1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-19 04:21:17 +00:00
Sergei Trofimov 1e21bd2ca8 framework/output: save classifiers in Result
Save classifiers at Result as well as Metric level. Reason: when
processing output, one might want to filter complete results, as well as
individual metrics. While it is in theory possible to get the
classifiers for a job by simply extracting the common classifiers
between all metrics, this fails when there are no metrics generated for
a job (note that one might still want to process the output in this
case, e.g. for the artifacts).
2018-02-16 13:56:03 +00:00

140 lines
5.2 KiB
Python

import logging
from copy import copy
from datetime import datetime
from wa.framework import pluginloader, signal, instruments
from wa.framework.configuration.core import Status
# Because of use of Enum (dynamic attrs)
# pylint: disable=no-member
class Job(object):
_workload_cache = {}
@property
def id(self):
return self.spec.id
@property
def label(self):
return self.spec.label
@property
def classifiers(self):
return self.spec.classifiers
@property
def status(self):
return self._status
@status.setter
def status(self, value):
self._status = value
if self.output:
self.output.status = value
def __init__(self, spec, iteration, context):
self.logger = logging.getLogger('job')
self.spec = spec
self.iteration = iteration
self.context = context
self.workload = None
self.output = None
self.run_time = None
self.retries = 0
self._status = Status.NEW
def load(self, target, loader=pluginloader):
self.logger.info('Loading job {}'.format(self.id))
if self.iteration == 1:
self.workload = loader.get_workload(self.spec.workload_name,
target,
**self.spec.workload_parameters)
self.workload.init_resources(self.context)
self.workload.validate()
self._workload_cache[self.id] = self.workload
else:
self.workload = self._workload_cache[self.id]
def set_output(self, output):
output.classifiers = copy(self.classifiers)
self.output = output
def initialize(self, context):
self.logger.info('Initializing job {} [{}]'.format(self.id, self.iteration))
with signal.wrap('WORKLOAD_INITIALIZED', self, context):
self.workload.logger.context = context
self.workload.initialize(context)
self.set_status(Status.PENDING)
context.update_job_state(self)
def configure_augmentations(self, context, pm):
instruments_to_enable = set()
output_processors_to_enable = set()
enabled_instruments = set(i.name for i in instruments.get_enabled())
enabled_output_processors = set(p.name for p in pm.get_enabled())
for augmentation in self.spec.augmentations.values():
augmentation_cls = context.cm.plugin_cache.get_plugin_class(augmentation)
if augmentation_cls.kind == 'instrument':
instruments_to_enable.add(augmentation)
elif augmentation_cls.kind == 'output_processor':
output_processors_to_enable.add(augmentation)
# Disable unrequired instruments
for instrument in enabled_instruments.difference(instruments_to_enable):
instruments.disable(instrument)
# Enable additional instruments
for instrument in instruments_to_enable.difference(enabled_instruments):
instruments.enable(instrument)
# Disable unrequired output_processors
for processor in enabled_output_processors.difference(output_processors_to_enable):
pm.disable(processor)
# Enable additional output_processors
for processor in output_processors_to_enable.difference(enabled_output_processors):
pm.enable(processor)
def configure_target(self, context):
self.logger.info('Configuring target for job {} [{}]'.format(self.id, self.iteration))
context.tm.commit_runtime_parameters(self.spec.runtime_parameters)
def setup(self, context):
self.logger.info('Setting up job {} [{}]'.format(self.id, self.iteration))
with signal.wrap('WORKLOAD_SETUP', self, context):
self.workload.setup(context)
def run(self, context):
self.logger.info('Running job {} [{}]'.format(self.id, self.iteration))
with signal.wrap('WORKLOAD_EXECUTION', self, context):
start_time = datetime.utcnow()
try:
self.workload.run(context)
finally:
self.run_time = datetime.utcnow() - start_time
def process_output(self, context):
self.logger.info('Processing output for job {} [{}]'.format(self.id, self.iteration))
if self.status != Status.FAILED:
with signal.wrap('WORKLOAD_RESULT_EXTRACTION', self, context):
self.workload.extract_results(context)
context.extract_results()
with signal.wrap('WORKLOAD_OUTPUT_UPDATE', self, context):
self.workload.update_output(context)
def teardown(self, context):
self.logger.info('Tearing down job {} [{}]'.format(self.id, self.iteration))
with signal.wrap('WORKLOAD_TEARDOWN', self, context):
self.workload.teardown(context)
def finalize(self, context):
self.logger.info('Finalizing job {} [{}]'.format(self.id, self.iteration))
with signal.wrap('WORKLOAD_FINALIZED', self, context):
self.workload.finalize(context)
def set_status(self, status, force=False):
status = Status(status)
if force or self.status < status:
self.status = status