1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-19 12:24:32 +00:00

783 lines
37 KiB
Python

# Copyright 2015 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#pylint: disable=attribute-defined-outside-init,access-member-before-definition,redefined-outer-name
from __future__ import division
import os
import math
import time
from tempfile import mktemp
from base64 import b64encode
from copy import deepcopy
from collections import Counter, namedtuple
try:
import jinja2
import pandas as pd
import matplotlib
matplotlib.use('AGG')
import matplotlib.pyplot as plt
import numpy as np
low_filter = np.vectorize(lambda x: x > 0 and x or 0) # pylint: disable=no-member
import_error = None
except ImportError as e:
import_error = e
jinja2 = None
pd = None
plt = None
np = None
low_filter = None
from wlauto import Instrument, Parameter, File
from wlauto.exceptions import ConfigError, InstrumentError, DeviceError
from wlauto.instrumentation import instrument_is_installed
from wlauto.utils.types import caseless_string, list_or_caseless_string, list_of_ints
from wlauto.utils.misc import list_to_mask
FREQ_TABLE_FILE = 'frequency_power_perf_data.csv'
CPUS_TABLE_FILE = 'cap_power.csv'
IDLE_TABLE_FILE = 'idle_power_perf_data.csv'
REPORT_TEMPLATE_FILE = 'report.template'
EM_TEMPLATE_FILE = 'em.template'
IdlePowerState = namedtuple('IdlePowerState', ['power'])
CapPowerState = namedtuple('CapPowerState', ['cap', 'power'])
class EnergyModel(object):
def __init__(self):
self.big_cluster_idle_states = []
self.little_cluster_idle_states = []
self.big_cluster_cap_states = []
self.little_cluster_cap_states = []
self.big_core_idle_states = []
self.little_core_idle_states = []
self.big_core_cap_states = []
self.little_core_cap_states = []
def add_cap_entry(self, cluster, perf, clust_pow, core_pow):
if cluster == 'big':
self.big_cluster_cap_states.append(CapPowerState(perf, clust_pow))
self.big_core_cap_states.append(CapPowerState(perf, core_pow))
elif cluster == 'little':
self.little_cluster_cap_states.append(CapPowerState(perf, clust_pow))
self.little_core_cap_states.append(CapPowerState(perf, core_pow))
else:
raise ValueError('Unexpected cluster: {}'.format(cluster))
def add_cluster_idle(self, cluster, values):
for value in values:
if cluster == 'big':
self.big_cluster_idle_states.append(IdlePowerState(value))
elif cluster == 'little':
self.little_cluster_idle_states.append(IdlePowerState(value))
else:
raise ValueError('Unexpected cluster: {}'.format(cluster))
def add_core_idle(self, cluster, values):
for value in values:
if cluster == 'big':
self.big_core_idle_states.append(IdlePowerState(value))
elif cluster == 'little':
self.little_core_idle_states.append(IdlePowerState(value))
else:
raise ValueError('Unexpected cluster: {}'.format(cluster))
class PowerPerformanceAnalysis(object):
def __init__(self, data):
self.summary = {}
big_freqs = data[data.cluster == 'big'].frequency.unique()
little_freqs = data[data.cluster == 'little'].frequency.unique()
self.summary['frequency'] = max(set(big_freqs).intersection(set(little_freqs)))
big_sc = data[(data.cluster == 'big') &
(data.frequency == self.summary['frequency']) &
(data.cpus == 1)]
little_sc = data[(data.cluster == 'little') &
(data.frequency == self.summary['frequency']) &
(data.cpus == 1)]
self.summary['performance_ratio'] = big_sc.performance.item() / little_sc.performance.item()
self.summary['power_ratio'] = big_sc.power.item() / little_sc.power.item()
self.summary['max_performance'] = data[data.cpus == 1].performance.max()
self.summary['max_power'] = data[data.cpus == 1].power.max()
def build_energy_model(freq_power_table, cpus_power, idle_power, first_cluster_idle_state):
# pylint: disable=too-many-locals
em = EnergyModel()
idle_power_sc = idle_power[idle_power.cpus == 1]
perf_data = get_normalized_single_core_data(freq_power_table)
for cluster in ['little', 'big']:
cluster_cpus_power = cpus_power[cluster].dropna()
cluster_power = cluster_cpus_power['cluster'].apply(int)
core_power = (cluster_cpus_power['1'] - cluster_power).apply(int)
performance = (perf_data[perf_data.cluster == cluster].performance_norm * 1024 / 100).apply(int)
for perf, clust_pow, core_pow in zip(performance, cluster_power, core_power):
em.add_cap_entry(cluster, perf, clust_pow, core_pow)
all_idle_power = idle_power_sc[idle_power_sc.cluster == cluster].power.values
# CORE idle states
# We want the delta of each state w.r.t. the power
# consumption of the shallowest one at this level (core_ref)
idle_core_power = low_filter(all_idle_power[:first_cluster_idle_state] -
all_idle_power[first_cluster_idle_state - 1])
# CLUSTER idle states
# We want the absolute value of each idle state
idle_cluster_power = low_filter(all_idle_power[first_cluster_idle_state - 1:])
em.add_cluster_idle(cluster, idle_cluster_power)
em.add_core_idle(cluster, idle_core_power)
return em
def generate_em_c_file(em, big_core, little_core, em_template_file, outfile):
with open(em_template_file) as fh:
em_template = jinja2.Template(fh.read())
em_text = em_template.render(
big_core=big_core,
little_core=little_core,
em=em,
)
with open(outfile, 'w') as wfh:
wfh.write(em_text)
return em_text
def generate_report(freq_power_table, cpus_table, idle_power_table,
report_template_file, device_name, em_text, outfile):
# pylint: disable=too-many-locals
cap_power_analysis = PowerPerformanceAnalysis(freq_power_table)
single_core_norm = get_normalized_single_core_data(freq_power_table)
cap_power_plot = get_cap_power_plot(single_core_norm)
idle_power_plot = get_idle_power_plot(idle_power_table)
fig, axes = plt.subplots(1, 2)
fig.set_size_inches(16, 8)
for i, cluster in enumerate(reversed(cpus_table.columns.levels[0])):
plot_cpus_table(cpus_table[cluster].dropna(), axes[i], cluster)
cpus_plot_data = get_figure_data(fig)
with open(report_template_file) as fh:
report_template = jinja2.Template(fh.read())
html = report_template.render(
device_name=device_name,
freq_power_table=freq_power_table.set_index(['cluster', 'cpus', 'frequency']).to_html(),
cap_power_analysis=cap_power_analysis,
cap_power_plot=get_figure_data(cap_power_plot),
idle_power_table=idle_power_table.set_index(['cluster', 'cpus', 'state']).to_html(),
idle_power_plot=get_figure_data(idle_power_plot),
cpus_table=cpus_table.to_html(),
cpus_plot=cpus_plot_data,
em_text=em_text,
)
with open(outfile, 'w') as wfh:
wfh.write(html)
return html
def wa_result_to_power_perf_table(df, performance_metric, index):
table = df.pivot_table(index=index + ['iteration'],
columns='metric', values='value').reset_index()
result_mean = table.groupby(index).mean()
result_std = table.groupby(index).std()
result_std.columns = [c + ' std' for c in result_std.columns]
result_count = table.groupby(index).count()
result_count.columns = [c + ' count' for c in result_count.columns]
count_sqrt = result_count.apply(lambda x: x.apply(math.sqrt))
count_sqrt.columns = result_std.columns # match column names for division
result_error = 1.96 * result_std / count_sqrt # 1.96 == 95% confidence interval
result_error.columns = [c + ' error' for c in result_mean.columns]
result = pd.concat([result_mean, result_std, result_count, result_error], axis=1)
del result['iteration']
del result['iteration std']
del result['iteration count']
del result['iteration error']
updated_columns = []
for column in result.columns:
if column == performance_metric:
updated_columns.append('performance')
elif column == performance_metric + ' std':
updated_columns.append('performance_std')
elif column == performance_metric + ' error':
updated_columns.append('performance_error')
else:
updated_columns.append(column.replace(' ', '_'))
result.columns = updated_columns
result = result[sorted(result.columns)]
result.reset_index(inplace=True)
return result
def get_figure_data(fig, fmt='png'):
tmp = mktemp()
fig.savefig(tmp, format=fmt, bbox_inches='tight')
with open(tmp, 'rb') as fh:
image_data = b64encode(fh.read())
os.remove(tmp)
return image_data
def get_normalized_single_core_data(data):
finite_power = np.isfinite(data.power) # pylint: disable=no-member
finite_perf = np.isfinite(data.performance) # pylint: disable=no-member
data_single_core = data[(data.cpus == 1) & finite_perf & finite_power].copy()
data_single_core['performance_norm'] = (data_single_core.performance /
data_single_core.performance.max() * 100).apply(int)
data_single_core['power_norm'] = (data_single_core.power /
data_single_core.power.max() * 100).apply(int)
return data_single_core
def get_cap_power_plot(data_single_core):
big_single_core = data_single_core[(data_single_core.cluster == 'big') &
(data_single_core.cpus == 1)]
little_single_core = data_single_core[(data_single_core.cluster == 'little') &
(data_single_core.cpus == 1)]
fig, axes = plt.subplots(1, 1, figsize=(12, 8))
axes.plot(big_single_core.performance_norm,
big_single_core.power_norm,
marker='o')
axes.plot(little_single_core.performance_norm,
little_single_core.power_norm,
marker='o')
axes.set_xlim(0, 105)
axes.set_ylim(0, 105)
axes.set_xlabel('Performance (Normalized)')
axes.set_ylabel('Power (Normalized)')
axes.grid()
axes.legend(['big cluster', 'little cluster'], loc=0)
return fig
def get_idle_power_plot(df):
fig, axes = plt.subplots(1, 2, figsize=(15, 7))
for cluster, ax in zip(['big', 'little'], axes):
data = df[df.cluster == cluster].pivot_table(index=['state'], columns='cpus', values='power')
err = df[df.cluster == cluster].pivot_table(index=['state'], columns='cpus', values='power_error')
data.plot(kind='bar', ax=ax, rot=30, yerr=err)
ax.set_title('{} cluster'.format(cluster))
ax.set_xlim(-1, len(data.columns) - 0.5)
ax.set_ylabel('Power (mW)')
return fig
def get_cpus_power_table(data, index):
power_table = data[[index, 'cluster', 'cpus', 'power']].pivot_table(index=index,
columns=['cluster', 'cpus'],
values='power')
for cluster in power_table.columns.levels[0]:
power_table[cluster, 0] = (power_table[cluster, 1] -
(power_table[cluster, 2] -
power_table[cluster, 1]))
# re-order columns and rename colum '0' to 'cluster'
power_table = power_table[sorted(power_table.columns,
cmp=lambda x, y: cmp(y[0], x[0]) or cmp(x[1], y[1]))]
old_levels = power_table.columns.levels
power_table.columns.set_levels([old_levels[0], list(map(str, old_levels[1])[:-1]) + ['cluster']],
inplace=True)
return power_table
def plot_cpus_table(cpus_table, ax, cluster):
cpus_table.T.plot(ax=ax, marker='o')
ax.set_title('{} cluster'.format(cluster))
ax.set_xticklabels(cpus_table.columns)
ax.set_xticks(range(0, 5))
ax.set_xlim(-0.5, len(cpus_table.columns) - 0.5)
ax.set_ylabel('Power (mW)')
ax.grid(True)
class EnergyModelInstrument(Instrument):
name = 'energy_model'
desicription = """
Generates a power mode for the device based on specified workload.
This insturment will execute the workload specified by the agenda (currently, only ``sysbench`` is
supported) and will use the resulting performance and power measurments to generate a power mode for
the device.
This instrument requires certain features to be present in the kernel:
1. cgroups and cpusets must be enabled.
2. cpufreq and userspace governor must be enabled.
3. cpuidle must be enabled.
"""
parameters = [
Parameter('device_name', kind=caseless_string,
description="""The name of the device to be used in generating the model. If not specified,
``device.name`` will be used. """),
Parameter('big_core', kind=caseless_string,
description="""The name of the "big" core in the big.LITTLE system; must match
one of the values in ``device.core_names``. """),
Parameter('performance_metric', kind=caseless_string, mandatory=True,
description="""Metric to be used as the performance indicator."""),
Parameter('power_metric', kind=list_or_caseless_string,
description="""Metric to be used as the power indicator. The value may contain a
``{core}`` format specifier that will be replaced with names of big
and little cores to drive the name of the metric for that cluster.
Ether this or ``energy_metric`` must be specified but not both."""),
Parameter('energy_metric', kind=list_or_caseless_string,
description="""Metric to be used as the energy indicator. The value may contain a
``{core}`` format specifier that will be replaced with names of big
and little cores to drive the name of the metric for that cluster.
this metric will be used to derive power by deviding through by
execution time. Either this or ``power_metric`` must be specified, but
not both."""),
Parameter('power_scaling_factor', kind=float, default=1.0,
description="""Power model specfies power in milliWatts. This is a scaling factor that
power_metric values will be multiplied by to get milliWatts."""),
Parameter('big_frequencies', kind=list_of_ints,
description="""List of frequencies to be used for big cores. These frequencies must
be supported by the cores. If this is not specified, all available
frequencies for the core (as read from cpufreq) will be used."""),
Parameter('little_frequencies', kind=list_of_ints,
description="""List of frequencies to be used for little cores. These frequencies must
be supported by the cores. If this is not specified, all available
frequencies for the core (as read from cpufreq) will be used."""),
Parameter('idle_workload', kind=str, default='idle',
description="Workload to be used while measuring idle power."),
Parameter('idle_workload_params', kind=dict, default={},
description="Parameter to pass to the idle workload."),
Parameter('first_cluster_idle_state', kind=int, default=-1,
description='''The index of the first cluster idle state on the device. Previous states
are assumed to be core idles. The default is ``-1``, i.e. only the last
idle state is assumed to affect the entire cluster.'''),
Parameter('no_hotplug', kind=bool, default=False,
description='''This options allows running the instrument without hotpluging cores on and off.
Disabling hotplugging will most likely produce a less accurate power model.'''),
Parameter('num_of_freqs_to_thermal_adjust', kind=int, default=0,
description="""The number of frequencies begining from the highest, to be adjusted for
the thermal effect."""),
]
def validate(self):
if import_error:
message = 'energy_model instrument requires pandas, jinja2 and matplotlib Python packages to be installed; got: "{}"'
raise InstrumentError(message.format(import_error.message))
for capability in ['cgroups', 'cpuidle']:
if not self.device.has(capability):
message = 'The Device does not appear to support {}; does it have the right module installed?'
raise ConfigError(message.format(capability))
device_cores = set(self.device.core_names)
if (self.power_metric and self.energy_metric) or not (self.power_metric or self.energy_metric):
raise ConfigError('Either power_metric or energy_metric must be specified (but not both).')
if not device_cores:
raise ConfigError('The Device does not appear to have core_names configured.')
elif len(device_cores) != 2:
raise ConfigError('The Device does not appear to be a big.LITTLE device.')
if self.big_core and self.big_core not in self.device.core_names:
raise ConfigError('Specified big_core "{}" is in divice {}'.format(self.big_core, self.device.name))
if not self.big_core:
self.big_core = self.device.core_names[-1] # the last core is usually "big" in existing big.LITTLE devices
if not self.device_name:
self.device_name = self.device.name
if self.num_of_freqs_to_thermal_adjust and not instrument_is_installed('daq'):
self.logger.warn('Adjustment for thermal effect requires daq instrument. Disabling adjustment')
self.num_of_freqs_to_thermal_adjust = 0
def initialize(self, context):
self.number_of_cpus = {}
self.report_template_file = context.resolver.get(File(self, REPORT_TEMPLATE_FILE))
self.em_template_file = context.resolver.get(File(self, EM_TEMPLATE_FILE))
self.little_core = (set(self.device.core_names) - set([self.big_core])).pop()
self.perform_runtime_validation()
self.enable_all_cores()
self.configure_clusters()
self.discover_idle_states()
self.disable_thermal_management()
self.initialize_job_queue(context)
self.initialize_result_tracking()
def setup(self, context):
if not context.spec.label.startswith('idle_'):
return
for idle_state in self.get_device_idle_states(self.measured_cluster):
if idle_state.id == context.spec.idle_state_id:
idle_state.disable = 0
else:
idle_state.disable = 1
def fast_start(self, context): # pylint: disable=unused-argument
self.start_time = time.time()
def fast_stop(self, context): # pylint: disable=unused-argument
self.run_time = time.time() - self.start_time
def on_iteration_start(self, context):
self.setup_measurement(context.spec.cluster)
def thermal_correction(self, context):
if not self.num_of_freqs_to_thermal_adjust or self.num_of_freqs_to_thermal_adjust > len(self.big_frequencies):
return 0
freqs = self.big_frequencies[-self.num_of_freqs_to_thermal_adjust:]
spec = context.result.spec
if spec.frequency not in freqs:
return 0
data_path = os.path.join(context.output_directory, 'daq', '{}.csv'.format(self.big_core))
data = pd.read_csv(data_path)['power']
return _adjust_for_thermal(data, filt_method=lambda x: pd.rolling_median(x, 1000), thresh=0.9, window=5000)
# slow to make sure power results have been generated
def slow_update_result(self, context): # pylint: disable=too-many-branches
spec = context.result.spec
cluster = spec.cluster
is_freq_iteration = spec.label.startswith('freq_')
perf_metric = 0
power_metric = 0
thermal_adjusted_power = 0
if is_freq_iteration and cluster == 'big':
thermal_adjusted_power = self.thermal_correction(context)
for metric in context.result.metrics:
if metric.name == self.performance_metric:
perf_metric = metric.value
elif thermal_adjusted_power and metric.name in self.big_power_metrics:
power_metric += thermal_adjusted_power * self.power_scaling_factor
elif (cluster == 'big') and metric.name in self.big_power_metrics:
power_metric += metric.value * self.power_scaling_factor
elif (cluster == 'little') and metric.name in self.little_power_metrics:
power_metric += metric.value * self.power_scaling_factor
elif thermal_adjusted_power and metric.name in self.big_energy_metrics:
power_metric += thermal_adjusted_power / self.run_time * self.power_scaling_factor
elif (cluster == 'big') and metric.name in self.big_energy_metrics:
power_metric += metric.value / self.run_time * self.power_scaling_factor
elif (cluster == 'little') and metric.name in self.little_energy_metrics:
power_metric += metric.value / self.run_time * self.power_scaling_factor
if not (power_metric and (perf_metric or not is_freq_iteration)):
message = 'Incomplete results for {} iteration{}'
raise InstrumentError(message.format(context.result.spec.id, context.current_iteration))
if is_freq_iteration:
index_matter = [cluster, spec.num_cpus,
spec.frequency, context.result.iteration]
data = self.freq_data
else:
index_matter = [cluster, spec.num_cpus,
spec.idle_state_id, spec.idle_state_desc, context.result.iteration]
data = self.idle_data
if self.no_hotplug:
# due to that fact that hotpluging was disabled, power has to be artificially scaled
# to the number of cores that should have been active if hotplugging had occurred.
power_metric = spec.num_cpus * (power_metric / self.number_of_cpus[cluster])
data.append(index_matter + ['performance', perf_metric])
data.append(index_matter + ['power', power_metric])
def before_overall_results_processing(self, context):
# pylint: disable=too-many-locals
if not self.idle_data or not self.freq_data:
self.logger.warning('Run aborted early; not generating energy_model.')
return
output_directory = os.path.join(context.output_directory, 'energy_model')
os.makedirs(output_directory)
df = pd.DataFrame(self.idle_data, columns=['cluster', 'cpus', 'state_id',
'state', 'iteration', 'metric', 'value'])
idle_power_table = wa_result_to_power_perf_table(df, '', index=['cluster', 'cpus', 'state'])
idle_output = os.path.join(output_directory, IDLE_TABLE_FILE)
with open(idle_output, 'w') as wfh:
idle_power_table.to_csv(wfh, index=False)
context.add_artifact('idle_power_table', idle_output, 'export')
df = pd.DataFrame(self.freq_data,
columns=['cluster', 'cpus', 'frequency', 'iteration', 'metric', 'value'])
freq_power_table = wa_result_to_power_perf_table(df, self.performance_metric,
index=['cluster', 'cpus', 'frequency'])
freq_output = os.path.join(output_directory, FREQ_TABLE_FILE)
with open(freq_output, 'w') as wfh:
freq_power_table.to_csv(wfh, index=False)
context.add_artifact('freq_power_table', freq_output, 'export')
cpus_table = get_cpus_power_table(freq_power_table, 'frequency')
cpus_output = os.path.join(output_directory, CPUS_TABLE_FILE)
with open(cpus_output, 'w') as wfh:
cpus_table.to_csv(wfh)
context.add_artifact('cpus_table', cpus_output, 'export')
em = build_energy_model(freq_power_table, cpus_table, idle_power_table, self.first_cluster_idle_state)
em_file = os.path.join(output_directory, '{}_em.c'.format(self.device_name))
em_text = generate_em_c_file(em, self.big_core, self.little_core,
self.em_template_file, em_file)
context.add_artifact('em', em_file, 'data')
report_file = os.path.join(output_directory, 'report.html')
generate_report(freq_power_table, cpus_table, idle_power_table,
self.report_template_file, self.device_name, em_text,
report_file)
context.add_artifact('pm_report', report_file, 'export')
def initialize_result_tracking(self):
self.freq_data = []
self.idle_data = []
self.big_power_metrics = []
self.little_power_metrics = []
self.big_energy_metrics = []
self.little_energy_metrics = []
if self.power_metric:
self.big_power_metrics = [pm.format(core=self.big_core) for pm in self.power_metric]
self.little_power_metrics = [pm.format(core=self.little_core) for pm in self.power_metric]
else: # must be energy_metric
self.big_energy_metrics = [em.format(core=self.big_core) for em in self.energy_metric]
self.little_energy_metrics = [em.format(core=self.little_core) for em in self.energy_metric]
def configure_clusters(self):
self.measured_cores = None
self.measuring_cores = None
self.cpuset = self.device.get_cgroup_controller('cpuset')
self.cpuset.create_group('big', self.big_cpus, [0])
self.cpuset.create_group('little', self.little_cpus, [0])
for cluster in set(self.device.core_clusters):
self.device.set_cluster_governor(cluster, 'userspace')
def discover_idle_states(self):
online_cpu = self.device.get_online_cpus(self.big_core)[0]
self.big_idle_states = self.device.get_cpuidle_states(online_cpu)
online_cpu = self.device.get_online_cpus(self.little_core)[0]
self.little_idle_states = self.device.get_cpuidle_states(online_cpu)
if not (len(self.big_idle_states) >= 2 and len(self.little_idle_states) >= 2):
raise DeviceError('There do not appeart to be at least two idle states '
'on at least one of the clusters.')
def setup_measurement(self, measured):
measuring = 'big' if measured == 'little' else 'little'
self.measured_cluster = measured
self.measuring_cluster = measuring
self.measured_cpus = self.big_cpus if measured == 'big' else self.little_cpus
self.measuring_cpus = self.little_cpus if measured == 'big' else self.big_cpus
self.reset()
def reset(self):
self.enable_all_cores()
self.enable_all_idle_states()
self.reset_cgroups()
self.cpuset.move_all_tasks_to(self.measuring_cluster)
server_process = 'adbd' if self.device.platform == 'android' else 'sshd'
server_pids = self.device.get_pids_of(server_process)
children_ps = [e for e in self.device.ps()
if e.ppid in server_pids and e.name != 'sshd']
children_pids = [e.pid for e in children_ps]
pids_to_move = server_pids + children_pids
self.cpuset.root.add_tasks(pids_to_move)
for pid in pids_to_move:
self.device.execute('busybox taskset -p 0x{:x} {}'.format(list_to_mask(self.measuring_cpus), pid))
def enable_all_cores(self):
counter = Counter(self.device.core_names)
for core, number in counter.iteritems():
self.device.set_number_of_online_cpus(core, number)
self.big_cpus = self.device.get_online_cpus(self.big_core)
self.little_cpus = self.device.get_online_cpus(self.little_core)
def enable_all_idle_states(self):
for state in self.big_idle_states:
state.disable = 0
for state in self.little_idle_states:
state.disable = 0
def reset_cgroups(self):
self.big_cpus = self.device.get_online_cpus(self.big_core)
self.little_cpus = self.device.get_online_cpus(self.little_core)
self.cpuset.big.set(self.big_cpus, 0)
self.cpuset.little.set(self.little_cpus, 0)
def perform_runtime_validation(self):
if not self.device.is_rooted:
raise InstrumentError('the device must be rooted to generate energy models')
if 'userspace' not in self.device.list_available_cluster_governors(0):
raise InstrumentError('userspace cpufreq governor must be enabled')
error_message = 'Frequency {} is not supported by {} cores'
available_frequencies = self.device.list_available_core_frequencies(self.big_core)
if self.big_frequencies:
for freq in self.big_frequencies:
if freq not in available_frequencies:
raise ConfigError(error_message.format(freq, self.big_core))
else:
self.big_frequencies = available_frequencies
available_frequencies = self.device.list_available_core_frequencies(self.little_core)
if self.little_frequencies:
for freq in self.little_frequencies:
if freq not in available_frequencies:
raise ConfigError(error_message.format(freq, self.little_core))
else:
self.little_frequencies = available_frequencies
def initialize_job_queue(self, context):
old_specs = []
for job in context.runner.job_queue:
if job.spec not in old_specs:
old_specs.append(job.spec)
new_specs = self.get_cluster_specs(old_specs, 'big', context)
new_specs.extend(self.get_cluster_specs(old_specs, 'little', context))
# Update config to refect jobs that will actually run.
context.config.workload_specs = new_specs
config_file = os.path.join(context.host_working_directory, 'run_config.json')
with open(config_file, 'wb') as wfh:
context.config.serialize(wfh)
context.runner.init_queue(new_specs)
def get_cluster_specs(self, old_specs, cluster, context):
core = self.get_core_name(cluster)
self.number_of_cpus[cluster] = sum([1 for c in self.device.core_names if c == core])
cluster_frequencies = self.get_frequencies_param(cluster)
if not cluster_frequencies:
raise InstrumentError('Could not read available frequencies for {}'.format(core))
idle_states = self.get_device_idle_states(cluster)
new_specs = []
for state in idle_states:
for num_cpus in xrange(1, self.number_of_cpus[cluster] + 1):
spec = old_specs[0].copy()
spec.workload_name = self.idle_workload
spec.workload_parameters = self.idle_workload_params
spec.idle_state_id = state.id
spec.idle_state_desc = state.desc
if not self.no_hotplug:
spec.runtime_parameters['{}_cores'.format(core)] = num_cpus
spec.cluster = cluster
spec.num_cpus = num_cpus
spec.id = '{}_idle_{}_{}'.format(cluster, state.id, num_cpus)
spec.label = 'idle_{}'.format(cluster)
spec.number_of_iterations = old_specs[0].number_of_iterations
spec.load(self.device, context.config.ext_loader)
spec.workload.init_resources(context)
spec.workload.validate()
new_specs.append(spec)
for old_spec in old_specs:
if old_spec.workload_name not in ['sysbench', 'dhrystone']:
raise ConfigError('Only sysbench and dhrystone workloads currently supported for energy_model generation.')
for freq in cluster_frequencies:
for num_cpus in xrange(1, self.number_of_cpus[cluster] + 1):
spec = old_spec.copy()
spec.runtime_parameters['{}_frequency'.format(core)] = freq
if not self.no_hotplug:
spec.runtime_parameters['{}_cores'.format(core)] = num_cpus
spec.id = '{}_{}_{}'.format(cluster, num_cpus, freq)
spec.label = 'freq_{}_{}'.format(cluster, spec.label)
spec.workload_parameters['taskset_mask'] = list_to_mask(self.get_cpus(cluster))
spec.workload_parameters['threads'] = num_cpus
if old_spec.workload_name == 'sysbench':
# max_requests set to an arbitrary high values to make sure
# sysbench runs for full duriation even on highly
# performant cores.
spec.workload_parameters['max_requests'] = 10000000
spec.cluster = cluster
spec.num_cpus = num_cpus
spec.frequency = freq
spec.load(self.device, context.config.ext_loader)
spec.workload.init_resources(context)
spec.workload.validate()
new_specs.append(spec)
return new_specs
def disable_thermal_management(self):
if self.device.file_exists('/sys/class/thermal/thermal_zone0'):
tzone_paths = self.device.execute('ls /sys/class/thermal/thermal_zone*')
for tzpath in tzone_paths.strip().split():
mode_file = '{}/mode'.format(tzpath)
if self.device.file_exists(mode_file):
self.device.set_sysfile_value(mode_file, 'disabled')
def get_device_idle_states(self, cluster):
if cluster == 'big':
return self.big_idle_states
else:
return self.little_idle_states
def get_core_name(self, cluster):
if cluster == 'big':
return self.big_core
else:
return self.little_core
def get_cpus(self, cluster):
if cluster == 'big':
return self.big_cpus
else:
return self.little_cpus
def get_frequencies_param(self, cluster):
if cluster == 'big':
return self.big_frequencies
else:
return self.little_frequencies
def _adjust_for_thermal(data, filt_method=lambda x: x, thresh=0.9, window=5000, tdiff_threshold=10000):
n = filt_method(data)
n = n[~np.isnan(n)] # pylint: disable=no-member
d = np.diff(n) # pylint: disable=no-member
d = d[~np.isnan(d)] # pylint: disable=no-member
dmin = min(d)
dmax = max(d)
index_up = np.max((d > dmax * thresh).nonzero()) # pylint: disable=no-member
index_down = np.min((d < dmin * thresh).nonzero()) # pylint: disable=no-member
low_average = np.average(n[index_up:index_up + window]) # pylint: disable=no-member
high_average = np.average(n[index_down - window:index_down]) # pylint: disable=no-member
if low_average > high_average or index_down - index_up < tdiff_threshold:
return 0
else:
return low_average
if __name__ == '__main__':
import sys
indir, outdir = sys.argv[1], sys.argv[2]
device_name = 'odroidxu3'
big_core = 'a15'
little_core = 'a7'
first_cluster_idle_state = -1
this_dir = os.path.dirname(__file__)
report_template_file = os.path.join(this_dir, REPORT_TEMPLATE_FILE)
em_template_file = os.path.join(this_dir, EM_TEMPLATE_FILE)
freq_power_table = pd.read_csv(os.path.join(indir, FREQ_TABLE_FILE))
cpus_table = pd.read_csv(os.path.join(indir, CPUS_TABLE_FILE),
header=range(2), index_col=0)
idle_power_table = pd.read_csv(os.path.join(indir, IDLE_TABLE_FILE))
if not os.path.exists(outdir):
os.makedirs(outdir)
report_file = os.path.join(outdir, 'report.html')
em_file = os.path.join(outdir, '{}_em.c'.format(device_name))
em = build_energy_model(freq_power_table, cpus_table,
idle_power_table, first_cluster_idle_state)
em_text = generate_em_c_file(em, big_core, little_core,
em_template_file, em_file)
generate_report(freq_power_table, cpus_table, idle_power_table,
report_template_file, device_name, em_text,
report_file)