1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-18 20:11:20 +00:00
Sergei Trofimov 0f9331dafe fw/job: copy classifiers from the spec
Now that classifiers may be added to the job during execution, its
classifiers dict should be unique to each job rather than just returning
them form spec (which may be shared between multiple jobs.)
2020-01-17 17:07:52 +00:00

191 lines
7.1 KiB
Python

# Copyright 2018 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Because of use of Enum (dynamic attrs)
# pylint: disable=no-member
import logging
from copy import copy
from datetime import datetime
from wa.framework import pluginloader, signal, instrument
from wa.framework.configuration.core import Status
from wa.utils.log import indentcontext
class Job(object):
_workload_cache = {}
@property
def id(self):
return self.spec.id
@property
def label(self):
return self.spec.label
@property
def status(self):
return self._status
@property
def has_been_initialized(self):
return self._has_been_initialized
@status.setter
def status(self, value):
self._status = value
if self.output:
self.output.status = value
def __init__(self, spec, iteration, context):
self.logger = logging.getLogger('job')
self.spec = spec
self.iteration = iteration
self.context = context
self.workload = None
self.output = None
self.run_time = None
self.retries = 0
self.classifiers = copy(self.spec.classifiers)
self._has_been_initialized = False
self._status = Status.NEW
def load(self, target, loader=pluginloader):
self.logger.info('Loading job {}'.format(self))
if self.iteration == 1:
self.workload = loader.get_workload(self.spec.workload_name,
target,
**self.spec.workload_parameters)
self.workload.init_resources(self.context)
self.workload.validate()
self._workload_cache[self.id] = self.workload
else:
self.workload = self._workload_cache[self.id]
def set_output(self, output):
output.classifiers = copy(self.classifiers)
self.output = output
def initialize(self, context):
self.logger.info('Initializing job {}'.format(self))
with indentcontext():
with signal.wrap('WORKLOAD_INITIALIZED', self, context):
self.workload.logger.context = context
self.workload.initialize(context)
self.set_status(Status.PENDING)
self._has_been_initialized = True
context.update_job_state(self)
def configure_augmentations(self, context, pm):
self.logger.info('Configuring augmentations')
with indentcontext():
instruments_to_enable = set()
output_processors_to_enable = set()
enabled_instruments = set(i.name for i in instrument.get_enabled())
enabled_output_processors = set(p.name for p in pm.get_enabled())
for augmentation in list(self.spec.augmentations.values()):
augmentation_cls = context.cm.plugin_cache.get_plugin_class(augmentation)
if augmentation_cls.kind == 'instrument':
instruments_to_enable.add(augmentation)
elif augmentation_cls.kind == 'output_processor':
output_processors_to_enable.add(augmentation)
# Disable unrequired instruments
for instrument_name in enabled_instruments.difference(instruments_to_enable):
instrument.disable(instrument_name)
# Enable additional instruments
for instrument_name in instruments_to_enable.difference(enabled_instruments):
instrument.enable(instrument_name)
# Disable unrequired output_processors
for processor in enabled_output_processors.difference(output_processors_to_enable):
pm.disable(processor)
# Enable additional output_processors
for processor in output_processors_to_enable.difference(enabled_output_processors):
pm.enable(processor)
def configure_target(self, context):
self.logger.info('Configuring target for job {}'.format(self))
with indentcontext():
context.tm.commit_runtime_parameters(self.spec.runtime_parameters)
def setup(self, context):
self.logger.info('Setting up job {}'.format(self))
with indentcontext():
with signal.wrap('WORKLOAD_SETUP', self, context):
self.workload.setup(context)
def run(self, context):
self.logger.info('Running job {}'.format(self))
with indentcontext():
with signal.wrap('WORKLOAD_EXECUTION', self, context):
start_time = datetime.utcnow()
try:
self.workload.run(context)
finally:
self.run_time = datetime.utcnow() - start_time
def process_output(self, context):
if not context.tm.is_responsive:
self.logger.info('Target unresponsive; not processing job output.')
return
self.logger.info('Processing output for job {}'.format(self))
with indentcontext():
if self.status != Status.FAILED:
with signal.wrap('WORKLOAD_RESULT_EXTRACTION', self, context):
self.workload.extract_results(context)
context.extract_results()
with signal.wrap('WORKLOAD_OUTPUT_UPDATE', self, context):
self.workload.update_output(context)
def teardown(self, context):
if not context.tm.is_responsive:
self.logger.info('Target unresponsive; not tearing down.')
return
self.logger.info('Tearing down job {}'.format(self))
with indentcontext():
with signal.wrap('WORKLOAD_TEARDOWN', self, context):
self.workload.teardown(context)
def finalize(self, context):
if not self._has_been_initialized:
return
if not context.tm.is_responsive:
self.logger.info('Target unresponsive; not finalizing.')
return
self.logger.info('Finalizing job {} '.format(self))
with indentcontext():
with signal.wrap('WORKLOAD_FINALIZED', self, context):
self.workload.finalize(context)
def set_status(self, status, force=False):
status = Status(status)
if force or self.status < status:
self.status = status
def add_classifier(self, name, value, overwrite=False):
if name in self.classifiers and not overwrite:
raise ValueError('Cannot overwrite "{}" classifier.'.format(name))
self.classifiers[name] = value
def __str__(self):
return '{} ({}) [{}]'.format(self.id, self.label, self.iteration)
def __repr__(self):
return 'Job({})'.format(self)