# Copyright 2015 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #pylint: disable=attribute-defined-outside-init,access-member-before-definition,redefined-outer-name from __future__ import division import os import math import time from tempfile import mktemp from base64 import b64encode from collections import Counter, namedtuple try: import jinja2 import pandas as pd import matplotlib matplotlib.use('AGG') import matplotlib.pyplot as plt import numpy as np low_filter = np.vectorize(lambda x: x > 0 and x or 0) # pylint: disable=no-member import_error = None except ImportError as e: import_error = e jinja2 = None pd = None plt = None np = None low_filter = None from wlauto import Instrument, Parameter, File from wlauto.exceptions import ConfigError, InstrumentError, DeviceError from wlauto.instrumentation import instrument_is_installed from wlauto.utils.types import caseless_string, list_or_caseless_string, list_of_ints from wlauto.utils.misc import list_to_mask FREQ_TABLE_FILE = 'frequency_power_perf_data.csv' CPUS_TABLE_FILE = 'projected_cap_power.csv' MEASURED_CPUS_TABLE_FILE = 'measured_cap_power.csv' IDLE_TABLE_FILE = 'idle_power_perf_data.csv' REPORT_TEMPLATE_FILE = 'report.template' EM_TEMPLATE_FILE = 'em.template' IdlePowerState = namedtuple('IdlePowerState', ['power']) CapPowerState = namedtuple('CapPowerState', ['cap', 'power']) class EnergyModel(object): def __init__(self): self.big_cluster_idle_states = [] self.little_cluster_idle_states = [] self.big_cluster_cap_states = [] self.little_cluster_cap_states = [] self.big_core_idle_states = [] self.little_core_idle_states = [] self.big_core_cap_states = [] self.little_core_cap_states = [] def add_cap_entry(self, cluster, perf, clust_pow, core_pow): if cluster == 'big': self.big_cluster_cap_states.append(CapPowerState(perf, clust_pow)) self.big_core_cap_states.append(CapPowerState(perf, core_pow)) elif cluster == 'little': self.little_cluster_cap_states.append(CapPowerState(perf, clust_pow)) self.little_core_cap_states.append(CapPowerState(perf, core_pow)) else: raise ValueError('Unexpected cluster: {}'.format(cluster)) def add_cluster_idle(self, cluster, values): for value in values: if cluster == 'big': self.big_cluster_idle_states.append(IdlePowerState(value)) elif cluster == 'little': self.little_cluster_idle_states.append(IdlePowerState(value)) else: raise ValueError('Unexpected cluster: {}'.format(cluster)) def add_core_idle(self, cluster, values): for value in values: if cluster == 'big': self.big_core_idle_states.append(IdlePowerState(value)) elif cluster == 'little': self.little_core_idle_states.append(IdlePowerState(value)) else: raise ValueError('Unexpected cluster: {}'.format(cluster)) class PowerPerformanceAnalysis(object): def __init__(self, data): self.summary = {} big_freqs = data[data.cluster == 'big'].frequency.unique() little_freqs = data[data.cluster == 'little'].frequency.unique() self.summary['frequency'] = max(set(big_freqs).intersection(set(little_freqs))) big_sc = data[(data.cluster == 'big') & (data.frequency == self.summary['frequency']) & (data.cpus == 1)] little_sc = data[(data.cluster == 'little') & (data.frequency == self.summary['frequency']) & (data.cpus == 1)] self.summary['performance_ratio'] = big_sc.performance.item() / little_sc.performance.item() self.summary['power_ratio'] = big_sc.power.item() / little_sc.power.item() self.summary['max_performance'] = data[data.cpus == 1].performance.max() self.summary['max_power'] = data[data.cpus == 1].power.max() def build_energy_model(freq_power_table, cpus_power, idle_power, first_cluster_idle_state): # pylint: disable=too-many-locals em = EnergyModel() idle_power_sc = idle_power[idle_power.cpus == 1] perf_data = get_normalized_single_core_data(freq_power_table) for cluster in ['little', 'big']: cluster_cpus_power = cpus_power[cluster].dropna() cluster_power = cluster_cpus_power['cluster'].apply(int) core_power = (cluster_cpus_power['1'] - cluster_power).apply(int) performance = (perf_data[perf_data.cluster == cluster].performance_norm * 1024 / 100).apply(int) for perf, clust_pow, core_pow in zip(performance, cluster_power, core_power): em.add_cap_entry(cluster, perf, clust_pow, core_pow) all_idle_power = idle_power_sc[idle_power_sc.cluster == cluster].power.values # CORE idle states # We want the delta of each state w.r.t. the power # consumption of the shallowest one at this level (core_ref) idle_core_power = low_filter(all_idle_power[:first_cluster_idle_state] - all_idle_power[first_cluster_idle_state - 1]) # CLUSTER idle states # We want the absolute value of each idle state idle_cluster_power = low_filter(all_idle_power[first_cluster_idle_state - 1:]) em.add_cluster_idle(cluster, idle_cluster_power) em.add_core_idle(cluster, idle_core_power) return em def generate_em_c_file(em, big_core, little_core, em_template_file, outfile): with open(em_template_file) as fh: em_template = jinja2.Template(fh.read()) em_text = em_template.render( big_core=big_core, little_core=little_core, em=em, ) with open(outfile, 'w') as wfh: wfh.write(em_text) return em_text def generate_report(freq_power_table, measured_cpus_table, cpus_table, idle_power_table, # pylint: disable=unused-argument report_template_file, device_name, em_text, outfile): # pylint: disable=too-many-locals cap_power_analysis = PowerPerformanceAnalysis(freq_power_table) single_core_norm = get_normalized_single_core_data(freq_power_table) cap_power_plot = get_cap_power_plot(single_core_norm) idle_power_plot = get_idle_power_plot(idle_power_table) fig, axes = plt.subplots(1, 2) fig.set_size_inches(16, 8) for i, cluster in enumerate(reversed(cpus_table.columns.levels[0])): projected = cpus_table[cluster].dropna(subset=['1']) plot_cpus_table(projected, axes[i], cluster) cpus_plot_data = get_figure_data(fig) with open(report_template_file) as fh: report_template = jinja2.Template(fh.read()) html = report_template.render( device_name=device_name, freq_power_table=freq_power_table.set_index(['cluster', 'cpus', 'frequency']).to_html(), cap_power_analysis=cap_power_analysis, cap_power_plot=get_figure_data(cap_power_plot), idle_power_table=idle_power_table.set_index(['cluster', 'cpus', 'state']).to_html(), idle_power_plot=get_figure_data(idle_power_plot), cpus_table=cpus_table.to_html(), cpus_plot=cpus_plot_data, em_text=em_text, ) with open(outfile, 'w') as wfh: wfh.write(html) return html def wa_result_to_power_perf_table(df, performance_metric, index): table = df.pivot_table(index=index + ['iteration'], columns='metric', values='value').reset_index() result_mean = table.groupby(index).mean() result_std = table.groupby(index).std() result_std.columns = [c + ' std' for c in result_std.columns] result_count = table.groupby(index).count() result_count.columns = [c + ' count' for c in result_count.columns] count_sqrt = result_count.apply(lambda x: x.apply(math.sqrt)) count_sqrt.columns = result_std.columns # match column names for division result_error = 1.96 * result_std / count_sqrt # 1.96 == 95% confidence interval result_error.columns = [c + ' error' for c in result_mean.columns] result = pd.concat([result_mean, result_std, result_count, result_error], axis=1) del result['iteration'] del result['iteration std'] del result['iteration count'] del result['iteration error'] updated_columns = [] for column in result.columns: if column == performance_metric: updated_columns.append('performance') elif column == performance_metric + ' std': updated_columns.append('performance_std') elif column == performance_metric + ' error': updated_columns.append('performance_error') else: updated_columns.append(column.replace(' ', '_')) result.columns = updated_columns result = result[sorted(result.columns)] result.reset_index(inplace=True) return result def get_figure_data(fig, fmt='png'): tmp = mktemp() fig.savefig(tmp, format=fmt, bbox_inches='tight') with open(tmp, 'rb') as fh: image_data = b64encode(fh.read()) os.remove(tmp) return image_data def get_normalized_single_core_data(data): finite_power = np.isfinite(data.power) # pylint: disable=no-member finite_perf = np.isfinite(data.performance) # pylint: disable=no-member data_single_core = data[(data.cpus == 1) & finite_perf & finite_power].copy() data_single_core['performance_norm'] = (data_single_core.performance / data_single_core.performance.max() * 100).apply(int) data_single_core['power_norm'] = (data_single_core.power / data_single_core.power.max() * 100).apply(int) return data_single_core def get_cap_power_plot(data_single_core): big_single_core = data_single_core[(data_single_core.cluster == 'big') & (data_single_core.cpus == 1)] little_single_core = data_single_core[(data_single_core.cluster == 'little') & (data_single_core.cpus == 1)] fig, axes = plt.subplots(1, 1, figsize=(12, 8)) axes.plot(big_single_core.performance_norm, big_single_core.power_norm, marker='o') axes.plot(little_single_core.performance_norm, little_single_core.power_norm, marker='o') axes.set_xlim(0, 105) axes.set_ylim(0, 105) axes.set_xlabel('Performance (Normalized)') axes.set_ylabel('Power (Normalized)') axes.grid() axes.legend(['big cluster', 'little cluster'], loc=0) return fig def get_idle_power_plot(df): fig, axes = plt.subplots(1, 2, figsize=(15, 7)) for cluster, ax in zip(['little', 'big'], axes): data = df[df.cluster == cluster].pivot_table(index=['state'], columns='cpus', values='power') err = df[df.cluster == cluster].pivot_table(index=['state'], columns='cpus', values='power_error') data.plot(kind='bar', ax=ax, rot=30, yerr=err) ax.set_title('{} cluster'.format(cluster)) ax.set_xlim(-1, len(data.columns) - 0.5) ax.set_ylabel('Power (mW)') return fig def fit_polynomial(s, n): # pylint: disable=no-member coeffs = np.polyfit(s.index, s.values, n) poly = np.poly1d(coeffs) return poly(s.index) def get_cpus_power_table(data, index, opps, leak_factors): # pylint: disable=too-many-locals # pylint: disable=no-member power_table = data[[index, 'cluster', 'cpus', 'power']].pivot_table(index=index, columns=['cluster', 'cpus'], values='power') bs_power_table = pd.DataFrame(index=power_table.index, columns=power_table.columns) for cluster in power_table.columns.levels[0]: power_table[cluster, 0] = (power_table[cluster, 1] - (power_table[cluster, 2] - power_table[cluster, 1])) bs_power_table.loc[power_table[cluster, 1].notnull(), (cluster, 1)] = fit_polynomial(power_table[cluster, 1].dropna(), 2) bs_power_table.loc[power_table[cluster, 2].notnull(), (cluster, 2)] = fit_polynomial(power_table[cluster, 2].dropna(), 2) if opps[cluster] is None: bs_power_table.loc[bs_power_table[cluster, 1].notnull(), (cluster, 0)] = \ (2 * power_table[cluster, 1] - power_table[cluster, 2]).values else: voltages = opps[cluster].set_index('frequency').sort_index() leakage = leak_factors[cluster] * 2 * voltages['voltage']**3 / 0.9**3 leakage_delta = leakage - leakage[leakage.index[0]] bs_power_table.loc[:, (cluster, 0)] = \ (2 * bs_power_table[cluster, 1] + leakage_delta - bs_power_table[cluster, 2]) # re-order columns and rename colum '0' to 'cluster' power_table = power_table[sorted(power_table.columns, cmp=lambda x, y: cmp(y[0], x[0]) or cmp(x[1], y[1]))] bs_power_table = bs_power_table[sorted(bs_power_table.columns, cmp=lambda x, y: cmp(y[0], x[0]) or cmp(x[1], y[1]))] old_levels = power_table.columns.levels power_table.columns.set_levels([old_levels[0], list(map(str, old_levels[1])[:-1]) + ['cluster']], inplace=True) bs_power_table.columns.set_levels([old_levels[0], list(map(str, old_levels[1])[:-1]) + ['cluster']], inplace=True) return power_table, bs_power_table def plot_cpus_table(projected, ax, cluster): projected.T.plot(ax=ax, marker='o') ax.set_title('{} cluster'.format(cluster)) ax.set_xticklabels(projected.columns) ax.set_xticks(range(0, 5)) ax.set_xlim(-0.5, len(projected.columns) - 0.5) ax.set_ylabel('Power (mW)') ax.grid(True) def opp_table(d): if d is None: return None return pd.DataFrame(d.items(), columns=['frequency', 'voltage']) class EnergyModelInstrument(Instrument): name = 'energy_model' desicription = """ Generates a power mode for the device based on specified workload. This instrument will execute the workload specified by the agenda (currently, only ``sysbench`` is supported) and will use the resulting performance and power measurments to generate a power mode for the device. This instrument requires certain features to be present in the kernel: 1. cgroups and cpusets must be enabled. 2. cpufreq and userspace governor must be enabled. 3. cpuidle must be enabled. """ parameters = [ Parameter('device_name', kind=caseless_string, description="""The name of the device to be used in generating the model. If not specified, ``device.name`` will be used. """), Parameter('big_core', kind=caseless_string, description="""The name of the "big" core in the big.LITTLE system; must match one of the values in ``device.core_names``. """), Parameter('performance_metric', kind=caseless_string, mandatory=True, description="""Metric to be used as the performance indicator."""), Parameter('power_metric', kind=list_or_caseless_string, description="""Metric to be used as the power indicator. The value may contain a ``{core}`` format specifier that will be replaced with names of big and little cores to drive the name of the metric for that cluster. Ether this or ``energy_metric`` must be specified but not both."""), Parameter('energy_metric', kind=list_or_caseless_string, description="""Metric to be used as the energy indicator. The value may contain a ``{core}`` format specifier that will be replaced with names of big and little cores to drive the name of the metric for that cluster. this metric will be used to derive power by deviding through by execution time. Either this or ``power_metric`` must be specified, but not both."""), Parameter('power_scaling_factor', kind=float, default=1.0, description="""Power model specfies power in milliWatts. This is a scaling factor that power_metric values will be multiplied by to get milliWatts."""), Parameter('big_frequencies', kind=list_of_ints, description="""List of frequencies to be used for big cores. These frequencies must be supported by the cores. If this is not specified, all available frequencies for the core (as read from cpufreq) will be used."""), Parameter('little_frequencies', kind=list_of_ints, description="""List of frequencies to be used for little cores. These frequencies must be supported by the cores. If this is not specified, all available frequencies for the core (as read from cpufreq) will be used."""), Parameter('idle_workload', kind=str, default='idle', description="Workload to be used while measuring idle power."), Parameter('idle_workload_params', kind=dict, default={}, description="Parameter to pass to the idle workload."), Parameter('first_cluster_idle_state', kind=int, default=-1, description='''The index of the first cluster idle state on the device. Previous states are assumed to be core idles. The default is ``-1``, i.e. only the last idle state is assumed to affect the entire cluster.'''), Parameter('no_hotplug', kind=bool, default=False, description='''This options allows running the instrument without hotpluging cores on and off. Disabling hotplugging will most likely produce a less accurate power model.'''), Parameter('num_of_freqs_to_thermal_adjust', kind=int, default=0, description="""The number of frequencies begining from the highest, to be adjusted for the thermal effect."""), Parameter('big_opps', kind=opp_table, description="""OPP table mapping frequency to voltage (kHz --> mV) for the big cluster."""), Parameter('little_opps', kind=opp_table, description="""OPP table mapping frequency to voltage (kHz --> mV) for the little cluster."""), Parameter('big_leakage', kind=int, default=120, description=""" Leakage factor for the big cluster (this is specific to a particular core implementation). """), Parameter('little_leakage', kind=int, default=60, description=""" Leakage factor for the little cluster (this is specific to a particular core implementation). """), ] def validate(self): if import_error: message = 'energy_model instrument requires pandas, jinja2 and matplotlib Python packages to be installed; got: "{}"' raise InstrumentError(message.format(import_error.message)) for capability in ['cgroups', 'cpuidle']: if not self.device.has(capability): message = 'The Device does not appear to support {}; does it have the right module installed?' raise ConfigError(message.format(capability)) device_cores = set(self.device.core_names) if (self.power_metric and self.energy_metric) or not (self.power_metric or self.energy_metric): raise ConfigError('Either power_metric or energy_metric must be specified (but not both).') if not device_cores: raise ConfigError('The Device does not appear to have core_names configured.') elif len(device_cores) != 2: raise ConfigError('The Device does not appear to be a big.LITTLE device.') if self.big_core and self.big_core not in self.device.core_names: raise ConfigError('Specified big_core "{}" is in divice {}'.format(self.big_core, self.device.name)) if not self.big_core: self.big_core = self.device.core_names[-1] # the last core is usually "big" in existing big.LITTLE devices if not self.device_name: self.device_name = self.device.name if self.num_of_freqs_to_thermal_adjust and not instrument_is_installed('daq'): self.logger.warn('Adjustment for thermal effect requires daq instrument. Disabling adjustment') self.num_of_freqs_to_thermal_adjust = 0 def initialize(self, context): self.number_of_cpus = {} self.report_template_file = context.resolver.get(File(self, REPORT_TEMPLATE_FILE)) self.em_template_file = context.resolver.get(File(self, EM_TEMPLATE_FILE)) self.little_core = (set(self.device.core_names) - set([self.big_core])).pop() self.perform_runtime_validation() self.enable_all_cores() self.configure_clusters() self.discover_idle_states() self.disable_thermal_management() self.initialize_job_queue(context) self.initialize_result_tracking() def setup(self, context): if not context.spec.label.startswith('idle_'): return for idle_state in self.get_device_idle_states(self.measured_cluster): if idle_state.index > context.spec.idle_state_index: idle_state.disable = 1 else: idle_state.disable = 0 def fast_start(self, context): # pylint: disable=unused-argument self.start_time = time.time() def fast_stop(self, context): # pylint: disable=unused-argument self.run_time = time.time() - self.start_time def on_iteration_start(self, context): self.setup_measurement(context.spec.cluster) def thermal_correction(self, context): if not self.num_of_freqs_to_thermal_adjust or self.num_of_freqs_to_thermal_adjust > len(self.big_frequencies): return 0 freqs = self.big_frequencies[-self.num_of_freqs_to_thermal_adjust:] spec = context.result.spec if spec.frequency not in freqs: return 0 data_path = os.path.join(context.output_directory, 'daq', '{}.csv'.format(self.big_core)) data = pd.read_csv(data_path)['power'] return _adjust_for_thermal(data, filt_method=lambda x: pd.rolling_median(x, 1000), thresh=0.9, window=5000) # slow to make sure power results have been generated def slow_update_result(self, context): # pylint: disable=too-many-branches spec = context.result.spec cluster = spec.cluster is_freq_iteration = spec.label.startswith('freq_') perf_metric = 0 power_metric = 0 thermal_adjusted_power = 0 if is_freq_iteration and cluster == 'big': thermal_adjusted_power = self.thermal_correction(context) for metric in context.result.metrics: if metric.name == self.performance_metric: perf_metric = metric.value elif thermal_adjusted_power and metric.name in self.big_power_metrics: power_metric += thermal_adjusted_power * self.power_scaling_factor elif (cluster == 'big') and metric.name in self.big_power_metrics: power_metric += metric.value * self.power_scaling_factor elif (cluster == 'little') and metric.name in self.little_power_metrics: power_metric += metric.value * self.power_scaling_factor elif thermal_adjusted_power and metric.name in self.big_energy_metrics: power_metric += thermal_adjusted_power / self.run_time * self.power_scaling_factor elif (cluster == 'big') and metric.name in self.big_energy_metrics: power_metric += metric.value / self.run_time * self.power_scaling_factor elif (cluster == 'little') and metric.name in self.little_energy_metrics: power_metric += metric.value / self.run_time * self.power_scaling_factor if not (power_metric and (perf_metric or not is_freq_iteration)): message = 'Incomplete results for {} iteration{}' raise InstrumentError(message.format(context.result.spec.id, context.current_iteration)) if is_freq_iteration: index_matter = [cluster, spec.num_cpus, spec.frequency, context.result.iteration] data = self.freq_data else: index_matter = [cluster, spec.num_cpus, spec.idle_state_id, spec.idle_state_desc, context.result.iteration] data = self.idle_data if self.no_hotplug: # due to that fact that hotpluging was disabled, power has to be artificially scaled # to the number of cores that should have been active if hotplugging had occurred. power_metric = spec.num_cpus * (power_metric / self.number_of_cpus[cluster]) data.append(index_matter + ['performance', perf_metric]) data.append(index_matter + ['power', power_metric]) def before_overall_results_processing(self, context): # pylint: disable=too-many-locals if not self.idle_data or not self.freq_data: self.logger.warning('Run aborted early; not generating energy_model.') return output_directory = os.path.join(context.output_directory, 'energy_model') os.makedirs(output_directory) df = pd.DataFrame(self.idle_data, columns=['cluster', 'cpus', 'state_id', 'state', 'iteration', 'metric', 'value']) idle_power_table = wa_result_to_power_perf_table(df, '', index=['cluster', 'cpus', 'state']) idle_output = os.path.join(output_directory, IDLE_TABLE_FILE) with open(idle_output, 'w') as wfh: idle_power_table.to_csv(wfh, index=False) context.add_artifact('idle_power_table', idle_output, 'export') df = pd.DataFrame(self.freq_data, columns=['cluster', 'cpus', 'frequency', 'iteration', 'metric', 'value']) freq_power_table = wa_result_to_power_perf_table(df, self.performance_metric, index=['cluster', 'cpus', 'frequency']) freq_output = os.path.join(output_directory, FREQ_TABLE_FILE) with open(freq_output, 'w') as wfh: freq_power_table.to_csv(wfh, index=False) context.add_artifact('freq_power_table', freq_output, 'export') if self.big_opps is None or self.little_opps is None: message = 'OPPs not specified for one or both clusters; cluster power will not be adjusted for leakage.' self.logger.warning(message) opps = {'big': self.big_opps, 'little': self.little_opps} leakages = {'big': self.big_leakage, 'little': self.little_leakage} try: measured_cpus_table, cpus_table = get_cpus_power_table(freq_power_table, 'frequency', opps, leakages) except (ValueError, KeyError, IndexError) as e: self.logger.error('Could not create cpu power tables: {}'.format(e)) return measured_cpus_output = os.path.join(output_directory, MEASURED_CPUS_TABLE_FILE) with open(measured_cpus_output, 'w') as wfh: measured_cpus_table.to_csv(wfh) context.add_artifact('measured_cpus_table', measured_cpus_output, 'export') cpus_output = os.path.join(output_directory, CPUS_TABLE_FILE) with open(cpus_output, 'w') as wfh: cpus_table.to_csv(wfh) context.add_artifact('cpus_table', cpus_output, 'export') em = build_energy_model(freq_power_table, cpus_table, idle_power_table, self.first_cluster_idle_state) em_file = os.path.join(output_directory, '{}_em.c'.format(self.device_name)) em_text = generate_em_c_file(em, self.big_core, self.little_core, self.em_template_file, em_file) context.add_artifact('em', em_file, 'data') report_file = os.path.join(output_directory, 'report.html') generate_report(freq_power_table, measured_cpus_table, cpus_table, idle_power_table, self.report_template_file, self.device_name, em_text, report_file) context.add_artifact('pm_report', report_file, 'export') def initialize_result_tracking(self): self.freq_data = [] self.idle_data = [] self.big_power_metrics = [] self.little_power_metrics = [] self.big_energy_metrics = [] self.little_energy_metrics = [] if self.power_metric: self.big_power_metrics = [pm.format(core=self.big_core) for pm in self.power_metric] self.little_power_metrics = [pm.format(core=self.little_core) for pm in self.power_metric] else: # must be energy_metric self.big_energy_metrics = [em.format(core=self.big_core) for em in self.energy_metric] self.little_energy_metrics = [em.format(core=self.little_core) for em in self.energy_metric] def configure_clusters(self): self.measured_cores = None self.measuring_cores = None self.cpuset = self.device.get_cgroup_controller('cpuset') self.cpuset.create_group('big', self.big_cpus, [0]) self.cpuset.create_group('little', self.little_cpus, [0]) for cluster in set(self.device.core_clusters): self.device.set_cluster_governor(cluster, 'userspace') def discover_idle_states(self): online_cpu = self.device.get_online_cpus(self.big_core)[0] self.big_idle_states = self.device.get_cpuidle_states(online_cpu) online_cpu = self.device.get_online_cpus(self.little_core)[0] self.little_idle_states = self.device.get_cpuidle_states(online_cpu) if not (len(self.big_idle_states) >= 2 and len(self.little_idle_states) >= 2): raise DeviceError('There do not appeart to be at least two idle states ' 'on at least one of the clusters.') def setup_measurement(self, measured): measuring = 'big' if measured == 'little' else 'little' self.measured_cluster = measured self.measuring_cluster = measuring self.measured_cpus = self.big_cpus if measured == 'big' else self.little_cpus self.measuring_cpus = self.little_cpus if measured == 'big' else self.big_cpus self.reset() def reset(self): self.enable_all_cores() self.enable_all_idle_states() self.reset_cgroups() self.cpuset.move_all_tasks_to(self.measuring_cluster) server_process = 'adbd' if self.device.platform == 'android' else 'sshd' server_pids = self.device.get_pids_of(server_process) children_ps = [e for e in self.device.ps() if e.ppid in server_pids and e.name != 'sshd'] children_pids = [e.pid for e in children_ps] pids_to_move = server_pids + children_pids self.cpuset.root.add_tasks(pids_to_move) for pid in pids_to_move: try: self.device.execute('busybox taskset -p 0x{:x} {}'.format(list_to_mask(self.measuring_cpus), pid)) except DeviceError: pass def enable_all_cores(self): counter = Counter(self.device.core_names) for core, number in counter.iteritems(): self.device.set_number_of_online_cores(core, number) self.big_cpus = self.device.get_online_cpus(self.big_core) self.little_cpus = self.device.get_online_cpus(self.little_core) def enable_all_idle_states(self): for cpu in self.device.online_cpus: for state in self.device.get_cpuidle_states(cpu): state.disable = 0 def reset_cgroups(self): self.big_cpus = self.device.get_online_cpus(self.big_core) self.little_cpus = self.device.get_online_cpus(self.little_core) self.cpuset.big.set(self.big_cpus, 0) self.cpuset.little.set(self.little_cpus, 0) def perform_runtime_validation(self): if not self.device.is_rooted: raise InstrumentError('the device must be rooted to generate energy models') if 'userspace' not in self.device.list_available_cluster_governors(0): raise InstrumentError('userspace cpufreq governor must be enabled') error_message = 'Frequency {} is not supported by {} cores' available_frequencies = self.device.list_available_core_frequencies(self.big_core) if self.big_frequencies: for freq in self.big_frequencies: if freq not in available_frequencies: raise ConfigError(error_message.format(freq, self.big_core)) else: self.big_frequencies = available_frequencies available_frequencies = self.device.list_available_core_frequencies(self.little_core) if self.little_frequencies: for freq in self.little_frequencies: if freq not in available_frequencies: raise ConfigError(error_message.format(freq, self.little_core)) else: self.little_frequencies = available_frequencies def initialize_job_queue(self, context): old_specs = [] for job in context.runner.job_queue: if job.spec not in old_specs: old_specs.append(job.spec) new_specs = self.get_cluster_specs(old_specs, 'big', context) new_specs.extend(self.get_cluster_specs(old_specs, 'little', context)) # Update config to refect jobs that will actually run. context.config.workload_specs = new_specs config_file = os.path.join(context.host_working_directory, 'run_config.json') with open(config_file, 'wb') as wfh: context.config.serialize(wfh) context.runner.init_queue(new_specs) def get_cluster_specs(self, old_specs, cluster, context): core = self.get_core_name(cluster) self.number_of_cpus[cluster] = sum([1 for c in self.device.core_names if c == core]) cluster_frequencies = self.get_frequencies_param(cluster) if not cluster_frequencies: raise InstrumentError('Could not read available frequencies for {}'.format(core)) min_frequency = min(cluster_frequencies) idle_states = self.get_device_idle_states(cluster) new_specs = [] for state in idle_states: for num_cpus in xrange(1, self.number_of_cpus[cluster] + 1): spec = old_specs[0].copy() spec.workload_name = self.idle_workload spec.workload_parameters = self.idle_workload_params spec.idle_state_id = state.id spec.idle_state_desc = state.desc spec.idle_state_index = state.index if not self.no_hotplug: spec.runtime_parameters['{}_cores'.format(core)] = num_cpus spec.runtime_parameters['{}_frequency'.format(core)] = min_frequency if self.device.platform == 'chromeos': spec.runtime_parameters['ui'] = 'off' spec.cluster = cluster spec.num_cpus = num_cpus spec.id = '{}_idle_{}_{}'.format(cluster, state.id, num_cpus) spec.label = 'idle_{}'.format(cluster) spec.number_of_iterations = old_specs[0].number_of_iterations spec.load(self.device, context.config.ext_loader) spec.workload.init_resources(context) spec.workload.validate() new_specs.append(spec) for old_spec in old_specs: if old_spec.workload_name not in ['sysbench', 'dhrystone']: raise ConfigError('Only sysbench and dhrystone workloads currently supported for energy_model generation.') for freq in cluster_frequencies: for num_cpus in xrange(1, self.number_of_cpus[cluster] + 1): spec = old_spec.copy() spec.runtime_parameters['{}_frequency'.format(core)] = freq if not self.no_hotplug: spec.runtime_parameters['{}_cores'.format(core)] = num_cpus if self.device.platform == 'chromeos': spec.runtime_parameters['ui'] = 'off' spec.id = '{}_{}_{}'.format(cluster, num_cpus, freq) spec.label = 'freq_{}_{}'.format(cluster, spec.label) spec.workload_parameters['taskset_mask'] = list_to_mask(self.get_cpus(cluster)) spec.workload_parameters['threads'] = num_cpus if old_spec.workload_name == 'sysbench': # max_requests set to an arbitrary high values to make sure # sysbench runs for full duriation even on highly # performant cores. spec.workload_parameters['max_requests'] = 10000000 spec.cluster = cluster spec.num_cpus = num_cpus spec.frequency = freq spec.load(self.device, context.config.ext_loader) spec.workload.init_resources(context) spec.workload.validate() new_specs.append(spec) return new_specs def disable_thermal_management(self): if self.device.file_exists('/sys/class/thermal/thermal_zone0'): tzone_paths = self.device.execute('ls /sys/class/thermal/thermal_zone*') for tzpath in tzone_paths.strip().split(): mode_file = '{}/mode'.format(tzpath) if self.device.file_exists(mode_file): self.device.set_sysfile_value(mode_file, 'disabled') def get_device_idle_states(self, cluster): if cluster == 'big': online_cpus = self.device.get_online_cpus(self.big_core) else: online_cpus = self.device.get_online_cpus(self.little_core) idle_states = [] for cpu in online_cpus: idle_states.extend(self.device.get_cpuidle_states(cpu)) return idle_states def get_core_name(self, cluster): if cluster == 'big': return self.big_core else: return self.little_core def get_cpus(self, cluster): if cluster == 'big': return self.big_cpus else: return self.little_cpus def get_frequencies_param(self, cluster): if cluster == 'big': return self.big_frequencies else: return self.little_frequencies def _adjust_for_thermal(data, filt_method=lambda x: x, thresh=0.9, window=5000, tdiff_threshold=10000): n = filt_method(data) n = n[~np.isnan(n)] # pylint: disable=no-member d = np.diff(n) # pylint: disable=no-member d = d[~np.isnan(d)] # pylint: disable=no-member dmin = min(d) dmax = max(d) index_up = np.max((d > dmax * thresh).nonzero()) # pylint: disable=no-member index_down = np.min((d < dmin * thresh).nonzero()) # pylint: disable=no-member low_average = np.average(n[index_up:index_up + window]) # pylint: disable=no-member high_average = np.average(n[index_down - window:index_down]) # pylint: disable=no-member if low_average > high_average or index_down - index_up < tdiff_threshold: return 0 else: return low_average if __name__ == '__main__': import sys # pylint: disable=wrong-import-position,wrong-import-order indir, outdir = sys.argv[1], sys.argv[2] device_name = 'odroidxu3' big_core = 'a15' little_core = 'a7' first_cluster_idle_state = -1 this_dir = os.path.dirname(__file__) report_template_file = os.path.join(this_dir, REPORT_TEMPLATE_FILE) em_template_file = os.path.join(this_dir, EM_TEMPLATE_FILE) freq_power_table = pd.read_csv(os.path.join(indir, FREQ_TABLE_FILE)) measured_cpus_table, cpus_table = pd.read_csv(os.path.join(indir, CPUS_TABLE_FILE), # pylint: disable=unbalanced-tuple-unpacking header=range(2), index_col=0) idle_power_table = pd.read_csv(os.path.join(indir, IDLE_TABLE_FILE)) if not os.path.exists(outdir): os.makedirs(outdir) report_file = os.path.join(outdir, 'report.html') em_file = os.path.join(outdir, '{}_em.c'.format(device_name)) em = build_energy_model(freq_power_table, cpus_table, idle_power_table, first_cluster_idle_state) em_text = generate_em_c_file(em, big_core, little_core, em_template_file, em_file) generate_report(freq_power_table, measured_cpus_table, cpus_table, idle_power_table, report_template_file, device_name, em_text, report_file)