import os import re import logging from collections import defaultdict from wlauto.utils.fps import FpsProcessor, SurfaceFlingerFrame, GfxInfoFrame, VSYNC_INTERVAL try: import pandas as pd except ImportError: pd = None class UxPerfParser(object): ''' Parses logcat messages for UX Performance markers. UX Performance markers are output from logcat under a debug priority. The logcat tag for the marker messages is UX_PERF. The messages associated with this tag consist of a name for the action to be recorded and a timestamp. These fields are delimited by a single space. e.g. : UX_PERF : gestures_swipe_left_start 861975087367 ... ... UX_PERF : gestures_swipe_left_end 862132085804 Timestamps are produced using the running Java Virtual Machine's high-resolution time source, in nanoseconds. ''' def __init__(self, context, prefix=''): self.context = context self.prefix = prefix self.actions = defaultdict(list) self.logger = logging.getLogger('UxPerfParser') # regex for matching logcat message format: self.regex = re.compile(r'UX_PERF.*?:\s*(?P.*\d+$)') def parse(self, log): ''' Opens log file and parses UX_PERF markers. Actions delimited by markers are captured in a dictionary with actions mapped to timestamps. ''' loglines = self._read(log) self._gen_action_timestamps(loglines) def add_action_frames(self, frames, drop_threshold, generate_csv): # pylint: disable=too-many-locals ''' Uses FpsProcessor to parse frame.csv extracting fps, frame count, jank and vsync metrics on a per action basis. Adds results to metrics. ''' refresh_period = self._parse_refresh_peroid() for action in self.actions: # default values fps, frame_count, janks, not_at_vsync = float('nan'), 0, 0, 0 p90, p95, p99 = [float('nan')] * 3 metrics = (fps, frame_count, janks, not_at_vsync) df = self._create_sub_df(self.actions[action], frames) if not df.empty: # pylint: disable=maybe-no-member fp = FpsProcessor(df, action=action) try: per_frame_fps, metrics = fp.process(refresh_period, drop_threshold) fps, frame_count, janks, not_at_vsync = metrics if generate_csv: name = action + '_fps' filename = name + '.csv' fps_outfile = os.path.join(self.context.output_directory, filename) per_frame_fps.to_csv(fps_outfile, index=False, header=True) self.context.add_artifact(name, path=filename, kind='data') p90, p95, p99 = fp.percentiles() except AttributeError: self.logger.warning('Non-matched timestamps in dumpsys output: action={}' .format(action)) self.context.result.add_metric(self.prefix + action + '_FPS', fps) self.context.result.add_metric(self.prefix + action + '_frame_count', frame_count) self.context.result.add_metric(self.prefix + action + '_janks', janks, lower_is_better=True) self.context.result.add_metric(self.prefix + action + '_not_at_vsync', not_at_vsync, lower_is_better=True) self.context.result.add_metric(self.prefix + action + '_frame_time_90percentile', p90, 'ms', lower_is_better=True) self.context.result.add_metric(self.prefix + action + '_frame_time_95percentile', p95, 'ms', lower_is_better=True) self.context.result.add_metric(self.prefix + action + '_frame_time_99percentile', p99, 'ms', lower_is_better=True) def add_action_timings(self): ''' Add simple action timings in millisecond resolution to metrics ''' for action, timestamps in self.actions.iteritems(): # nanosecond precision, but not necessarily nanosecond resolution # truncate to guarantee millisecond precision ts_ms = tuple(int(int(ts) / 1e6) for ts in timestamps) if len(ts_ms) == 2: start, finish = ts_ms duration = finish - start result = self.context.result result.add_metric(self.prefix + action + "_start", start, units='ms') result.add_metric(self.prefix + action + "_finish", finish, units='ms') result.add_metric(self.prefix + action + "_duration", duration, units='ms', lower_is_better=True) else: self.logger.warning('Expected two timestamps. Received {}'.format(ts_ms)) def _gen_action_timestamps(self, lines): ''' Parses lines and matches against logcat tag. Groups timestamps by action name. Creates a dictionary of lists with actions mapped to timestamps. ''' for line in lines: match = self.regex.search(line) if match: message = match.group('message') action_with_suffix, timestamp = message.rsplit(' ', 1) action, _ = action_with_suffix.rsplit('_', 1) self.actions[action].append(timestamp) def _parse_refresh_peroid(self): ''' Reads the first line of the raw dumpsys output for the refresh period. ''' raw_path = os.path.join(self.context.output_directory, 'surfaceflinger.raw') if os.path.isfile(raw_path): raw_lines = self._read(raw_path) refresh_period = int(raw_lines.next()) else: refresh_period = VSYNC_INTERVAL return refresh_period def _create_sub_df(self, action, frames): ''' Creates a data frame containing fps metrics for a captured action. ''' if len(action) == 2: start, end = map(int, action) df = pd.read_csv(frames) # SurfaceFlinger Algorithm if df.columns.tolist() == list(SurfaceFlingerFrame._fields): # pylint: disable=maybe-no-member field = 'actual_present_time' # GfxInfo Algorithm elif df.columns.tolist() == list(GfxInfoFrame._fields): # pylint: disable=maybe-no-member field = 'FrameCompleted' else: field = '' self.logger.error('frames.csv not in a recognised format. Cannot parse.') if field: df = df[start < df[field]] df = df[df[field] <= end] else: self.logger.warning('Discarding action. Expected 2 timestamps, got {}!'.format(len(action))) df = pd.DataFrame() return df def _read(self, log): ''' Opens a file a yields the lines with whitespace stripped. ''' try: with open(log, 'r') as rfh: for line in rfh: yield line.strip() except IOError: self.logger.error('Could not open {}'.format(log))