1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-18 20:11:20 +00:00
Marc Bonnici 29a5a7fd43 fw/config: Fix RunConfiguration descriptions
Fix quotations in the RunConfiguration description.
2023-04-29 17:29:43 -05:00

1134 lines
44 KiB
Python

# Copyright 2014-2018 ARM Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import logging
from copy import copy, deepcopy
from collections import OrderedDict, defaultdict
from wa.framework.exception import ConfigError, NotFoundError
from wa.framework.configuration.tree import SectionNode
from wa.utils import log
from wa.utils.misc import (get_article, merge_config_values)
from wa.utils.types import (identifier, integer, boolean, list_of_strings,
list_of, toggle_set, obj_dict, enum)
from wa.utils.serializer import is_pod, Podable
# Mapping for kind conversion; see docs for convert_types below
KIND_MAP = {
int: integer,
bool: boolean,
dict: OrderedDict,
}
Status = enum(['UNKNOWN', 'NEW', 'PENDING',
'STARTED', 'CONNECTED', 'INITIALIZED', 'RUNNING',
'OK', 'PARTIAL', 'FAILED', 'ABORTED', 'SKIPPED'])
logger = logging.getLogger('config')
##########################
### CONFIG POINT TYPES ###
##########################
class RebootPolicy(object):
"""
Represents the reboot policy for the execution -- at what points the device
should be rebooted. This, in turn, is controlled by the policy value that is
passed in on construction and would typically be read from the user's settings.
Valid policy values are:
:never: The device will never be rebooted.
:as_needed: Only reboot the device if it becomes unresponsive, or needs to be flashed, etc.
:initial: The device will be rebooted when the execution first starts, just before
executing the first workload spec.
:each_spec: The device will be rebooted before running a new workload spec.
:each_iteration: The device will be rebooted before each new iteration.
:run_completion: The device will be rebooted after the run has been completed.
"""
valid_policies = ['never', 'as_needed', 'initial', 'each_spec', 'each_job', 'run_completion']
@staticmethod
def from_pod(pod):
return RebootPolicy(pod)
def __init__(self, policy):
if isinstance(policy, RebootPolicy):
policy = policy.policy
policy = policy.strip().lower().replace(' ', '_')
if policy not in self.valid_policies:
message = 'Invalid reboot policy {}; must be one of {}'.format(policy, ', '.join(self.valid_policies))
raise ConfigError(message)
self.policy = policy
@property
def can_reboot(self):
return self.policy != 'never'
@property
def perform_initial_reboot(self):
return self.policy == 'initial'
@property
def reboot_on_each_job(self):
return self.policy == 'each_job'
@property
def reboot_on_each_spec(self):
return self.policy == 'each_spec'
@property
def reboot_on_run_completion(self):
return self.policy == 'run_completion'
def __str__(self):
return self.policy
__repr__ = __str__
def __eq__(self, other):
if isinstance(other, RebootPolicy):
return self.policy == other.policy
else:
return self.policy == other
def to_pod(self):
return self.policy
class status_list(list):
def append(self, item):
list.append(self, str(item).upper())
class LoggingConfig(Podable, dict):
_pod_serialization_version = 1
defaults = {
'file_format': '%(asctime)s %(levelname)-8s %(name)s: %(message)s',
'verbose_format': '%(asctime)s %(levelname)-8s %(name)s: %(message)s',
'regular_format': '%(levelname)-8s %(message)s',
'color': True,
}
@staticmethod
def from_pod(pod):
pod = LoggingConfig._upgrade_pod(pod)
pod_version = pod.pop('_pod_version')
instance = LoggingConfig(pod)
instance._pod_version = pod_version # pylint: disable=protected-access
return instance
def __init__(self, config=None):
super(LoggingConfig, self).__init__()
dict.__init__(self)
if isinstance(config, dict):
config = {identifier(k.lower()): v for k, v in config.items()}
self['regular_format'] = config.pop('regular_format', self.defaults['regular_format'])
self['verbose_format'] = config.pop('verbose_format', self.defaults['verbose_format'])
self['file_format'] = config.pop('file_format', self.defaults['file_format'])
self['color'] = config.pop('colour_enabled', self.defaults['color']) # legacy
self['color'] = config.pop('color', self.defaults['color'])
if config:
message = 'Unexpected logging configuration parameters: {}'
raise ValueError(message.format(bad_vals=', '.join(list(config.keys()))))
elif config is None:
for k, v in self.defaults.items():
self[k] = v
else:
raise ValueError(config)
def to_pod(self):
pod = super(LoggingConfig, self).to_pod()
pod.update(self)
return pod
@staticmethod
def _pod_upgrade_v1(pod):
pod['_pod_version'] = pod.get('_pod_version', 1)
return pod
def expanded_path(path):
"""
Ensure that the provided path has been expanded if applicable
"""
return os.path.expanduser(str(path))
def get_type_name(kind):
typename = str(kind)
if '\'' in typename:
typename = typename.split('\'')[1]
elif typename.startswith('<function'):
typename = typename.split()[1]
return typename
class ConfigurationPoint(object):
"""
This defines a generic configuration point for workload automation. This is
used to handle global settings, plugin parameters, etc.
"""
def __init__(self, name,
kind=None,
mandatory=None,
default=None,
override=False,
allowed_values=None,
description=None,
constraint=None,
merge=False,
aliases=None,
global_alias=None,
deprecated=False):
"""
Create a new Parameter object.
:param name: The name of the parameter. This will become an instance
member of the plugin object to which the parameter is
applied, so it must be a valid python identifier. This
is the only mandatory parameter.
:param kind: The type of parameter this is. This must be a callable
that takes an arbitrary object and converts it to the
expected type, or raised ``ValueError`` if such conversion
is not possible. Most Python standard types -- ``str``,
``int``, ``bool``, etc. -- can be used here. This
defaults to ``str`` if not specified.
:param mandatory: If set to ``True``, then a non-``None`` value for
this parameter *must* be provided on plugin
object construction, otherwise ``ConfigError``
will be raised.
:param default: The default value for this parameter. If no value
is specified on plugin construction, this value
will be used instead. (Note: if this is specified
and is not ``None``, then ``mandatory`` parameter
will be ignored).
:param override: A ``bool`` that specifies whether a parameter of
the same name further up the hierarchy should
be overridden. If this is ``False`` (the
default), an exception will be raised by the
``AttributeCollection`` instead.
:param allowed_values: This should be the complete list of allowed
values for this parameter. Note: ``None``
value will always be allowed, even if it is
not in this list. If you want to disallow
``None``, set ``mandatory`` to ``True``.
:param constraint: If specified, this must be a callable that takes
the parameter value as an argument and return a
boolean indicating whether the constraint has been
satisfied. Alternatively, can be a two-tuple with
said callable as the first element and a string
describing the constraint as the second.
:param merge: The default behaviour when setting a value on an object
that already has that attribute is to overrided with
the new value. If this is set to ``True`` then the two
values will be merged instead. The rules by which the
values are merged will be determined by the types of
the existing and new values -- see
``merge_config_values`` documentation for details.
:param aliases: Alternative names for the same configuration point.
These are largely for backwards compatibility.
:param global_alias: An alias for this parameter that can be specified at
the global level. A global_alias can map onto many
ConfigurationPoints.
:param deprecated: Specify that this parameter is deprecated and its
config should be ignored. If supplied WA will display
a warning to the user however will continue execution.
"""
self.name = identifier(name)
kind = KIND_MAP.get(kind, kind)
if kind is not None and not callable(kind):
raise ValueError('Kind must be callable.')
self.kind = kind
self.mandatory = mandatory
if not is_pod(default):
msg = "The default for '{}' must be a Plain Old Data type, but it is of type '{}' instead."
raise TypeError(msg.format(self.name, type(default)))
self.default = default
self.override = override
self.allowed_values = allowed_values
self.description = description
if self.kind is None and not self.override:
self.kind = str
if constraint is not None and not callable(constraint) and not isinstance(constraint, tuple):
raise ValueError('Constraint must be callable or a (callable, str) tuple.')
self.constraint = constraint
self.merge = merge
self.aliases = aliases or []
self.global_alias = global_alias
self.deprecated = deprecated
if self.default is not None:
try:
self.validate_value("init", self.default)
except ConfigError:
raise ValueError('Default value "{}" is not valid'.format(self.default))
def match(self, name):
if name == self.name or name in self.aliases:
return True
elif name == self.global_alias:
return True
return False
def set_value(self, obj, value=None, check_mandatory=True):
if self.deprecated:
if value is not None:
msg = 'Depreciated parameter supplied for "{}" in "{}". The value will be ignored.'
logger.warning(msg.format(self.name, obj.name))
return
if value is None:
if self.default is not None:
value = self.kind(self.default)
elif check_mandatory and self.mandatory:
msg = 'No values specified for mandatory parameter "{}" in {}'
raise ConfigError(msg.format(self.name, obj.name))
else:
try:
value = self.kind(value)
except (ValueError, TypeError):
typename = get_type_name(self.kind)
msg = 'Bad value "{}" for {}; must be {} {}'
article = get_article(typename)
raise ConfigError(msg.format(value, self.name, article, typename))
if value is not None:
self.validate_value(self.name, value)
if self.merge and hasattr(obj, self.name):
value = merge_config_values(getattr(obj, self.name), value)
setattr(obj, self.name, value)
def validate(self, obj, check_mandatory=True):
if self.deprecated:
return
value = getattr(obj, self.name, None)
if value is not None:
self.validate_value(obj.name, value)
else:
if check_mandatory and self.mandatory:
msg = 'No value specified for mandatory parameter "{}" in {}.'
raise ConfigError(msg.format(self.name, obj.name))
def validate_value(self, name, value):
if self.allowed_values:
self.validate_allowed_values(name, value)
if self.constraint:
self.validate_constraint(name, value)
def validate_allowed_values(self, name, value):
if 'list' in str(self.kind):
for v in value:
if v not in self.allowed_values:
msg = 'Invalid value {} for {} in {}; must be in {}'
raise ConfigError(msg.format(v, self.name, name, self.allowed_values))
else:
if value not in self.allowed_values:
msg = 'Invalid value {} for {} in {}; must be in {}'
raise ConfigError(msg.format(value, self.name, name, self.allowed_values))
def validate_constraint(self, name, value):
msg_vals = {'value': value, 'param': self.name, 'plugin': name}
if isinstance(self.constraint, tuple) and len(self.constraint) == 2:
constraint, msg = self.constraint # pylint: disable=unpacking-non-sequence
elif callable(self.constraint):
constraint = self.constraint
msg = '"{value}" failed constraint validation for "{param}" in "{plugin}".'
else:
raise ValueError('Invalid constraint for "{}": must be callable or a 2-tuple'.format(self.name))
if not constraint(value):
raise ConfigError(value, msg.format(**msg_vals))
def __repr__(self):
d = copy(self.__dict__)
del d['description']
return 'ConfigurationPoint({})'.format(d)
__str__ = __repr__
#####################
### Configuration ###
#####################
def _to_pod(cfg_point, value):
if is_pod(value):
return value
if hasattr(cfg_point.kind, 'to_pod'):
return value.to_pod()
msg = '{} value "{}" is not serializable'
raise ValueError(msg.format(cfg_point.name, value))
class Configuration(Podable):
_pod_serialization_version = 1
config_points = []
name = ''
# The below line must be added to all subclasses
configuration = {cp.name: cp for cp in config_points}
@classmethod
def from_pod(cls, pod):
instance = super(Configuration, cls).from_pod(pod)
for cfg_point in cls.config_points:
if cfg_point.name in pod:
value = pod.pop(cfg_point.name)
if hasattr(cfg_point.kind, 'from_pod'):
value = cfg_point.kind.from_pod(value)
cfg_point.set_value(instance, value)
if pod:
msg = 'Invalid entry(ies) for "{}": "{}"'
raise ValueError(msg.format(cls.name, '", "'.join(list(pod.keys()))))
return instance
def __init__(self):
super(Configuration, self).__init__()
for confpoint in self.config_points:
confpoint.set_value(self, check_mandatory=False)
def set(self, name, value, check_mandatory=True):
if name not in self.configuration:
raise ConfigError('Unknown {} configuration "{}"'.format(self.name,
name))
try:
self.configuration[name].set_value(self, value,
check_mandatory=check_mandatory)
except (TypeError, ValueError, ConfigError) as e:
msg = 'Invalid value "{}" for "{}": {}'
raise ConfigError(msg.format(value, name, e))
def update_config(self, values, check_mandatory=True):
for k, v in values.items():
self.set(k, v, check_mandatory=check_mandatory)
def validate(self):
for cfg_point in self.config_points:
cfg_point.validate(self)
def to_pod(self):
pod = super(Configuration, self).to_pod()
for cfg_point in self.config_points:
value = getattr(self, cfg_point.name, None)
pod[cfg_point.name] = _to_pod(cfg_point, value)
return pod
@staticmethod
def _pod_upgrade_v1(pod):
pod['_pod_version'] = pod.get('_pod_version', 1)
return pod
# This configuration for the core WA framework
class MetaConfiguration(Configuration):
name = "Meta Configuration"
core_plugin_packages = [
'wa.commands',
'wa.framework.getters',
'wa.framework.target.descriptor',
'wa.instruments',
'wa.output_processors',
'wa.workloads',
]
config_points = [
ConfigurationPoint(
'user_directory',
description="""
Path to the user directory. This is the location WA will look for
user configuration, additional plugins and plugin dependencies.
""",
kind=expanded_path,
default=os.path.join(os.path.expanduser('~'), '.workload_automation'),
),
ConfigurationPoint(
'assets_repository',
description="""
The local mount point for the filer hosting WA assets.
""",
default=''
),
ConfigurationPoint(
'logging',
kind=LoggingConfig,
default=LoggingConfig.defaults,
description="""
WA logging configuration. This should be a dict with a subset
of the following keys::
:normal_format: Logging format used for console output
:verbose_format: Logging format used for verbose console output
:file_format: Logging format used for run.log
:color: If ``True`` (the default), console logging output will
contain bash color escape codes. Set this to ``False`` if
console output will be piped somewhere that does not know
how to handle those.
""",
),
ConfigurationPoint(
'verbosity',
kind=int,
default=0,
description="""
Verbosity of console output.
""",
),
ConfigurationPoint( # TODO: Needs some format for dates etc/ comes from cfg
'default_output_directory',
default="wa_output",
description="""
The default output directory that will be created if not
specified when invoking a run.
""",
),
ConfigurationPoint(
'extra_plugin_paths',
kind=list_of_strings,
description="""
A list of additional paths to scan for plugins.
""",
),
]
configuration = {cp.name: cp for cp in config_points}
@property
def dependencies_directory(self):
return os.path.join(self.user_directory, 'dependencies')
@property
def plugins_directory(self):
return os.path.join(self.user_directory, 'plugins')
@property
def cache_directory(self):
return os.path.join(self.user_directory, 'cache')
@property
def plugin_paths(self):
return [self.plugins_directory] + (self.extra_plugin_paths or [])
@property
def user_config_file(self):
return os.path.join(self.user_directory, 'config.yaml')
@property
def additional_packages_file(self):
return os.path.join(self.user_directory, 'packages')
@property
def target_info_cache_file(self):
return os.path.join(self.cache_directory, 'targets.json')
@property
def apk_info_cache_file(self):
return os.path.join(self.cache_directory, 'apk_info.json')
def __init__(self, environ=None):
super(MetaConfiguration, self).__init__()
if environ is None:
environ = os.environ
user_directory = environ.pop('WA_USER_DIRECTORY', '')
if user_directory:
self.set('user_directory', user_directory)
extra_plugin_paths = environ.pop('WA_PLUGIN_PATHS', '')
if extra_plugin_paths:
self.set('extra_plugin_paths', extra_plugin_paths.split(os.pathsep))
self.plugin_packages = copy(self.core_plugin_packages)
if os.path.isfile(self.additional_packages_file):
with open(self.additional_packages_file) as fh:
extra_packages = [p.strip() for p in fh.read().split('\n') if p.strip()]
self.plugin_packages.extend(extra_packages)
# This is generic top-level configuration for WA runs.
class RunConfiguration(Configuration):
name = "Run Configuration"
# Metadata is separated out because it is not loaded into the auto
# generated config file
meta_data = [
ConfigurationPoint(
'run_name',
kind=str,
description='''
A string that labels the WA run that is being performed. This would
typically be set in the ``config`` section of an agenda (see
:ref:`configuration in an agenda <configuration_in_agenda>`) rather
than in the config file.
''',
),
ConfigurationPoint(
'project',
kind=str,
description='''
A string naming the project for which data is being collected. This
may be useful, e.g. when uploading data to a shared database that
is populated from multiple projects.
''',
),
ConfigurationPoint(
'project_stage',
kind=dict,
description='''
A dict or a string that allows adding additional identifier. This
is may be useful for long-running projects.
''',
),
]
config_points = [
ConfigurationPoint(
'execution_order',
kind=str,
default='by_iteration',
allowed_values=['by_iteration', 'by_section', 'by_workload', 'random'],
description='''
Defines the order in which the agenda spec will be executed. At the
moment, the following execution orders are supported:
``"by_iteration"``
The first iteration of each workload spec is executed one after
the other, so all workloads are executed before proceeding on
to the second iteration. E.g. A1 B1 C1 A2 C2 A3. This is the
default if no order is explicitly specified.
In case of multiple sections, this will spread them out, such
that specs from the same section are further part. E.g. given
sections X and Y, global specs A and B, and two iterations,
this will run ::
X.A1, Y.A1, X.B1, Y.B1, X.A2, Y.A2, X.B2, Y.B2
``"by_section"``
Same as ``"by_iteration"``, however this will group specs from
the same section together, so given sections X and Y, global
specs A and B, and two iterations, this will run ::
X.A1, X.B1, Y.A1, Y.B1, X.A2, X.B2, Y.A2, Y.B2
``"by_workload"``
All iterations of the first spec are executed before moving on
to the next spec. E.g::
X.A1, X.A2, Y.A1, Y.A2, X.B1, X.B2, Y.B1, Y.B2
``"random"``
Execution order is entirely random.
''',
),
ConfigurationPoint(
'reboot_policy',
kind=RebootPolicy,
default='as_needed',
allowed_values=RebootPolicy.valid_policies,
description='''
This defines when during execution of a run the Device will be
rebooted. The possible values are:
``"as_needed"``
The device will only be rebooted if the need arises (e.g. if it
becomes unresponsive.
``"never"``
The device will never be rebooted.
``"initial"``
The device will be rebooted when the execution first starts,
just before executing the first workload spec.
``"each_job"``
The device will be rebooted before each new job.
``"each_spec"``
The device will be rebooted before running a new workload spec.
.. note:: This acts the same as ``each_job`` when execution order
is set to by_iteration
``"run_completion"``
The device will be rebooted after the run has been completed.
'''),
ConfigurationPoint(
'device',
kind=str,
default='generic_android',
description='''
This setting defines what specific ``Device`` subclass will be used to
interact the connected device. Obviously, this must match your
setup.
''',
),
ConfigurationPoint(
'retry_on_status',
kind=list_of(Status),
default=['FAILED', 'PARTIAL'],
allowed_values=Status.levels[Status.RUNNING.value:],
description='''
This is list of statuses on which a job will be considered to have
failed and will be automatically retried up to ``max_retries``
times. This defaults to ``["FAILED", "PARTIAL"]`` if not set.
Possible values are:
``"OK"``
This iteration has completed and no errors have been detected
``"PARTIAL"``
One or more instruments have failed (the iteration may still be
running).
``"FAILED"``
The workload itself has failed.
``"ABORTED"``
The user interrupted the workload.
''',
),
ConfigurationPoint(
'max_retries',
kind=int,
default=2,
description='''
The maximum number of times failed jobs will be retried before
giving up.
.. note:: This number does not include the original attempt
''',
),
ConfigurationPoint(
'bail_on_init_failure',
kind=bool,
default=True,
description='''
When jobs fail during their main setup and run phases, WA will
continue attempting to run the remaining jobs. However, by default,
if they fail during their early initialization phase, the entire run
will end without continuing to run jobs. Setting this to ``False``
means that WA will instead skip all the jobs from the job spec that
failed, but continue attempting to run others.
'''
),
ConfigurationPoint(
'bail_on_job_failure',
kind=bool,
default=False,
description='''
When a job fails during its run phase, WA will attempt to retry the
job, then continue with remaining jobs after. Setting this to
``True`` means WA will skip remaining jobs and end the run if a job
has retried the maximum number of times, and still fails.
'''
),
ConfigurationPoint(
'allow_phone_home',
kind=bool, default=True,
description='''
Setting this to ``False`` prevents running any workloads that are marked
with 'phones_home', meaning they are at risk of exposing information
about the device to the outside world. For example, some benchmark
applications upload device data to a database owned by the
maintainers.
This can be used to minimise the risk of accidentally running such
workloads when testing confidential devices.
'''),
]
configuration = {cp.name: cp for cp in config_points + meta_data}
@classmethod
def from_pod(cls, pod):
meta_pod = {}
for cfg_point in cls.meta_data:
meta_pod[cfg_point.name] = pod.pop(cfg_point.name, None)
device_config = pod.pop('device_config', None)
augmentations = pod.pop('augmentations', {})
getters = pod.pop('resource_getters', {})
instance = super(RunConfiguration, cls).from_pod(pod)
instance.device_config = device_config
instance.augmentations = augmentations
instance.resource_getters = getters
for cfg_point in cls.meta_data:
cfg_point.set_value(instance, meta_pod[cfg_point.name])
return instance
def __init__(self):
super(RunConfiguration, self).__init__()
for confpoint in self.meta_data:
confpoint.set_value(self, check_mandatory=False)
self.device_config = None
self.augmentations = {}
self.resource_getters = {}
def merge_device_config(self, plugin_cache):
"""
Merges global device config and validates that it is correct for the
selected device.
"""
# pylint: disable=no-member
if self.device is None:
msg = 'Attempting to merge device config with unspecified device'
raise RuntimeError(msg)
self.device_config = plugin_cache.get_plugin_config(self.device,
generic_name="device_config")
def add_augmentation(self, aug):
if aug.name in self.augmentations:
raise ValueError('Augmentation "{}" already added.'.format(aug.name))
self.augmentations[aug.name] = aug.get_config()
def add_resource_getter(self, getter):
if getter.name in self.resource_getters:
raise ValueError('Resource getter "{}" already added.'.format(getter.name))
self.resource_getters[getter.name] = getter.get_config()
def to_pod(self):
pod = super(RunConfiguration, self).to_pod()
pod['device_config'] = dict(self.device_config or {})
pod['augmentations'] = self.augmentations
pod['resource_getters'] = self.resource_getters
return pod
class JobSpec(Configuration):
# pylint: disable=access-member-before-definition,attribute-defined-outside-init
name = "Job Spec"
config_points = [
ConfigurationPoint('iterations', kind=int, default=1,
description='''
How many times to repeat this workload spec
'''),
ConfigurationPoint('workload_name', kind=str, mandatory=True,
aliases=["name"],
description='''
The name of the workload to run.
'''),
ConfigurationPoint('workload_parameters', kind=obj_dict, merge=True,
aliases=["params", "workload_params", "parameters"],
description='''
Parameter to be passed to the workload
'''),
ConfigurationPoint('runtime_parameters', kind=obj_dict, merge=True,
aliases=["runtime_params"],
description='''
Runtime parameters to be set prior to running
the workload.
'''),
ConfigurationPoint('boot_parameters', kind=obj_dict,
aliases=["boot_params"],
description='''
Parameters to be used when rebooting the target
prior to running the workload.
'''),
ConfigurationPoint('label', kind=str,
description='''
Similar to IDs but do not have the uniqueness restriction.
If specified, labels will be used by some output
processors instead of (or in addition to) the workload
name. For example, the csv output processor will put
the label in the "workload" column of the CSV file.
'''),
ConfigurationPoint('augmentations', kind=toggle_set, merge=True,
aliases=["instruments", "processors", "instrumentation",
"output_processors", "augment", "result_processors"],
description='''
The instruments and output processors to enable (or
disabled using a ~) during this workload spec. This combines the
"instrumentation" and "result_processors" from
previous versions of WA (the old entries are now
aliases for this).
'''),
ConfigurationPoint('flash', kind=dict, merge=True,
description='''
'''),
ConfigurationPoint('classifiers', kind=dict, merge=True,
description='''
Classifiers allow you to tag metrics from this workload
spec to help in post processing them. Theses are often
used to help identify what runtime_parameters were used
for results when post processing.
'''),
]
configuration = {cp.name: cp for cp in config_points}
@classmethod
def from_pod(cls, pod):
job_id = pod.pop('id')
instance = super(JobSpec, cls).from_pod(pod)
instance.id = job_id
return instance
@property
def section_id(self):
if self.id is not None:
return self.id.rsplit('-', 1)[0]
@property
def workload_id(self):
if self.id is not None:
return self.id.rsplit('-', 1)[-1]
def __init__(self):
super(JobSpec, self).__init__()
if self.classifiers is None:
self.classifiers = OrderedDict()
self.to_merge = defaultdict(OrderedDict)
self._sources = []
self.id = None
if self.boot_parameters is None:
self.boot_parameters = obj_dict()
if self.runtime_parameters is None:
self.runtime_parameters = obj_dict()
def to_pod(self):
pod = super(JobSpec, self).to_pod()
pod['id'] = self.id
return pod
def update_config(self, source, check_mandatory=True): # pylint: disable=arguments-differ
self._sources.append(source)
values = source.config
for k, v in values.items():
if k == "id":
continue
elif k.endswith('_parameters'):
if v:
self.to_merge[k][source] = copy(v)
else:
try:
self.set(k, v, check_mandatory=check_mandatory)
except ConfigError as e:
msg = 'Error in {}:\n\t{}'
raise ConfigError(msg.format(source.name, e.message))
def merge_workload_parameters(self, plugin_cache):
# merge global generic and specific config
workload_params = plugin_cache.get_plugin_config(self.workload_name,
generic_name="workload_parameters",
is_final=False)
cfg_points = plugin_cache.get_plugin_parameters(self.workload_name)
for source in self._sources:
config = dict(self.to_merge["workload_parameters"].get(source, {}))
if not config:
continue
for name, cfg_point in cfg_points.items():
if name in config:
value = config.pop(name)
cfg_point.set_value(workload_params, value,
check_mandatory=False)
if config:
msg = 'Unexpected config "{}" for "{}"'
raise ConfigError(msg.format(config, self.workload_name))
self.workload_parameters = workload_params
def merge_runtime_parameters(self, plugin_cache, target_manager):
# Order global runtime parameters
runtime_parameters = OrderedDict()
try:
global_runtime_params = plugin_cache.get_plugin_config("runtime_parameters")
except NotFoundError:
global_runtime_params = {}
for source in plugin_cache.sources:
if source in global_runtime_params:
runtime_parameters[source] = global_runtime_params[source]
# Add runtime parameters from JobSpec
for source, values in self.to_merge['runtime_parameters'].items():
runtime_parameters[source] = values
# Merge
self.runtime_parameters = target_manager.merge_runtime_parameters(runtime_parameters)
def finalize(self):
self.id = "-".join([str(source.config['id'])
for source in self._sources[1:]]) # ignore first id, "global"
# ensure *_parameters are always obj_dict's
self.boot_parameters = obj_dict(list((self.boot_parameters or {}).items()))
self.runtime_parameters = obj_dict(list((self.runtime_parameters or {}).items()))
self.workload_parameters = obj_dict(list((self.workload_parameters or {}).items()))
if self.label is None:
self.label = self.workload_name
# This is used to construct the list of Jobs WA will run
class JobGenerator(object):
name = "Jobs Configuration"
@property
def enabled_instruments(self):
self._read_augmentations = True
if self._enabled_instruments is None:
self._enabled_instruments = []
for entry in list(self._enabled_augmentations.merge_with(self.disabled_augmentations).values()):
entry_cls = self.plugin_cache.get_plugin_class(entry)
if entry_cls.kind == 'instrument':
self._enabled_instruments.append(entry)
return self._enabled_instruments
@property
def enabled_processors(self):
self._read_augmentations = True
if self._enabled_processors is None:
self._enabled_processors = []
for entry in list(self._enabled_augmentations.merge_with(self.disabled_augmentations).values()):
entry_cls = self.plugin_cache.get_plugin_class(entry)
if entry_cls.kind == 'output_processor':
self._enabled_processors.append(entry)
return self._enabled_processors
def __init__(self, plugin_cache):
self.plugin_cache = plugin_cache
self.ids_to_run = []
self.workloads = []
self._enabled_augmentations = toggle_set()
self._enabled_instruments = None
self._enabled_processors = None
self._read_augmentations = False
self.disabled_augmentations = set()
self.job_spec_template = obj_dict(not_in_dict=['name'])
self.job_spec_template.name = "globally specified job spec configuration"
self.job_spec_template.id = "global"
# Load defaults
for cfg_point in JobSpec.configuration.values():
cfg_point.set_value(self.job_spec_template, check_mandatory=False)
self.root_node = SectionNode(self.job_spec_template)
def set_global_value(self, name, value):
JobSpec.configuration[name].set_value(self.job_spec_template, value,
check_mandatory=False)
if name == "augmentations":
self.update_augmentations(value)
def add_section(self, section, workloads, group):
new_node = self.root_node.add_section(section, group)
with log.indentcontext():
for workload in workloads:
new_node.add_workload(workload)
def add_workload(self, workload):
self.root_node.add_workload(workload)
def disable_augmentations(self, augmentations):
for entry in augmentations:
if entry == '~~':
continue
if entry.startswith('~'):
entry = entry[1:]
try:
self.plugin_cache.get_plugin_class(entry)
except NotFoundError:
raise ConfigError('Error disabling unknown augmentation: "{}"'.format(entry))
self.disabled_augmentations = self.disabled_augmentations.union(augmentations)
def update_augmentations(self, value):
if self._read_augmentations:
msg = 'Cannot update augmentations after they have been accessed'
raise RuntimeError(msg)
self._enabled_augmentations = self._enabled_augmentations.merge_with(value)
def only_run_ids(self, ids):
if isinstance(ids, str):
ids = [ids]
self.ids_to_run = ids
def generate_job_specs(self, target_manager):
specs = []
for leaf in self.root_node.leaves():
workload_entries = leaf.workload_entries
sections = [leaf]
for ancestor in leaf.ancestors():
workload_entries = ancestor.workload_entries + workload_entries
sections.insert(0, ancestor)
for workload_entry in workload_entries:
job_spec = create_job_spec(deepcopy(workload_entry), sections,
target_manager, self.plugin_cache,
self.disabled_augmentations)
if self.ids_to_run:
for job_id in self.ids_to_run:
if job_id in job_spec.id:
break
else:
continue
self.update_augmentations(list(job_spec.augmentations.values()))
specs.append(job_spec)
return specs
def create_job_spec(workload_entry, sections, target_manager, plugin_cache,
disabled_augmentations):
job_spec = JobSpec()
# PHASE 2.1: Merge general job spec configuration
for section in sections:
job_spec.update_config(section, check_mandatory=False)
# Add classifiers for any present groups
if section.id == 'global' or section.group is None:
# Ignore global config and default group
continue
job_spec.classifiers[section.group] = section.id
job_spec.update_config(workload_entry, check_mandatory=False)
# PHASE 2.2: Merge global, section and workload entry "workload_parameters"
job_spec.merge_workload_parameters(plugin_cache)
# TODO: PHASE 2.3: Validate device runtime/boot parameters
job_spec.merge_runtime_parameters(plugin_cache, target_manager)
target_manager.validate_runtime_parameters(job_spec.runtime_parameters)
# PHASE 2.4: Disable globally disabled augmentations
job_spec.set("augmentations", disabled_augmentations)
job_spec.finalize()
return job_spec
def get_config_point_map(params):
pmap = {}
for p in params:
pmap[p.name] = p
for alias in p.aliases:
pmap[alias] = p
return pmap
settings = MetaConfiguration(os.environ)