1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-19 12:24:32 +00:00
Brendan Jackman 61f4656bf9 csvproc: Fix process_run_output
We currently populate results_so_far with a JobOutput for each Job and then a
Result for the RunOutput. This results in a bug when trying to access the
id/label/iteration.

This is fixed by always ensuring the we store Output objects and not
Results (results_so_far is renamed to outputs_so_far to reflect this), and
treating the RunOutput specially in _write_outputs.
2017-11-06 18:21:26 +00:00

98 lines
3.7 KiB
Python

import csv
from wa import ResultProcessor, Parameter
from wa.framework.exception import ConfigError
from wa.utils.types import list_of_strings
class CsvReportProcessor(ResultProcessor):
name = 'csv'
description = """
Creates a ``results.csv`` in the output directory containing results for
all iterations in CSV format, each line containing a single metric.
"""
parameters = [
Parameter('use_all_classifiers', kind=bool, default=False,
global_alias='use_all_classifiers',
description="""
If set to ``True``, this will add a column for every classifier
that features in at least one collected metric.
.. note:: This cannot be ``True`` if ``extra_columns`` is set.
"""),
Parameter('extra_columns', kind=list_of_strings,
description="""
List of classifiers to use as columns.
.. note:: This cannot be set if ``use_all_classifiers`` is
``True``.
"""),
]
def validate(self):
super(CsvReportProcessor, self).validate()
if self.use_all_classifiers and self.extra_columns:
msg = 'extra_columns cannot be specified when '\
'use_all_classifiers is True'
raise ConfigError(msg)
def initialize(self):
self.outputs_so_far = [] # pylint: disable=attribute-defined-outside-init
self.artifact_added = False
def process_job_output(self, output, target_info, run_output):
self.outputs_so_far.append(output)
self._write_outputs(self.outputs_so_far, run_output)
if not self.artifact_added:
run_output.add_artifact('run_result_csv', 'results.csv', 'export')
self.artifact_added = True
def process_run_output(self, output, target_info):
self.outputs_so_far.append(output)
self._write_outputs(self.outputs_so_far, output)
if not self.artifact_added:
output.add_artifact('run_result_csv', 'results.csv', 'export')
self.artifact_added = True
def _write_outputs(self, outputs, output):
if self.use_all_classifiers:
classifiers = set([])
for output in outputs:
for metric in output.metrics:
classifiers.update(metric.classifiers.keys())
extra_columns = list(classifiers)
elif self.extra_columns:
extra_columns = self.extra_columns
else:
extra_columns = []
outfile = output.get_path('results.csv')
with open(outfile, 'wb') as wfh:
writer = csv.writer(wfh)
writer.writerow(['id', 'workload', 'iteration', 'metric', ] +
extra_columns + ['value', 'units'])
for o in outputs:
if o.kind == 'job':
header = [o.id, o.label, o.iteration]
elif o.kind == 'run':
# Should be a RunOutput. Run-level metrics aren't attached
# to any job so we leave 'id' and 'iteration' blank, and use
# the run name for the 'label' field.
header = [None, o.info.run_name, None]
else:
raise RuntimeError(
'Output of kind "{}" unrecognised by csvproc'.format(o.kind))
for metric in o.result.metrics:
row = (header + [metric.name] +
[str(metric.classifiers.get(c, ''))
for c in extra_columns] +
[str(metric.value), metric.units or ''])
writer.writerow(row)