1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-18 20:11:20 +00:00
Marc Bonnici aa4df95a69 pep8: Ignore line break before binary operator
PEP8 has switched its guidance [1] for where a line break should occur
in relation to a binary operator, so don't raise this warning for
new code and update the code base to follow the new style.

[1] https://www.python.org/dev/peps/pep-0008/#should-a-line-break-before-or-after-a-binary-operator
2020-10-30 11:49:54 +00:00

1297 lines
46 KiB
Python

# Copyright 2018 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
try:
import psycopg2
from psycopg2 import Error as Psycopg2Error
except ImportError:
psycopg2 = None
Psycopg2Error = None
import logging
import os
import shutil
import tarfile
import tempfile
from collections import OrderedDict, defaultdict
from copy import copy, deepcopy
from datetime import datetime
from io import StringIO
import devlib
from wa.framework.configuration.core import JobSpec, Status
from wa.framework.configuration.execution import CombinedConfig
from wa.framework.exception import HostError, SerializerSyntaxError, ConfigError
from wa.framework.run import RunState, RunInfo
from wa.framework.target.info import TargetInfo
from wa.framework.version import get_wa_version_with_commit
from wa.utils.doc import format_simple_table
from wa.utils.misc import touch, ensure_directory_exists, isiterable, format_ordered_dict
from wa.utils.postgres import get_schema_versions
from wa.utils.serializer import write_pod, read_pod, Podable, json
from wa.utils.types import enum, numeric
logger = logging.getLogger('output')
class Output(object):
kind = None
@property
def resultfile(self):
return os.path.join(self.basepath, 'result.json')
@property
def event_summary(self):
num_events = len(self.events)
if num_events:
lines = self.events[0].message.split('\n')
message = '({} event(s)): {}'
if num_events > 1 or len(lines) > 1:
message += '[...]'
return message.format(num_events, lines[0])
return ''
@property
def status(self):
if self.result is None:
return None
return self.result.status
@status.setter
def status(self, value):
self.result.status = value
@property
def metrics(self):
if self.result is None:
return []
return self.result.metrics
@property
def artifacts(self):
if self.result is None:
return []
return self.result.artifacts
@property
def classifiers(self):
if self.result is None:
return OrderedDict()
return self.result.classifiers
@classifiers.setter
def classifiers(self, value):
if self.result is None:
msg = 'Attempting to set classifiers before output has been set'
raise RuntimeError(msg)
self.result.classifiers = value
@property
def events(self):
if self.result is None:
return []
return self.result.events
@property
def metadata(self):
if self.result is None:
return {}
return self.result.metadata
def __init__(self, path):
self.basepath = path
self.result = None
def reload(self):
try:
if os.path.isdir(self.basepath):
pod = read_pod(self.resultfile)
self.result = Result.from_pod(pod)
else:
self.result = Result()
self.result.status = Status.PENDING
except Exception as e: # pylint: disable=broad-except
self.result = Result()
self.result.status = Status.UNKNOWN
self.add_event(str(e))
def write_result(self):
write_pod(self.result.to_pod(), self.resultfile)
def get_path(self, subpath):
return os.path.join(self.basepath, subpath.strip(os.sep))
def add_metric(self, name, value, units=None, lower_is_better=False,
classifiers=None):
self.result.add_metric(name, value, units, lower_is_better, classifiers)
def add_artifact(self, name, path, kind, description=None, classifiers=None):
if not os.path.exists(path):
path = self.get_path(path)
if not os.path.exists(path):
msg = 'Attempting to add non-existing artifact: {}'
raise HostError(msg.format(path))
is_dir = os.path.isdir(path)
path = os.path.relpath(path, self.basepath)
self.result.add_artifact(name, path, kind, description, classifiers, is_dir)
def add_event(self, message):
self.result.add_event(message)
def get_metric(self, name):
return self.result.get_metric(name)
def get_artifact(self, name):
return self.result.get_artifact(name)
def get_artifact_path(self, name):
artifact = self.get_artifact(name)
return self.get_path(artifact.path)
def add_classifier(self, name, value, overwrite=False):
self.result.add_classifier(name, value, overwrite)
def add_metadata(self, key, *args, **kwargs):
self.result.add_metadata(key, *args, **kwargs)
def update_metadata(self, key, *args):
self.result.update_metadata(key, *args)
def __repr__(self):
return '<{} {}>'.format(self.__class__.__name__,
os.path.basename(self.basepath))
def __str__(self):
return os.path.basename(self.basepath)
class RunOutputCommon(object):
''' Split out common functionality to form a second base of
the RunOutput classes
'''
@property
def run_config(self):
if self._combined_config:
return self._combined_config.run_config
@property
def settings(self):
if self._combined_config:
return self._combined_config.settings
def get_job_spec(self, spec_id):
for spec in self.job_specs:
if spec.id == spec_id:
return spec
return None
def list_workloads(self):
workloads = []
for job in self.jobs:
if job.label not in workloads:
workloads.append(job.label)
return workloads
class RunOutput(Output, RunOutputCommon):
kind = 'run'
@property
def logfile(self):
return os.path.join(self.basepath, 'run.log')
@property
def metadir(self):
return os.path.join(self.basepath, '__meta')
@property
def infofile(self):
return os.path.join(self.metadir, 'run_info.json')
@property
def statefile(self):
return os.path.join(self.basepath, '.run_state.json')
@property
def configfile(self):
return os.path.join(self.metadir, 'config.json')
@property
def targetfile(self):
return os.path.join(self.metadir, 'target_info.json')
@property
def jobsfile(self):
return os.path.join(self.metadir, 'jobs.json')
@property
def raw_config_dir(self):
return os.path.join(self.metadir, 'raw_config')
@property
def failed_dir(self):
path = os.path.join(self.basepath, '__failed')
return ensure_directory_exists(path)
@property
def augmentations(self):
run_augs = set([])
for job in self.jobs:
for aug in job.spec.augmentations:
run_augs.add(aug)
return list(run_augs)
def __init__(self, path):
super(RunOutput, self).__init__(path)
self.info = None
self.state = None
self.result = None
self.target_info = None
self._combined_config = None
self.jobs = []
self.job_specs = []
if (not os.path.isfile(self.statefile)
or not os.path.isfile(self.infofile)):
msg = '"{}" does not exist or is not a valid WA output directory.'
raise ValueError(msg.format(self.basepath))
self.reload()
def reload(self):
super(RunOutput, self).reload()
self.info = RunInfo.from_pod(read_pod(self.infofile))
self.state = RunState.from_pod(read_pod(self.statefile))
if os.path.isfile(self.configfile):
self._combined_config = CombinedConfig.from_pod(read_pod(self.configfile))
if os.path.isfile(self.targetfile):
self.target_info = TargetInfo.from_pod(read_pod(self.targetfile))
if os.path.isfile(self.jobsfile):
self.job_specs = self.read_job_specs()
for job_state in self.state.jobs.values():
job_path = os.path.join(self.basepath, job_state.output_name)
job = JobOutput(job_path, job_state.id,
job_state.label, job_state.iteration,
job_state.retries)
job.status = job_state.status
job.spec = self.get_job_spec(job.id)
if job.spec is None:
logger.warning('Could not find spec for job {}'.format(job.id))
self.jobs.append(job)
def write_info(self):
write_pod(self.info.to_pod(), self.infofile)
def write_state(self):
write_pod(self.state.to_pod(), self.statefile)
def write_config(self, config):
self._combined_config = config
write_pod(config.to_pod(), self.configfile)
def read_config(self):
if not os.path.isfile(self.configfile):
return None
return CombinedConfig.from_pod(read_pod(self.configfile))
def set_target_info(self, ti):
self.target_info = ti
write_pod(ti.to_pod(), self.targetfile)
def write_job_specs(self, job_specs):
job_specs[0].to_pod()
js_pod = {'jobs': [js.to_pod() for js in job_specs]}
write_pod(js_pod, self.jobsfile)
def read_job_specs(self):
if not os.path.isfile(self.jobsfile):
return None
pod = read_pod(self.jobsfile)
return [JobSpec.from_pod(jp) for jp in pod['jobs']]
def move_failed(self, job_output):
name = os.path.basename(job_output.basepath)
attempt = job_output.retry + 1
failed_name = '{}-attempt{:02}'.format(name, attempt)
failed_path = os.path.join(self.failed_dir, failed_name)
if os.path.exists(failed_path):
raise ValueError('Path {} already exists'.format(failed_path))
shutil.move(job_output.basepath, failed_path)
job_output.basepath = failed_path
class JobOutput(Output):
kind = 'job'
# pylint: disable=redefined-builtin
def __init__(self, path, id, label, iteration, retry):
super(JobOutput, self).__init__(path)
self.id = id
self.label = label
self.iteration = iteration
self.retry = retry
self.result = None
self.spec = None
self.reload()
@property
def augmentations(self):
job_augs = set([])
for aug in self.spec.augmentations:
job_augs.add(aug)
return list(job_augs)
class Result(Podable):
_pod_serialization_version = 1
@staticmethod
def from_pod(pod):
instance = super(Result, Result).from_pod(pod)
instance.status = Status.from_pod(pod['status'])
instance.metrics = [Metric.from_pod(m) for m in pod['metrics']]
instance.artifacts = [Artifact.from_pod(a) for a in pod['artifacts']]
instance.events = [Event.from_pod(e) for e in pod['events']]
instance.classifiers = pod.get('classifiers', OrderedDict())
instance.metadata = pod.get('metadata', OrderedDict())
return instance
def __init__(self):
# pylint: disable=no-member
super(Result, self).__init__()
self.status = Status.NEW
self.metrics = []
self.artifacts = []
self.events = []
self.classifiers = OrderedDict()
self.metadata = OrderedDict()
def add_metric(self, name, value, units=None, lower_is_better=False,
classifiers=None):
metric = Metric(name, value, units, lower_is_better, classifiers)
logger.debug('Adding metric: {}'.format(metric))
self.metrics.append(metric)
def add_artifact(self, name, path, kind, description=None, classifiers=None,
is_dir=False):
artifact = Artifact(name, path, kind, description=description,
classifiers=classifiers, is_dir=is_dir)
logger.debug('Adding artifact: {}'.format(artifact))
self.artifacts.append(artifact)
def add_event(self, message):
self.events.append(Event(message))
def get_metric(self, name):
for metric in self.metrics:
if metric.name == name:
return metric
return None
def get_artifact(self, name):
for artifact in self.artifacts:
if artifact.name == name:
return artifact
raise HostError('Artifact "{}" not found'.format(name))
def add_classifier(self, name, value, overwrite=False):
if name in self.classifiers and not overwrite:
raise ValueError('Cannot overwrite "{}" classifier.'.format(name))
self.classifiers[name] = value
for metric in self.metrics:
if name in metric.classifiers and not overwrite:
raise ValueError('Cannot overwrite "{}" classifier; clashes with {}.'.format(name, metric))
metric.classifiers[name] = value
for artifact in self.artifacts:
if name in artifact.classifiers and not overwrite:
raise ValueError('Cannot overwrite "{}" classifier; clashes with {}.'.format(name, artifact))
artifact.classifiers[name] = value
def add_metadata(self, key, *args, **kwargs):
force = kwargs.pop('force', False)
if kwargs:
msg = 'Unexpected keyword arguments: {}'
raise ValueError(msg.format(kwargs))
if key in self.metadata and not force:
msg = 'Metadata with key "{}" already exists.'
raise ValueError(msg.format(key))
if len(args) == 1:
value = args[0]
elif len(args) == 2:
value = {args[0]: args[1]}
elif not args:
value = None
else:
raise ValueError("Unexpected arguments: {}".format(args))
self.metadata[key] = value
def update_metadata(self, key, *args):
if not args:
del self.metadata[key]
return
if key not in self.metadata:
return self.add_metadata(key, *args)
if hasattr(self.metadata[key], 'items'):
if len(args) == 2:
self.metadata[key][args[0]] = args[1]
elif len(args) > 2: # assume list of key-value pairs
for k, v in args:
self.metadata[key][k] = v
elif hasattr(args[0], 'items'):
for k, v in args[0].items():
self.metadata[key][k] = v
else:
raise ValueError('Invalid value for key "{}": {}'.format(key, args))
elif isiterable(self.metadata[key]):
self.metadata[key].extend(args)
else: # scalar
if len(args) > 1:
raise ValueError('Invalid value for key "{}": {}'.format(key, args))
self.metadata[key] = args[0]
def to_pod(self):
pod = super(Result, self).to_pod()
pod['status'] = self.status.to_pod()
pod['metrics'] = [m.to_pod() for m in self.metrics]
pod['artifacts'] = [a.to_pod() for a in self.artifacts]
pod['events'] = [e.to_pod() for e in self.events]
pod['classifiers'] = copy(self.classifiers)
pod['metadata'] = deepcopy(self.metadata)
return pod
@staticmethod
def _pod_upgrade_v1(pod):
pod['_pod_version'] = pod.get('_pod_version', 1)
pod['status'] = Status(pod['status']).to_pod()
return pod
ARTIFACT_TYPES = ['log', 'meta', 'data', 'export', 'raw']
ArtifactType = enum(ARTIFACT_TYPES)
class Artifact(Podable):
"""
This is an artifact generated during execution/post-processing of a
workload. Unlike metrics, this represents an actual artifact, such as a
file, generated. This may be "output", such as trace, or it could be "meta
data" such as logs. These are distinguished using the ``kind`` attribute,
which also helps WA decide how it should be handled. Currently supported
kinds are:
:log: A log file. Not part of the "output" as such but contains
information about the run/workload execution that be useful for
diagnostics/meta analysis.
:meta: A file containing metadata. This is not part of the "output", but
contains information that may be necessary to reproduce the
results (contrast with ``log`` artifacts which are *not*
necessary).
:data: This file contains new data, not available otherwise and should
be considered part of the "output" generated by WA. Most traces
would fall into this category.
:export: Exported version of results or some other artifact. This
signifies that this artifact does not contain any new data
that is not available elsewhere and that it may be safely
discarded without losing information.
:raw: Signifies that this is a raw dump/log that is normally processed
to extract useful information and is then discarded. In a sense,
it is the opposite of ``export``, but in general may also be
discarded.
.. note:: whether a file is marked as ``log``/``data`` or ``raw``
depends on how important it is to preserve this file,
e.g. when archiving, vs how much space it takes up.
Unlike ``export`` artifacts which are (almost) always
ignored by other exporters as that would never result
in data loss, ``raw`` files *may* be processed by
exporters if they decided that the risk of losing
potentially (though unlikely) useful data is greater
than the time/space cost of handling the artifact (e.g.
a database uploader may choose to ignore ``raw``
artifacts, where as a network filer archiver may choose
to archive them).
.. note: The kind parameter is intended to represent the logical
function of a particular artifact, not it's intended means of
processing -- this is left entirely up to the output
processors.
"""
_pod_serialization_version = 2
@staticmethod
def from_pod(pod):
pod = Artifact._upgrade_pod(pod)
pod_version = pod.pop('_pod_version')
pod['kind'] = ArtifactType(pod['kind'])
instance = Artifact(**pod)
instance._pod_version = pod_version # pylint: disable =protected-access
instance.is_dir = pod.pop('is_dir')
return instance
def __init__(self, name, path, kind, description=None, classifiers=None,
is_dir=False):
""""
:param name: Name that uniquely identifies this artifact.
:param path: The *relative* path of the artifact. Depending on the
``level`` must be either relative to the run or iteration
output directory. Note: this path *must* be delimited
using ``/`` irrespective of the
operating system.
:param kind: The type of the artifact this is (e.g. log file, result,
etc.) this will be used as a hint to output processors. This
must be one of ``'log'``, ``'meta'``, ``'data'``,
``'export'``, ``'raw'``.
:param description: A free-form description of what this artifact is.
:param classifiers: A set of key-value pairs to further classify this
metric beyond current iteration (e.g. this can be
used to identify sub-tests).
"""
super(Artifact, self).__init__()
self.name = name
self.path = path.replace('/', os.sep) if path is not None else path
try:
self.kind = ArtifactType(kind)
except ValueError:
msg = 'Invalid Artifact kind: {}; must be in {}'
raise ValueError(msg.format(kind, ARTIFACT_TYPES))
self.description = description
self.classifiers = classifiers or {}
self.is_dir = is_dir
def to_pod(self):
pod = super(Artifact, self).to_pod()
pod.update(self.__dict__)
pod['kind'] = str(self.kind)
pod['is_dir'] = self.is_dir
return pod
@staticmethod
def _pod_upgrade_v1(pod):
pod['_pod_version'] = pod.get('_pod_version', 1)
return pod
@staticmethod
def _pod_upgrade_v2(pod):
pod['is_dir'] = pod.get('is_dir', False)
return pod
def __str__(self):
return self.path
def __repr__(self):
ft = 'dir' if self.is_dir else 'file'
return '{} ({}) ({}): {}'.format(self.name, ft, self.kind, self.path)
class Metric(Podable):
"""
This is a single metric collected from executing a workload.
:param name: the name of the metric. Uniquely identifies the metric
within the results.
:param value: The numerical value of the metric for this execution of a
workload. This can be either an int or a float.
:param units: Units for the collected value. Can be None if the value
has no units (e.g. it's a count or a standardised score).
:param lower_is_better: Boolean flag indicating where lower values are
better than higher ones. Defaults to False.
:param classifiers: A set of key-value pairs to further classify this
metric beyond current iteration (e.g. this can be used
to identify sub-tests).
"""
__slots__ = ['name', 'value', 'units', 'lower_is_better', 'classifiers']
_pod_serialization_version = 1
@staticmethod
def from_pod(pod):
pod = Metric._upgrade_pod(pod)
pod_version = pod.pop('_pod_version')
instance = Metric(**pod)
instance._pod_version = pod_version # pylint: disable =protected-access
return instance
@property
def label(self):
parts = ['{}={}'.format(n, v) for n, v in self.classifiers.items()]
parts.insert(0, self.name)
return '/'.join(parts)
def __init__(self, name, value, units=None, lower_is_better=False,
classifiers=None):
super(Metric, self).__init__()
self.name = name
self.value = numeric(value)
self.units = units
self.lower_is_better = lower_is_better
self.classifiers = classifiers or {}
def to_pod(self):
pod = super(Metric, self).to_pod()
pod['name'] = self.name
pod['value'] = self.value
pod['units'] = self.units
pod['lower_is_better'] = self.lower_is_better
pod['classifiers'] = self.classifiers
return pod
@staticmethod
def _pod_upgrade_v1(pod):
pod['_pod_version'] = pod.get('_pod_version', 1)
return pod
def __str__(self):
result = '{}: {}'.format(self.name, self.value)
if self.units:
result += ' ' + self.units
result += ' ({})'.format('-' if self.lower_is_better else '+')
return result
def __repr__(self):
text = self.__str__()
if self.classifiers:
return '<{} {}>'.format(text, format_ordered_dict(self.classifiers))
else:
return '<{}>'.format(text)
class Event(Podable):
"""
An event that occured during a run.
"""
__slots__ = ['timestamp', 'message']
_pod_serialization_version = 1
@staticmethod
def from_pod(pod):
pod = Event._upgrade_pod(pod)
pod_version = pod.pop('_pod_version')
instance = Event(pod['message'])
instance.timestamp = pod['timestamp']
instance._pod_version = pod_version # pylint: disable =protected-access
return instance
@property
def summary(self):
lines = self.message.split('\n')
result = lines[0]
if len(lines) > 1:
result += '[...]'
return result
def __init__(self, message):
super(Event, self).__init__()
self.timestamp = datetime.utcnow()
self.message = str(message)
def to_pod(self):
pod = super(Event, self).to_pod()
pod['timestamp'] = self.timestamp
pod['message'] = self.message
return pod
@staticmethod
def _pod_upgrade_v1(pod):
pod['_pod_version'] = pod.get('_pod_version', 1)
return pod
def __str__(self):
return '[{}] {}'.format(self.timestamp, self.message)
__repr__ = __str__
def init_run_output(path, wa_state, force=False):
if os.path.exists(path):
if force:
logger.info('Removing existing output directory.')
shutil.rmtree(os.path.abspath(path))
else:
raise RuntimeError('path exists: {}'.format(path))
logger.info('Creating output directory.')
os.makedirs(path)
meta_dir = os.path.join(path, '__meta')
os.makedirs(meta_dir)
_save_raw_config(meta_dir, wa_state)
touch(os.path.join(path, 'run.log'))
info = RunInfo(
run_name=wa_state.run_config.run_name,
project=wa_state.run_config.project,
project_stage=wa_state.run_config.project_stage,
)
write_pod(info.to_pod(), os.path.join(meta_dir, 'run_info.json'))
write_pod(RunState().to_pod(), os.path.join(path, '.run_state.json'))
write_pod(Result().to_pod(), os.path.join(path, 'result.json'))
ro = RunOutput(path)
ro.update_metadata('versions', 'wa', get_wa_version_with_commit())
ro.update_metadata('versions', 'devlib', devlib.__full_version__)
return ro
def init_job_output(run_output, job):
output_name = '{}-{}-{}'.format(job.id, job.spec.label, job.iteration)
path = os.path.join(run_output.basepath, output_name)
ensure_directory_exists(path)
write_pod(Result().to_pod(), os.path.join(path, 'result.json'))
job_output = JobOutput(path, job.id, job.label, job.iteration, job.retries)
job_output.spec = job.spec
job_output.status = job.status
run_output.jobs.append(job_output)
return job_output
def discover_wa_outputs(path):
# Use topdown=True to allow pruning dirs
for root, dirs, _ in os.walk(path, topdown=True):
if '__meta' in dirs:
yield RunOutput(root)
# Avoid recursing into the artifact as it can be very lengthy if a
# large number of file is present (sysfs dump)
dirs.clear()
def _save_raw_config(meta_dir, state):
raw_config_dir = os.path.join(meta_dir, 'raw_config')
os.makedirs(raw_config_dir)
for i, source in enumerate(state.loaded_config_sources):
if not os.path.isfile(source):
continue
basename = os.path.basename(source)
dest_path = os.path.join(raw_config_dir, 'cfg{}-{}'.format(i, basename))
shutil.copy(source, dest_path)
class DatabaseOutput(Output):
kind = None
@property
def resultfile(self):
if self.conn is None or self.oid is None:
return {}
pod = self._get_pod_version()
pod['metrics'] = self._get_metrics()
pod['status'] = self._get_status()
pod['classifiers'] = self._get_classifiers(self.oid, 'run')
pod['events'] = self._get_events()
pod['artifacts'] = self._get_artifacts()
return pod
@staticmethod
def _build_command(columns, tables, conditions=None, joins=None):
cmd = '''SELECT\n\t{}\nFROM\n\t{}'''.format(',\n\t'.join(columns), ',\n\t'.join(tables))
if joins:
for join in joins:
cmd += '''\nLEFT JOIN {} ON {}'''.format(join[0], join[1])
if conditions:
cmd += '''\nWHERE\n\t{}'''.format('\nAND\n\t'.join(conditions))
return cmd + ';'
def __init__(self, conn, oid=None, reload=True): # pylint: disable=super-init-not-called
self.conn = conn
self.oid = oid
self.result = None
if reload:
self.reload()
def __repr__(self):
return '<{} {}>'.format(self.__class__.__name__, self.oid)
def __str__(self):
return self.oid
def reload(self):
try:
self.result = Result.from_pod(self.resultfile)
except Exception as e: # pylint: disable=broad-except
self.result = Result()
self.result.status = Status.UNKNOWN
self.add_event(str(e))
def get_artifact_path(self, name):
artifact = self.get_artifact(name)
if artifact.is_dir:
return self._read_dir_artifact(artifact)
else:
return self._read_file_artifact(artifact)
def _read_dir_artifact(self, artifact):
artifact_path = tempfile.mkdtemp(prefix='wa_')
with tarfile.open(fileobj=self.conn.lobject(int(artifact.path), mode='b'), mode='r|gz') as tar_file:
tar_file.extractall(artifact_path)
self.conn.commit()
return artifact_path
def _read_file_artifact(self, artifact):
artifact = StringIO(self.conn.lobject(int(artifact.path)).read())
self.conn.commit()
return artifact
# pylint: disable=too-many-locals
def _read_db(self, columns, tables, conditions=None, join=None, as_dict=True):
# Automatically remove table name from column when using column names as keys or
# allow for column names to be aliases when retrieving the data,
# (db_column_name, alias)
db_columns = []
aliases_colunms = []
for column in columns:
if isinstance(column, tuple):
db_columns.append(column[0])
aliases_colunms.append(column[1])
else:
db_columns.append(column)
aliases_colunms.append(column.rsplit('.', 1)[-1])
cmd = self._build_command(db_columns, tables, conditions, join)
logger.debug(cmd)
with self.conn.cursor() as cursor:
cursor.execute(cmd)
results = cursor.fetchall()
self.conn.commit()
if not as_dict:
return results
# Format the output dict using column names as keys
output = []
for result in results:
entry = {}
for k, v in zip(aliases_colunms, result):
entry[k] = v
output.append(entry)
return output
def _get_pod_version(self):
columns = ['_pod_version', '_pod_serialization_version']
tables = ['{}s'.format(self.kind)]
conditions = ['{}s.oid = \'{}\''.format(self.kind, self.oid)]
results = self._read_db(columns, tables, conditions)
if results:
return results[0]
else:
return None
def _populate_classifers(self, pod, kind):
for entry in pod:
oid = entry.pop('oid')
entry['classifiers'] = self._get_classifiers(oid, kind)
return pod
def _get_classifiers(self, oid, kind):
columns = ['classifiers.key', 'classifiers.value']
tables = ['classifiers']
conditions = ['{}_oid = \'{}\''.format(kind, oid)]
results = self._read_db(columns, tables, conditions, as_dict=False)
classifiers = {}
for (k, v) in results:
classifiers[k] = v
return classifiers
def _get_metrics(self):
columns = ['metrics.name', 'metrics.value', 'metrics.units',
'metrics.lower_is_better',
'metrics.oid', 'metrics._pod_version',
'metrics._pod_serialization_version']
tables = ['metrics']
joins = [('classifiers', 'classifiers.metric_oid = metrics.oid')]
conditions = ['metrics.{}_oid = \'{}\''.format(self.kind, self.oid)]
pod = self._read_db(columns, tables, conditions, joins)
return self._populate_classifers(pod, 'metric')
def _get_status(self):
columns = ['{}s.status'.format(self.kind)]
tables = ['{}s'.format(self.kind)]
conditions = ['{}s.oid = \'{}\''.format(self.kind, self.oid)]
results = self._read_db(columns, tables, conditions, as_dict=False)
if results:
return results[0][0]
else:
return None
def _get_artifacts(self):
columns = ['artifacts.name', 'artifacts.description', 'artifacts.kind',
('largeobjects.lo_oid', 'path'), 'artifacts.oid', 'artifacts.is_dir',
'artifacts._pod_version', 'artifacts._pod_serialization_version']
tables = ['largeobjects', 'artifacts']
joins = [('classifiers', 'classifiers.artifact_oid = artifacts.oid')]
conditions = ['artifacts.{}_oid = \'{}\''.format(self.kind, self.oid),
'artifacts.large_object_uuid = largeobjects.oid']
# If retrieving run level artifacts we want those that don't also belong to a job
if self.kind == 'run':
conditions.append('artifacts.job_oid IS NULL')
pod = self._read_db(columns, tables, conditions, joins)
for artifact in pod:
artifact['path'] = str(artifact['path'])
return self._populate_classifers(pod, 'metric')
def _get_events(self):
columns = ['events.message', 'events.timestamp']
tables = ['events']
conditions = ['events.{}_oid = \'{}\''.format(self.kind, self.oid)]
return self._read_db(columns, tables, conditions)
def kernel_config_from_db(raw):
kernel_config = {}
if raw:
for k, v in zip(raw[0], raw[1]):
kernel_config[k] = v
return kernel_config
class RunDatabaseOutput(DatabaseOutput, RunOutputCommon):
kind = 'run'
@property
def basepath(self):
return 'db:({})-{}@{}:{}'.format(self.dbname, self.user,
self.host, self.port)
@property
def augmentations(self):
columns = ['augmentations.name']
tables = ['augmentations']
conditions = ['augmentations.run_oid = \'{}\''.format(self.oid)]
results = self._read_db(columns, tables, conditions, as_dict=False)
return [a for augs in results for a in augs]
@property
def _db_infofile(self):
columns = ['start_time', 'project', ('run_uuid', 'uuid'), 'end_time',
'run_name', 'duration', '_pod_version', '_pod_serialization_version']
tables = ['runs']
conditions = ['runs.run_uuid = \'{}\''.format(self.run_uuid)]
pod = self._read_db(columns, tables, conditions)
if not pod:
return {}
return pod[0]
@property
def _db_targetfile(self):
columns = ['os', 'is_rooted', 'target', 'modules', 'abi', 'cpus', 'os_version',
'hostid', 'hostname', 'kernel_version', 'kernel_release',
'kernel_sha1', 'kernel_config', 'sched_features', 'page_size_kb',
'system_id', 'screen_resolution', 'prop', 'android_id',
'_pod_version', '_pod_serialization_version']
tables = ['targets']
conditions = ['targets.run_oid = \'{}\''.format(self.oid)]
pod = self._read_db(columns, tables, conditions)
if not pod:
return {}
pod = pod[0]
try:
pod['cpus'] = [json.loads(cpu) for cpu in pod.pop('cpus')]
except SerializerSyntaxError:
pod['cpus'] = []
logger.debug('Failed to deserialize target cpu information')
pod['kernel_config'] = kernel_config_from_db(pod['kernel_config'])
return pod
@property
def _db_statefile(self):
# Read overall run information
columns = ['runs.state']
tables = ['runs']
conditions = ['runs.run_uuid = \'{}\''.format(self.run_uuid)]
pod = self._read_db(columns, tables, conditions)
pod = pod[0].get('state')
if not pod:
return {}
# Read job information
columns = ['jobs.job_id', 'jobs.oid']
tables = ['jobs']
conditions = ['jobs.run_oid = \'{}\''.format(self.oid)]
job_oids = self._read_db(columns, tables, conditions)
# Match job oid with jobs from state file
for job in pod.get('jobs', []):
for job_oid in job_oids:
if job['id'] == job_oid['job_id']:
job['oid'] = job_oid['oid']
break
return pod
@property
def _db_jobsfile(self):
workload_params = self._get_parameters('workload')
runtime_params = self._get_parameters('runtime')
columns = [('jobs.job_id', 'id'), 'jobs.label', 'jobs.workload_name',
'jobs.oid', 'jobs._pod_version', 'jobs._pod_serialization_version']
tables = ['jobs']
conditions = ['jobs.run_oid = \'{}\''.format(self.oid)]
jobs = self._read_db(columns, tables, conditions)
for job in jobs:
job['augmentations'] = self._get_job_augmentations(job['oid'])
job['workload_parameters'] = workload_params.pop(job['oid'], {})
job['runtime_parameters'] = runtime_params.pop(job['oid'], {})
job.pop('oid')
return jobs
@property
def _db_run_config(self):
pod = defaultdict(dict)
parameter_types = ['augmentation', 'resource_getter']
for parameter_type in parameter_types:
columns = ['parameters.name', 'parameters.value',
'parameters.value_type',
('{}s.name'.format(parameter_type), '{}'.format(parameter_type))]
tables = ['parameters', '{}s'.format(parameter_type)]
conditions = ['parameters.run_oid = \'{}\''.format(self.oid),
'parameters.type = \'{}\''.format(parameter_type),
'parameters.{0}_oid = {0}s.oid'.format(parameter_type)]
configs = self._read_db(columns, tables, conditions)
for config in configs:
entry = {config['name']: json.loads(config['value'])}
pod['{}s'.format(parameter_type)][config.pop(parameter_type)] = entry
# run config
columns = ['runs.max_retries', 'runs.allow_phone_home',
'runs.bail_on_init_failure', 'runs.retry_on_status']
tables = ['runs']
conditions = ['runs.oid = \'{}\''.format(self.oid)]
config = self._read_db(columns, tables, conditions)
if not config:
return {}
config = config[0]
# Convert back into a string representation of an enum list
config['retry_on_status'] = config['retry_on_status'][1:-1].split(',')
pod.update(config)
return pod
def __init__(self,
password=None,
dbname='wa',
host='localhost',
port='5432',
user='postgres',
run_uuid=None,
list_runs=False):
if psycopg2 is None:
msg = 'Please install the psycopg2 in order to connect to postgres databases'
raise HostError(msg)
self.dbname = dbname
self.host = host
self.port = port
self.user = user
self.password = password
self.run_uuid = run_uuid
self.conn = None
self.info = None
self.state = None
self.result = None
self.target_info = None
self._combined_config = None
self.jobs = []
self.job_specs = []
self.connect()
super(RunDatabaseOutput, self).__init__(conn=self.conn, reload=False)
local_schema_version, db_schema_version = get_schema_versions(self.conn)
if local_schema_version != db_schema_version:
self.disconnect()
msg = 'The current database schema is v{} however the local ' \
'schema version is v{}. Please update your database ' \
'with the create command'
raise HostError(msg.format(db_schema_version, local_schema_version))
if list_runs:
print('Available runs are:')
self._list_runs()
self.disconnect()
return
if not self.run_uuid:
print('Please specify "Run uuid"')
self._list_runs()
self.disconnect()
return
if not self.oid:
self.oid = self._get_oid()
self.reload()
def read_job_specs(self):
job_specs = []
for job in self._db_jobsfile:
job_specs.append(JobSpec.from_pod(job))
return job_specs
def connect(self):
if self.conn and not self.conn.closed:
return
try:
self.conn = psycopg2.connect(dbname=self.dbname,
user=self.user,
host=self.host,
password=self.password,
port=self.port)
except Psycopg2Error as e:
raise HostError('Unable to connect to the Database: "{}'.format(e.args[0]))
def disconnect(self):
self.conn.commit()
self.conn.close()
def reload(self):
super(RunDatabaseOutput, self).reload()
info_pod = self._db_infofile
state_pod = self._db_statefile
if not info_pod or not state_pod:
msg = '"{}" does not appear to be a valid WA Database Output.'
raise ValueError(msg.format(self.oid))
self.info = RunInfo.from_pod(info_pod)
self.state = RunState.from_pod(state_pod)
self._combined_config = CombinedConfig.from_pod({'run_config': self._db_run_config})
self.target_info = TargetInfo.from_pod(self._db_targetfile)
self.job_specs = self.read_job_specs()
for job_state in self._db_statefile['jobs']:
job = JobDatabaseOutput(self.conn, job_state.get('oid'), job_state['id'],
job_state['label'], job_state['iteration'],
job_state['retries'])
job.status = job_state['status']
job.spec = self.get_job_spec(job.id)
if job.spec is None:
logger.warning('Could not find spec for job {}'.format(job.id))
self.jobs.append(job)
def _get_oid(self):
columns = ['{}s.oid'.format(self.kind)]
tables = ['{}s'.format(self.kind)]
conditions = ['runs.run_uuid = \'{}\''.format(self.run_uuid)]
oid = self._read_db(columns, tables, conditions, as_dict=False)
if not oid:
raise ConfigError('No matching run entries found for run_uuid {}'.format(self.run_uuid))
if len(oid) > 1:
raise ConfigError('Multiple entries found for run_uuid: {}'.format(self.run_uuid))
return oid[0][0]
def _get_parameters(self, param_type):
columns = ['parameters.job_oid', 'parameters.name', 'parameters.value']
tables = ['parameters']
conditions = ['parameters.type = \'{}\''.format(param_type),
'parameters.run_oid = \'{}\''.format(self.oid)]
params = self._read_db(columns, tables, conditions, as_dict=False)
parm_dict = defaultdict(dict)
for (job_oid, k, v) in params:
try:
parm_dict[job_oid][k] = json.loads(v)
except SerializerSyntaxError:
logger.debug('Failed to deserialize job_oid:{}-"{}":"{}"'.format(job_oid, k, v))
return parm_dict
def _get_job_augmentations(self, job_oid):
columns = ['jobs_augs.augmentation_oid', 'augmentations.name',
'augmentations.oid', 'jobs_augs.job_oid']
tables = ['jobs_augs', 'augmentations']
conditions = ['jobs_augs.job_oid = \'{}\''.format(job_oid),
'jobs_augs.augmentation_oid = augmentations.oid']
augmentations = self._read_db(columns, tables, conditions)
return [aug['name'] for aug in augmentations]
def _list_runs(self):
columns = ['runs.run_uuid', 'runs.run_name', 'runs.project',
'runs.project_stage', 'runs.status', 'runs.start_time', 'runs.end_time']
tables = ['runs']
pod = self._read_db(columns, tables)
if pod:
headers = ['Run Name', 'Project', 'Project Stage', 'Start Time', 'End Time',
'run_uuid']
run_list = []
for entry in pod:
# Format times to display better
start_time = entry['start_time']
end_time = entry['end_time']
if start_time:
start_time = start_time.strftime("%Y-%m-%d %H:%M:%S")
if end_time:
end_time = end_time.strftime("%Y-%m-%d %H:%M:%S")
run_list.append([
entry['run_name'],
entry['project'],
entry['project_stage'],
start_time,
end_time,
entry['run_uuid']])
print(format_simple_table(run_list, headers))
else:
print('No Runs Found')
class JobDatabaseOutput(DatabaseOutput):
kind = 'job'
def __init__(self, conn, oid, job_id, label, iteration, retry):
super(JobDatabaseOutput, self).__init__(conn, oid=oid)
self.id = job_id
self.label = label
self.iteration = iteration
self.retry = retry
self.result = None
self.spec = None
self.reload()
def __repr__(self):
return '<{} {}-{}-{}>'.format(self.__class__.__name__,
self.id, self.label, self.iteration)
def __str__(self):
return '{}-{}-{}'.format(self.id, self.label, self.iteration)
@property
def augmentations(self):
job_augs = set([])
if self.spec:
for aug in self.spec.augmentations:
job_augs.add(aug)
return list(job_augs)