# Copyright 2013-2018 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pylint: disable=E1101 import os import re import tempfile import json from collections import defaultdict from wa import ApkUiautoWorkload, Parameter from wa.framework.exception import ConfigError, WorkloadError from wa.utils.misc import capitalize class Geekbench(ApkUiautoWorkload): name = 'geekbench' description = """ Geekbench provides a comprehensive set of benchmarks engineered to quickly and accurately measure processor and memory performance. http://www.primatelabs.com/geekbench/ From the website: Designed to make benchmarks easy to run and easy to understand, Geekbench takes the guesswork out of producing robust and reliable benchmark results. Geekbench scores are calibrated against a baseline score of 1,000 (which is the score of a single-processor Power Mac G5 @ 1.6GHz). Higher scores are better, with double the score indicating double the performance. The benchmarks fall into one of four categories: - integer performance. - floating point performance. - memory performance. - stream performance. Geekbench benchmarks: http://www.primatelabs.com/geekbench/doc/benchmarks.html Geekbench scoring methedology: http://support.primatelabs.com/kb/geekbench/interpreting-geekbench-scores """ summary_metrics = ['score', 'multicore_score'] supported_versions = ['4.3.1', '4.2.0', '4.0.1', '3.4.1', '3.0.0', '2'] package_names = ['com.primatelabs.geekbench', 'com.primatelabs.geekbench3', 'ca.primatelabs.geekbench2'] begin_regex = re.compile(r'^\s*D/WebViewClassic.loadDataWithBaseURL\(\s*\d+\s*\)' r'\s*:\s*(?P\<.*)\s*$') replace_regex = re.compile(r'<[^>]*>') parameters = [ Parameter('version', allowed_values=supported_versions, description='Specifies which version of the workload should be run.', override=True), Parameter('loops', kind=int, default=1, aliases=['times'], description=('Specfies the number of times the benchmark will be run in a "tight ' 'loop", i.e. without performaing setup/teardown inbetween.')), Parameter('timeout', kind=int, default=3600, description=('Timeout for a single iteration of the benchmark. This value is ' 'multiplied by ``times`` to calculate the overall run timeout. ')), Parameter('disable_update_result', kind=bool, default=False, description=('If ``True`` the results file will not be pulled from the targets ' '``/data/data/com.primatelabs.geekbench`` folder. This allows the ' 'workload to be run on unrooted targets and the results extracted ' 'manually later.')), ] is_corporate = False phones_home = True requires_network = True def initialize(self, context): super(Geekbench, self).initialize(context) self.gui.uiauto_params['version'] = self.version self.gui.uiauto_params['loops'] = self.loops self.gui.uiauto_params['is_corporate'] = self.is_corporate self.gui.timeout = self.timeout if not self.disable_update_result and not self.target.is_rooted: raise WorkloadError( 'Geekbench workload requires root to collect results. ' 'You can set disable_update_result=True in the workload params ' 'to run without collecting results.') def setup(self, context): super(Geekbench, self).setup(context) self.run_timeout = self.timeout * self.loops def update_output(self, context): super(Geekbench, self).update_output(context) if not self.disable_update_result: major_version = versiontuple(self.version)[0] update_method = getattr(self, 'update_result_{}'.format(major_version)) update_method(context) def validate(self): if (self.loops > 1) and (self.version == '2'): raise ConfigError('loops parameter is not supported for version 2 of Geekbench.') def update_result_2(self, context): score_calculator = GBScoreCalculator() score_calculator.parse(self.logcat_log) score_calculator.update_results(context) def update_result_3(self, context): outfile_glob = self.target.path.join(self.target.package_data_directory, self.apk.package, 'files', '*gb3') on_target_output_files = [f.strip() for f in self.target.execute('ls {}'.format(outfile_glob), as_root=True).split('\n') if f] for i, on_target_output_file in enumerate(on_target_output_files): host_temp_file = tempfile.mktemp() self.target.pull(on_target_output_file, host_temp_file, as_root=True) host_output_file = os.path.join(context.output_directory, os.path.basename(on_target_output_file)) with open(host_temp_file) as fh: data = json.load(fh) os.remove(host_temp_file) with open(host_output_file, 'w') as wfh: json.dump(data, wfh, indent=4) context.add_artifact('geekout', host_output_file, kind='data', description='Geekbench 3 output from target.') context.add_metric(namemify('score', i), data['score']) context.add_metric(namemify('multicore_score', i), data['multicore_score']) for section in data['sections']: context.add_metric(namemify(section['name'] + '_score', i), section['score']) context.add_metric(namemify(section['name'] + '_multicore_score', i), section['multicore_score']) def update_result_4(self, context): outfile_glob = self.target.path.join(self.target.package_data_directory, self.apk.package, 'files', '*gb*') on_target_output_files = [f.strip() for f in self.target.execute('ls {}'.format(outfile_glob), as_root=True).split('\n') if f] for i, on_target_output_file in enumerate(on_target_output_files): host_temp_file = tempfile.mktemp() self.target.pull(on_target_output_file, host_temp_file, as_root=True) host_output_file = os.path.join(context.output_directory, os.path.basename(on_target_output_file)) with open(host_temp_file) as fh: data = json.load(fh) os.remove(host_temp_file) with open(host_output_file, 'w') as wfh: json.dump(data, wfh, indent=4) context.add_artifact('geekout', host_output_file, kind='data', description='Geekbench 4 output from target.') context.add_metric(namemify('score', i), data['score']) context.add_metric(namemify('multicore_score', i), data['multicore_score']) for section in data['sections']: context.add_metric(namemify(section['name'] + '_score', i), section['score']) for workloads in section['workloads']: workload_name = workloads['name'].replace(" ", "-") context.add_metric(namemify(section['name'] + '_' + workload_name + '_score', i), workloads['score']) update_result_5 = update_result_4 class GBWorkload(object): """ Geekbench workload (not to be confused with WA's workloads). This is a single test run by geek bench, such as preforming compression or generating Madelbrot. """ # Index maps onto the hundreds digit of the ID. categories = [None, 'integer', 'float', 'memory', 'stream'] # 2003 entry-level Power Mac G5 is considered to have a baseline score of # 1000 for every category. pmac_g5_base_score = 1000 units_conversion_map = { 'K': 1, 'M': 1000, 'G': 1000000, } def __init__(self, wlid, name, pmac_g5_st_score, pmac_g5_mt_score): """ :param wlid: A three-digit workload ID. Uniquely identifies a workload and also determines the category a workload belongs to. :param name: The name of the workload. :param pmac_g5_st_score: Score achieved for this workload on 2003 entry-level Power Mac G5 running in a single thread. :param pmac_g5_mt_score: Score achieved for this workload on 2003 entry-level Power Mac G5 running in multiple threads. """ self.wlid = wlid self.name = name self.pmac_g5_st_score = pmac_g5_st_score self.pmac_g5_mt_score = pmac_g5_mt_score self.category = self.categories[int(wlid) // 100] self.collected_results = [] def add_result(self, value, units): self.collected_results.append(self.convert_to_kilo(value, units)) def convert_to_kilo(self, value, units): return value * self.units_conversion_map[units[0]] def clear(self): self.collected_results = [] def get_scores(self): """ Returns a tuple (single-thraded score, multi-threaded score) for this workload. Some workloads only have a single-threaded score, in which case multi-threaded score will be ``None``. Geekbench will perform four iterations of each workload in single-threaded and, for some workloads, multi-threaded configurations. Thus there should always be either four or eight scores collected for each workload. Single-threaded iterations are always done before multi-threaded, so the ordering of the scores can be used to determine which configuration they belong to. This method should not be called before score collection has finished. """ no_of_results = len(self.collected_results) if no_of_results == 4: return (self._calculate(self.collected_results[:4], self.pmac_g5_st_score), None) if no_of_results == 8: return (self._calculate(self.collected_results[:4], self.pmac_g5_st_score), self._calculate(self.collected_results[4:], self.pmac_g5_mt_score)) else: msg = 'Collected {} results for Geekbench {} workload;'.format(no_of_results, self.name) msg += ' expecting either 4 or 8.' raise WorkloadError(msg) def _calculate(self, values, scale_factor): return max(values) * self.pmac_g5_base_score / scale_factor def __str__(self): return self.name __repr__ = __str__ class GBScoreCalculator(object): """ Parses logcat output to extract raw Geekbench workload values and converts them into category and overall scores. """ result_regex = re.compile(r'workload (?P\d+) (?P[0-9.]+) ' r'(?P[a-zA-Z/]+) (?P