mirror of
https://github.com/ARM-software/workload-automation.git
synced 2025-01-18 12:06:08 +00:00
832ed797e1
If no jobs have been generated that are available for running then WA will crash when trying to access the job queue. Add an explicit check to ensure that a sensible error is raised in this case, for example if attempting to run a specific job ID that is not found.
256 lines
8.3 KiB
Python
256 lines
8.3 KiB
Python
# Copyright 2018 ARM Limited
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
import random
|
|
from itertools import groupby, chain
|
|
|
|
from future.moves.itertools import zip_longest
|
|
|
|
from devlib.utils.types import identifier
|
|
|
|
from wa.framework.configuration.core import (MetaConfiguration, RunConfiguration,
|
|
JobGenerator, settings)
|
|
from wa.framework.configuration.parsers import ConfigParser
|
|
from wa.framework.configuration.plugin_cache import PluginCache
|
|
from wa.framework.exception import NotFoundError, ConfigError
|
|
from wa.framework.job import Job
|
|
from wa.utils import log
|
|
from wa.utils.serializer import Podable
|
|
|
|
|
|
class CombinedConfig(Podable):
|
|
|
|
_pod_serialization_version = 1
|
|
|
|
@staticmethod
|
|
def from_pod(pod):
|
|
instance = super(CombinedConfig, CombinedConfig).from_pod(pod)
|
|
instance.settings = MetaConfiguration.from_pod(pod.get('settings', {}))
|
|
instance.run_config = RunConfiguration.from_pod(pod.get('run_config', {}))
|
|
return instance
|
|
|
|
def __init__(self, settings=None, run_config=None): # pylint: disable=redefined-outer-name
|
|
super(CombinedConfig, self).__init__()
|
|
self.settings = settings
|
|
self.run_config = run_config
|
|
|
|
def to_pod(self):
|
|
pod = super(CombinedConfig, self).to_pod()
|
|
pod['settings'] = self.settings.to_pod()
|
|
pod['run_config'] = self.run_config.to_pod()
|
|
return pod
|
|
|
|
@staticmethod
|
|
def _pod_upgrade_v1(pod):
|
|
pod['_pod_version'] = pod.get('_pod_version', 1)
|
|
return pod
|
|
|
|
|
|
class ConfigManager(object):
|
|
"""
|
|
Represents run-time state of WA. Mostly used as a container for loaded
|
|
configuration and discovered plugins.
|
|
|
|
This exists outside of any command or run and is associated with the running
|
|
instance of wA itself.
|
|
"""
|
|
|
|
@property
|
|
def enabled_instruments(self):
|
|
return self.jobs_config.enabled_instruments
|
|
|
|
@property
|
|
def enabled_processors(self):
|
|
return self.jobs_config.enabled_processors
|
|
|
|
@property
|
|
def job_specs(self):
|
|
if not self._jobs_generated:
|
|
msg = 'Attempting to access job specs before '\
|
|
'jobs have been generated'
|
|
raise RuntimeError(msg)
|
|
return [j.spec for j in self._jobs]
|
|
|
|
@property
|
|
def jobs(self):
|
|
if not self._jobs_generated:
|
|
msg = 'Attempting to access jobs before '\
|
|
'they have been generated'
|
|
raise RuntimeError(msg)
|
|
return self._jobs
|
|
|
|
def __init__(self, settings=settings): # pylint: disable=redefined-outer-name
|
|
self.settings = settings
|
|
self.run_config = RunConfiguration()
|
|
self.plugin_cache = PluginCache()
|
|
self.jobs_config = JobGenerator(self.plugin_cache)
|
|
self.loaded_config_sources = []
|
|
self._config_parser = ConfigParser()
|
|
self._jobs = []
|
|
self._jobs_generated = False
|
|
self.agenda = None
|
|
|
|
def load_config_file(self, filepath):
|
|
includes = self._config_parser.load_from_path(self, filepath)
|
|
self.loaded_config_sources.append(filepath)
|
|
self.loaded_config_sources.extend(includes)
|
|
|
|
def load_config(self, values, source):
|
|
self._config_parser.load(self, values, source)
|
|
self.loaded_config_sources.append(source)
|
|
|
|
def get_plugin(self, name=None, kind=None, *args, **kwargs):
|
|
return self.plugin_cache.get_plugin(identifier(name), kind, *args, **kwargs)
|
|
|
|
def get_instruments(self, target):
|
|
instruments = []
|
|
for name in self.enabled_instruments:
|
|
try:
|
|
instruments.append(self.get_plugin(name, kind='instrument',
|
|
target=target))
|
|
except NotFoundError:
|
|
msg = 'Instrument "{}" not found'
|
|
raise NotFoundError(msg.format(name))
|
|
return instruments
|
|
|
|
def get_processors(self):
|
|
processors = []
|
|
for name in self.enabled_processors:
|
|
try:
|
|
proc = self.plugin_cache.get_plugin(name, kind='output_processor')
|
|
except NotFoundError:
|
|
msg = 'Output Processor "{}" not found'
|
|
raise NotFoundError(msg.format(name))
|
|
processors.append(proc)
|
|
return processors
|
|
|
|
def get_config(self):
|
|
return CombinedConfig(self.settings, self.run_config)
|
|
|
|
def finalize(self):
|
|
if not self.agenda:
|
|
msg = 'Attempting to finalize config before agenda has been set'
|
|
raise RuntimeError(msg)
|
|
self.run_config.merge_device_config(self.plugin_cache)
|
|
return self.get_config()
|
|
|
|
def generate_jobs(self, context):
|
|
job_specs = self.jobs_config.generate_job_specs(context.tm)
|
|
if not job_specs:
|
|
msg = 'No jobs available for running.'
|
|
raise ConfigError(msg)
|
|
exec_order = self.run_config.execution_order
|
|
log.indent()
|
|
for spec, i in permute_iterations(job_specs, exec_order):
|
|
job = Job(spec, i, context)
|
|
job.load(context.tm.target)
|
|
self._jobs.append(job)
|
|
context.run_state.add_job(job)
|
|
log.dedent()
|
|
self._jobs_generated = True
|
|
|
|
|
|
def permute_by_workload(specs):
|
|
"""
|
|
This is that "classic" implementation that executes all iterations of a
|
|
workload spec before proceeding onto the next spec.
|
|
|
|
"""
|
|
for spec in specs:
|
|
for i in range(1, spec.iterations + 1):
|
|
yield (spec, i)
|
|
|
|
|
|
def permute_by_iteration(specs):
|
|
"""
|
|
Runs the first iteration for all benchmarks first, before proceeding to the
|
|
next iteration, i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2,
|
|
C1, C2...
|
|
|
|
If multiple sections where specified in the agenda, this will run all
|
|
sections for the first global spec first, followed by all sections for the
|
|
second spec, etc.
|
|
|
|
e.g. given sections X and Y, and global specs A and B, with 2 iterations,
|
|
this will run
|
|
|
|
X.A1, Y.A1, X.B1, Y.B1, X.A2, Y.A2, X.B2, Y.B2
|
|
|
|
"""
|
|
groups = [list(g) for _, g in groupby(specs, lambda s: s.workload_id)]
|
|
|
|
all_tuples = []
|
|
for spec in chain(*groups):
|
|
all_tuples.append([(spec, i + 1)
|
|
for i in range(spec.iterations)])
|
|
for t in chain(*list(map(list, zip_longest(*all_tuples)))):
|
|
if t is not None:
|
|
yield t
|
|
|
|
|
|
def permute_by_section(specs):
|
|
"""
|
|
Runs the first iteration for all benchmarks first, before proceeding to the
|
|
next iteration, i.e. A1, B1, C1, A2, B2, C2... instead of A1, A1, B1, B2,
|
|
C1, C2...
|
|
|
|
If multiple sections where specified in the agenda, this will run all specs
|
|
for the first section followed by all specs for the seciod section, etc.
|
|
|
|
e.g. given sections X and Y, and global specs A and B, with 2 iterations,
|
|
this will run
|
|
|
|
X.A1, X.B1, Y.A1, Y.B1, X.A2, X.B2, Y.A2, Y.B2
|
|
|
|
"""
|
|
groups = [list(g) for _, g in groupby(specs, lambda s: s.section_id)]
|
|
|
|
all_tuples = []
|
|
for spec in chain(*groups):
|
|
all_tuples.append([(spec, i + 1)
|
|
for i in range(spec.iterations)])
|
|
for t in chain(*list(map(list, zip_longest(*all_tuples)))):
|
|
if t is not None:
|
|
yield t
|
|
|
|
|
|
def permute_randomly(specs):
|
|
"""
|
|
This will generate a random permutation of specs/iteration tuples.
|
|
|
|
"""
|
|
result = []
|
|
for spec in specs:
|
|
for i in range(1, spec.iterations + 1):
|
|
result.append((spec, i))
|
|
random.shuffle(result)
|
|
for t in result:
|
|
yield t
|
|
|
|
|
|
permute_map = {
|
|
'by_iteration': permute_by_iteration,
|
|
'by_workload': permute_by_workload,
|
|
'by_section': permute_by_section,
|
|
'random': permute_randomly,
|
|
}
|
|
|
|
|
|
def permute_iterations(specs, exec_order):
|
|
if exec_order not in permute_map:
|
|
msg = 'Unknown execution order "{}"; must be in: {}'
|
|
raise ValueError(msg.format(exec_order, list(permute_map.keys())))
|
|
return permute_map[exec_order](specs)
|