List of classifiers to use as columns.
|
|
|
|
.. note:: This cannot be set if ``use_all_classifiers`` is
|
|
``True``.
|
|
|
|
"""),
|
|
]
|
|
|
|
def validate(self):
|
|
super(CsvReportProcessor, self).validate()
|
|
if self.use_all_classifiers and self.extra_columns:
|
|
msg = 'extra_columns cannot be specified when '\
|
|
'use_all_classifiers is True'
|
|
raise ConfigError(msg)
|
|
|
|
def initialize(self):
|
|
self.results_so_far = [] # pylint: disable=attribute-defined-outside-init
|
|
self.artifact_added = False
|
|
|
|
def process_job_output(self, output, target_info, run_output):
|
|
self.results_so_far.append(output)
|
|
self._write_results(self.results_so_far, run_output)
|
|
if not self.artifact_added:
|
|
run_output.add_artifact('run_result_csv', 'results.csv', 'export')
|
|
self.artifact_added = True
|
|
|
|
def process_run_output(self, output, target_info):
|
|
self.results_so_far.append(output.result)
|
|
self._write_results(self.results_so_far, output)
|
|
if not self.artifact_added:
|
|
output.add_artifact('run_result_csv', 'results.csv', 'export')
|
|
self.artifact_added = True
|
|
|
|
def _write_results(self, results, output):
|
|
if self.use_all_classifiers:
|
|
classifiers = set([])
|
|
for result in results:
|
|
for metric in result.metrics:
|
|
classifiers.update(metric.classifiers.keys())
|
|
extra_columns = list(classifiers)
|
|
elif self.extra_columns:
|
|
extra_columns = self.extra_columns
|
|
else:
|
|
extra_columns = []
|
|
|
|
outfile = output.get_path('results.csv')
|
|
with open(outfile, 'wb') as wfh:
|
|
writer = csv.writer(wfh)
|
|
writer.writerow(['id', 'workload', 'iteration', 'metric', ] +
|
|
extra_columns + ['value', 'units'])
|
|
|
|
for o in results:
|
|
header = [o.id, o.label, o.iteration]
|
|
for metric in o.result.metrics:
|
|
row = (header + [metric.name] +
|
|
[str(metric.classifiers.get(c, ''))
|
|
for c in extra_columns] +
|
|
[str(metric.value), metric.units or ''])
|
|
writer.writerow(row)
|