mirror of
https://github.com/ARM-software/workload-automation.git
synced 2025-01-19 12:24:32 +00:00
73d85c2b4e
- standardisded on a single context argument - removed Device.init() no longer necessary as initilize now automatically gets propagated up the hierarchy. Renamed the existing use of it to "initilize". - related pylint cleanup.
331 lines
11 KiB
Python
331 lines
11 KiB
Python
# Copyright 2013-2015 ARM Limited
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
# pylint: disable=no-member
|
|
|
|
"""
|
|
This module defines the classes used to handle result
|
|
processing inside Workload Automation. There will be a
|
|
:class:`wlauto.core.workload.WorkloadResult` object generated for
|
|
every workload iteration executed. This object will have a list of
|
|
:class:`wlauto.core.workload.WorkloadMetric` objects. This list will be
|
|
populated by the workload itself and may also be updated by instrumentation
|
|
(e.g. to add power measurements). Once the result object has been fully
|
|
populated, it will be passed into the ``process_iteration_result`` method of
|
|
:class:`ResultProcessor`. Once the entire run has completed, a list containing
|
|
result objects from all iterations will be passed into ``process_results``
|
|
method of :class`ResultProcessor`.
|
|
|
|
Which result processors will be active is defined by the ``result_processors``
|
|
list in the ``~/.workload_automation/config.py``. Only the result_processors
|
|
who's names appear in this list will be used.
|
|
|
|
A :class:`ResultsManager` keeps track of active results processors.
|
|
|
|
"""
|
|
import logging
|
|
import traceback
|
|
from copy import copy
|
|
from contextlib import contextmanager
|
|
from datetime import datetime
|
|
|
|
from wlauto.core.extension import Extension
|
|
from wlauto.exceptions import WAError
|
|
from wlauto.utils.types import numeric
|
|
from wlauto.utils.misc import enum_metaclass, merge_dicts
|
|
|
|
|
|
class ResultManager(object):
|
|
"""
|
|
Keeps track of result processors and passes on the results onto the individual processors.
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.logger = logging.getLogger('ResultsManager')
|
|
self.processors = []
|
|
self._bad = []
|
|
|
|
def install(self, processor):
|
|
self.logger.debug('Installing results processor %s', processor.name)
|
|
self.processors.append(processor)
|
|
|
|
def uninstall(self, processor):
|
|
if processor in self.processors:
|
|
self.logger.debug('Uninstalling results processor %s', processor.name)
|
|
self.processors.remove(processor)
|
|
else:
|
|
self.logger.warning('Attempting to uninstall results processor %s, which is not installed.',
|
|
processor.name)
|
|
|
|
def initialize(self, context):
|
|
# Errors aren't handled at this stage, because this gets executed
|
|
# before workload execution starts and we just want to propagte them
|
|
# and terminate (so that error can be corrected and WA restarted).
|
|
for processor in self.processors:
|
|
processor.initialize(context)
|
|
|
|
def add_result(self, result, context):
|
|
with self._manage_processors(context):
|
|
for processor in self.processors:
|
|
with self._handle_errors(processor):
|
|
processor.process_iteration_result(result, context)
|
|
for processor in self.processors:
|
|
with self._handle_errors(processor):
|
|
processor.export_iteration_result(result, context)
|
|
|
|
def process_run_result(self, result, context):
|
|
with self._manage_processors(context):
|
|
for processor in self.processors:
|
|
with self._handle_errors(processor):
|
|
processor.process_run_result(result, context)
|
|
for processor in self.processors:
|
|
with self._handle_errors(processor):
|
|
processor.export_run_result(result, context)
|
|
|
|
def finalize(self, context):
|
|
with self._manage_processors(context):
|
|
for processor in self.processors:
|
|
with self._handle_errors(processor):
|
|
processor.finalize(context)
|
|
|
|
def validate(self):
|
|
for processor in self.processors:
|
|
processor.validate()
|
|
|
|
@contextmanager
|
|
def _manage_processors(self, context, finalize_bad=True):
|
|
yield
|
|
for processor in self._bad:
|
|
if finalize_bad:
|
|
processor.finalize(context)
|
|
self.uninstall(processor)
|
|
self._bad = []
|
|
|
|
@contextmanager
|
|
def _handle_errors(self, processor):
|
|
try:
|
|
yield
|
|
except KeyboardInterrupt, e:
|
|
raise e
|
|
except WAError, we:
|
|
self.logger.error('"{}" result processor has encountered an error'.format(processor.name))
|
|
self.logger.error('{}("{}")'.format(we.__class__.__name__, we.message))
|
|
self._bad.append(processor)
|
|
except Exception, e: # pylint: disable=W0703
|
|
self.logger.error('"{}" result processor has encountered an error'.format(processor.name))
|
|
self.logger.error('{}("{}")'.format(e.__class__.__name__, e))
|
|
self.logger.error(traceback.format_exc())
|
|
self._bad.append(processor)
|
|
|
|
|
|
class ResultProcessor(Extension):
|
|
"""
|
|
Base class for result processors. Defines an interface that should be implemented
|
|
by the subclasses. A result processor can be used to do any kind of post-processing
|
|
of the results, from writing them out to a file, to uploading them to a database,
|
|
performing calculations, generating plots, etc.
|
|
|
|
"""
|
|
|
|
def initialize(self, context):
|
|
pass
|
|
|
|
def process_iteration_result(self, result, context):
|
|
pass
|
|
|
|
def export_iteration_result(self, result, context):
|
|
pass
|
|
|
|
def process_run_result(self, result, context):
|
|
pass
|
|
|
|
def export_run_result(self, result, context):
|
|
pass
|
|
|
|
def finalize(self, context):
|
|
pass
|
|
|
|
|
|
class RunResult(object):
|
|
"""
|
|
Contains overall results for a run.
|
|
|
|
"""
|
|
|
|
__metaclass__ = enum_metaclass('values', return_name=True)
|
|
|
|
values = [
|
|
'OK',
|
|
'OKISH',
|
|
'PARTIAL',
|
|
'FAILED',
|
|
'UNKNOWN',
|
|
]
|
|
|
|
@property
|
|
def status(self):
|
|
if not self.iteration_results or all([s.status == IterationResult.FAILED for s in self.iteration_results]):
|
|
return self.FAILED
|
|
elif any([s.status == IterationResult.FAILED for s in self.iteration_results]):
|
|
return self.PARTIAL
|
|
elif any([s.status == IterationResult.ABORTED for s in self.iteration_results]):
|
|
return self.PARTIAL
|
|
elif (any([s.status == IterationResult.PARTIAL for s in self.iteration_results]) or
|
|
self.non_iteration_errors):
|
|
return self.OKISH
|
|
elif all([s.status == IterationResult.OK for s in self.iteration_results]):
|
|
return self.OK
|
|
else:
|
|
return self.UNKNOWN # should never happen
|
|
|
|
def __init__(self, run_info, output_directory=None):
|
|
self.info = run_info
|
|
self.iteration_results = []
|
|
self.artifacts = []
|
|
self.events = []
|
|
self.non_iteration_errors = False
|
|
self.output_directory = output_directory
|
|
|
|
|
|
class RunEvent(object):
|
|
"""
|
|
An event that occured during a run.
|
|
|
|
"""
|
|
def __init__(self, message):
|
|
self.timestamp = datetime.utcnow()
|
|
self.message = message
|
|
|
|
def to_dict(self):
|
|
return copy(self.__dict__)
|
|
|
|
def __str__(self):
|
|
return '{} {}'.format(self.timestamp, self.message)
|
|
|
|
__repr__ = __str__
|
|
|
|
|
|
class IterationResult(object):
|
|
"""
|
|
Contains the result of running a single iteration of a workload. It is the
|
|
responsibility of a workload to instantiate a IterationResult, populate it,
|
|
and return it form its get_result() method.
|
|
|
|
Status explanations:
|
|
|
|
:NOT_STARTED: This iteration has not yet started.
|
|
:RUNNING: This iteration is currently running and no errors have been detected.
|
|
:OK: This iteration has completed and no errors have been detected
|
|
:PARTIAL: One or more instruments have failed (the iteration may still be running).
|
|
:FAILED: The workload itself has failed.
|
|
:ABORTED: The user interupted the workload
|
|
:SKIPPED: The iteration was skipped due to a previous failure
|
|
|
|
"""
|
|
|
|
__metaclass__ = enum_metaclass('values', return_name=True)
|
|
|
|
values = [
|
|
'NOT_STARTED',
|
|
'RUNNING',
|
|
|
|
'OK',
|
|
'NONCRITICAL',
|
|
'PARTIAL',
|
|
'FAILED',
|
|
'ABORTED',
|
|
'SKIPPED',
|
|
]
|
|
|
|
def __init__(self, spec):
|
|
self.spec = spec
|
|
self.id = spec.id
|
|
self.workload = spec.workload
|
|
self.iteration = None
|
|
self.status = self.NOT_STARTED
|
|
self.output_directory = None
|
|
self.events = []
|
|
self.metrics = []
|
|
self.artifacts = []
|
|
self.classifiers = {}
|
|
|
|
def add_metric(self, name, value, units=None, lower_is_better=False, classifiers=None):
|
|
classifiers = merge_dicts(self.classifiers, classifiers or {},
|
|
list_duplicates='last', should_normalize=False)
|
|
self.metrics.append(Metric(name, value, units, lower_is_better, classifiers))
|
|
|
|
def has_metric(self, name):
|
|
for metric in self.metrics:
|
|
if metric.name == name:
|
|
return True
|
|
return False
|
|
|
|
def add_event(self, message):
|
|
self.events.append(RunEvent(message))
|
|
|
|
def to_dict(self):
|
|
d = copy(self.__dict__)
|
|
d['events'] = [e.to_dict() for e in self.events]
|
|
return d
|
|
|
|
def __iter__(self):
|
|
return iter(self.metrics)
|
|
|
|
def __getitem__(self, name):
|
|
for metric in self.metrics:
|
|
if metric.name == name:
|
|
return metric
|
|
raise KeyError('Metric {} not found.'.format(name))
|
|
|
|
|
|
class Metric(object):
|
|
"""
|
|
This is a single metric collected from executing a workload.
|
|
|
|
:param name: the name of the metric. Uniquely identifies the metric
|
|
within the results.
|
|
:param value: The numerical value of the metric for this execution of
|
|
a workload. This can be either an int or a float.
|
|
:param units: Units for the collected value. Can be None if the value
|
|
has no units (e.g. it's a count or a standardised score).
|
|
:param lower_is_better: Boolean flag indicating where lower values are
|
|
better than higher ones. Defaults to False.
|
|
:param classifiers: A set of key-value pairs to further classify this metric
|
|
beyond current iteration (e.g. this can be used to identify
|
|
sub-tests).
|
|
|
|
"""
|
|
|
|
def __init__(self, name, value, units=None, lower_is_better=False, classifiers=None):
|
|
self.name = name
|
|
self.value = numeric(value)
|
|
self.units = units
|
|
self.lower_is_better = lower_is_better
|
|
self.classifiers = classifiers or {}
|
|
|
|
def to_dict(self):
|
|
return self.__dict__
|
|
|
|
def __str__(self):
|
|
result = '{}: {}'.format(self.name, self.value)
|
|
if self.units:
|
|
result += ' ' + self.units
|
|
result += ' ({})'.format('-' if self.lower_is_better else '+')
|
|
return '<{}>'.format(result)
|
|
|
|
__repr__ = __str__
|
|
|