# Copyright 2018 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # try: import psycopg2 from psycopg2 import Error as Psycopg2Error except ImportError: psycopg2 = None Psycopg2Error = None import logging import os import shutil import tarfile import tempfile from collections import OrderedDict, defaultdict from copy import copy, deepcopy from datetime import datetime from io import StringIO import devlib from wa.framework.configuration.core import JobSpec, Status from wa.framework.configuration.execution import CombinedConfig from wa.framework.exception import HostError, SerializerSyntaxError, ConfigError from wa.framework.run import RunState, RunInfo from wa.framework.target.info import TargetInfo from wa.framework.version import get_wa_version_with_commit from wa.utils.doc import format_simple_table from wa.utils.misc import touch, ensure_directory_exists, isiterable, format_ordered_dict from wa.utils.postgres import get_schema_versions from wa.utils.serializer import write_pod, read_pod, Podable, json from wa.utils.types import enum, numeric logger = logging.getLogger('output') class Output(object): kind = None @property def resultfile(self): return os.path.join(self.basepath, 'result.json') @property def event_summary(self): num_events = len(self.events) if num_events: lines = self.events[0].message.split('\n') message = '({} event(s)): {}' if num_events > 1 or len(lines) > 1: message += '[...]' return message.format(num_events, lines[0]) return '' @property def status(self): if self.result is None: return None return self.result.status @status.setter def status(self, value): self.result.status = value @property def metrics(self): if self.result is None: return [] return self.result.metrics @property def artifacts(self): if self.result is None: return [] return self.result.artifacts @property def classifiers(self): if self.result is None: return OrderedDict() return self.result.classifiers @classifiers.setter def classifiers(self, value): if self.result is None: msg = 'Attempting to set classifiers before output has been set' raise RuntimeError(msg) self.result.classifiers = value @property def events(self): if self.result is None: return [] return self.result.events @property def metadata(self): if self.result is None: return {} return self.result.metadata def __init__(self, path): self.basepath = path self.result = None def reload(self): try: if os.path.isdir(self.basepath): pod = read_pod(self.resultfile) self.result = Result.from_pod(pod) else: self.result = Result() self.result.status = Status.PENDING except Exception as e: # pylint: disable=broad-except self.result = Result() self.result.status = Status.UNKNOWN self.add_event(str(e)) def write_result(self): write_pod(self.result.to_pod(), self.resultfile) def get_path(self, subpath): return os.path.join(self.basepath, subpath.strip(os.sep)) def add_metric(self, name, value, units=None, lower_is_better=False, classifiers=None): self.result.add_metric(name, value, units, lower_is_better, classifiers) def add_artifact(self, name, path, kind, description=None, classifiers=None): if not os.path.exists(path): path = self.get_path(path) if not os.path.exists(path): msg = 'Attempting to add non-existing artifact: {}' raise HostError(msg.format(path)) is_dir = os.path.isdir(path) path = os.path.relpath(path, self.basepath) self.result.add_artifact(name, path, kind, description, classifiers, is_dir) def add_event(self, message): self.result.add_event(message) def get_metric(self, name): return self.result.get_metric(name) def get_artifact(self, name): return self.result.get_artifact(name) def get_artifact_path(self, name): artifact = self.get_artifact(name) return self.get_path(artifact.path) def add_classifier(self, name, value, overwrite=False): self.result.add_classifier(name, value, overwrite) def add_metadata(self, key, *args, **kwargs): self.result.add_metadata(key, *args, **kwargs) def update_metadata(self, key, *args): self.result.update_metadata(key, *args) def __repr__(self): return '<{} {}>'.format(self.__class__.__name__, os.path.basename(self.basepath)) def __str__(self): return os.path.basename(self.basepath) class RunOutputCommon(object): ''' Split out common functionality to form a second base of the RunOutput classes ''' @property def run_config(self): if self._combined_config: return self._combined_config.run_config @property def settings(self): if self._combined_config: return self._combined_config.settings def get_job_spec(self, spec_id): for spec in self.job_specs: if spec.id == spec_id: return spec return None def list_workloads(self): workloads = [] for job in self.jobs: if job.label not in workloads: workloads.append(job.label) return workloads class RunOutput(Output, RunOutputCommon): kind = 'run' @property def logfile(self): return os.path.join(self.basepath, 'run.log') @property def metadir(self): return os.path.join(self.basepath, '__meta') @property def infofile(self): return os.path.join(self.metadir, 'run_info.json') @property def statefile(self): return os.path.join(self.basepath, '.run_state.json') @property def configfile(self): return os.path.join(self.metadir, 'config.json') @property def targetfile(self): return os.path.join(self.metadir, 'target_info.json') @property def jobsfile(self): return os.path.join(self.metadir, 'jobs.json') @property def raw_config_dir(self): return os.path.join(self.metadir, 'raw_config') @property def failed_dir(self): path = os.path.join(self.basepath, '__failed') return ensure_directory_exists(path) @property def augmentations(self): run_augs = set([]) for job in self.jobs: for aug in job.spec.augmentations: run_augs.add(aug) return list(run_augs) def __init__(self, path): super(RunOutput, self).__init__(path) self.info = None self.state = None self.result = None self.target_info = None self._combined_config = None self.jobs = [] self.job_specs = [] if (not os.path.isfile(self.statefile) or not os.path.isfile(self.infofile)): msg = '"{}" does not exist or is not a valid WA output directory.' raise ValueError(msg.format(self.basepath)) self.reload() def reload(self): super(RunOutput, self).reload() self.info = RunInfo.from_pod(read_pod(self.infofile)) self.state = RunState.from_pod(read_pod(self.statefile)) if os.path.isfile(self.configfile): self._combined_config = CombinedConfig.from_pod(read_pod(self.configfile)) if os.path.isfile(self.targetfile): self.target_info = TargetInfo.from_pod(read_pod(self.targetfile)) if os.path.isfile(self.jobsfile): self.job_specs = self.read_job_specs() for job_state in self.state.jobs.values(): job_path = os.path.join(self.basepath, job_state.output_name) job = JobOutput(job_path, job_state.id, job_state.label, job_state.iteration, job_state.retries) job.status = job_state.status job.spec = self.get_job_spec(job.id) if job.spec is None: logger.warning('Could not find spec for job {}'.format(job.id)) self.jobs.append(job) def write_info(self): write_pod(self.info.to_pod(), self.infofile) def write_state(self): write_pod(self.state.to_pod(), self.statefile) def write_config(self, config): self._combined_config = config write_pod(config.to_pod(), self.configfile) def read_config(self): if not os.path.isfile(self.configfile): return None return CombinedConfig.from_pod(read_pod(self.configfile)) def set_target_info(self, ti): self.target_info = ti write_pod(ti.to_pod(), self.targetfile) def write_job_specs(self, job_specs): job_specs[0].to_pod() js_pod = {'jobs': [js.to_pod() for js in job_specs]} write_pod(js_pod, self.jobsfile) def read_job_specs(self): if not os.path.isfile(self.jobsfile): return None pod = read_pod(self.jobsfile) return [JobSpec.from_pod(jp) for jp in pod['jobs']] def move_failed(self, job_output): name = os.path.basename(job_output.basepath) attempt = job_output.retry + 1 failed_name = '{}-attempt{:02}'.format(name, attempt) failed_path = os.path.join(self.failed_dir, failed_name) if os.path.exists(failed_path): raise ValueError('Path {} already exists'.format(failed_path)) shutil.move(job_output.basepath, failed_path) job_output.basepath = failed_path class JobOutput(Output): kind = 'job' # pylint: disable=redefined-builtin def __init__(self, path, id, label, iteration, retry): super(JobOutput, self).__init__(path) self.id = id self.label = label self.iteration = iteration self.retry = retry self.result = None self.spec = None self.reload() @property def augmentations(self): job_augs = set([]) for aug in self.spec.augmentations: job_augs.add(aug) return list(job_augs) class Result(Podable): _pod_serialization_version = 1 @staticmethod def from_pod(pod): instance = super(Result, Result).from_pod(pod) instance.status = Status.from_pod(pod['status']) instance.metrics = [Metric.from_pod(m) for m in pod['metrics']] instance.artifacts = [Artifact.from_pod(a) for a in pod['artifacts']] instance.events = [Event.from_pod(e) for e in pod['events']] instance.classifiers = pod.get('classifiers', OrderedDict()) instance.metadata = pod.get('metadata', OrderedDict()) return instance def __init__(self): # pylint: disable=no-member super(Result, self).__init__() self.status = Status.NEW self.metrics = [] self.artifacts = [] self.events = [] self.classifiers = OrderedDict() self.metadata = OrderedDict() def add_metric(self, name, value, units=None, lower_is_better=False, classifiers=None): metric = Metric(name, value, units, lower_is_better, classifiers) logger.debug('Adding metric: {}'.format(metric)) self.metrics.append(metric) def add_artifact(self, name, path, kind, description=None, classifiers=None, is_dir=False): artifact = Artifact(name, path, kind, description=description, classifiers=classifiers, is_dir=is_dir) logger.debug('Adding artifact: {}'.format(artifact)) self.artifacts.append(artifact) def add_event(self, message): self.events.append(Event(message)) def get_metric(self, name): for metric in self.metrics: if metric.name == name: return metric return None def get_artifact(self, name): for artifact in self.artifacts: if artifact.name == name: return artifact raise HostError('Artifact "{}" not found'.format(name)) def add_classifier(self, name, value, overwrite=False): if name in self.classifiers and not overwrite: raise ValueError('Cannot overwrite "{}" classifier.'.format(name)) self.classifiers[name] = value for metric in self.metrics: if name in metric.classifiers and not overwrite: raise ValueError('Cannot overwrite "{}" classifier; clashes with {}.'.format(name, metric)) metric.classifiers[name] = value for artifact in self.artifacts: if name in artifact.classifiers and not overwrite: raise ValueError('Cannot overwrite "{}" classifier; clashes with {}.'.format(name, artifact)) artifact.classifiers[name] = value def add_metadata(self, key, *args, **kwargs): force = kwargs.pop('force', False) if kwargs: msg = 'Unexpected keyword arguments: {}' raise ValueError(msg.format(kwargs)) if key in self.metadata and not force: msg = 'Metadata with key "{}" already exists.' raise ValueError(msg.format(key)) if len(args) == 1: value = args[0] elif len(args) == 2: value = {args[0]: args[1]} elif not args: value = None else: raise ValueError("Unexpected arguments: {}".format(args)) self.metadata[key] = value def update_metadata(self, key, *args): if not args: del self.metadata[key] return if key not in self.metadata: return self.add_metadata(key, *args) if hasattr(self.metadata[key], 'items'): if len(args) == 2: self.metadata[key][args[0]] = args[1] elif len(args) > 2: # assume list of key-value pairs for k, v in args: self.metadata[key][k] = v elif hasattr(args[0], 'items'): for k, v in args[0].items(): self.metadata[key][k] = v else: raise ValueError('Invalid value for key "{}": {}'.format(key, args)) elif isiterable(self.metadata[key]): self.metadata[key].extend(args) else: # scalar if len(args) > 1: raise ValueError('Invalid value for key "{}": {}'.format(key, args)) self.metadata[key] = args[0] def to_pod(self): pod = super(Result, self).to_pod() pod['status'] = self.status.to_pod() pod['metrics'] = [m.to_pod() for m in self.metrics] pod['artifacts'] = [a.to_pod() for a in self.artifacts] pod['events'] = [e.to_pod() for e in self.events] pod['classifiers'] = copy(self.classifiers) pod['metadata'] = deepcopy(self.metadata) return pod @staticmethod def _pod_upgrade_v1(pod): pod['_pod_version'] = pod.get('_pod_version', 1) pod['status'] = Status(pod['status']).to_pod() return pod ARTIFACT_TYPES = ['log', 'meta', 'data', 'export', 'raw'] ArtifactType = enum(ARTIFACT_TYPES) class Artifact(Podable): """ This is an artifact generated during execution/post-processing of a workload. Unlike metrics, this represents an actual artifact, such as a file, generated. This may be "output", such as trace, or it could be "meta data" such as logs. These are distinguished using the ``kind`` attribute, which also helps WA decide how it should be handled. Currently supported kinds are: :log: A log file. Not part of the "output" as such but contains information about the run/workload execution that be useful for diagnostics/meta analysis. :meta: A file containing metadata. This is not part of the "output", but contains information that may be necessary to reproduce the results (contrast with ``log`` artifacts which are *not* necessary). :data: This file contains new data, not available otherwise and should be considered part of the "output" generated by WA. Most traces would fall into this category. :export: Exported version of results or some other artifact. This signifies that this artifact does not contain any new data that is not available elsewhere and that it may be safely discarded without losing information. :raw: Signifies that this is a raw dump/log that is normally processed to extract useful information and is then discarded. In a sense, it is the opposite of ``export``, but in general may also be discarded. .. note:: whether a file is marked as ``log``/``data`` or ``raw`` depends on how important it is to preserve this file, e.g. when archiving, vs how much space it takes up. Unlike ``export`` artifacts which are (almost) always ignored by other exporters as that would never result in data loss, ``raw`` files *may* be processed by exporters if they decided that the risk of losing potentially (though unlikely) useful data is greater than the time/space cost of handling the artifact (e.g. a database uploader may choose to ignore ``raw`` artifacts, where as a network filer archiver may choose to archive them). .. note: The kind parameter is intended to represent the logical function of a particular artifact, not it's intended means of processing -- this is left entirely up to the output processors. """ _pod_serialization_version = 2 @staticmethod def from_pod(pod): pod = Artifact._upgrade_pod(pod) pod_version = pod.pop('_pod_version') pod['kind'] = ArtifactType(pod['kind']) instance = Artifact(**pod) instance._pod_version = pod_version # pylint: disable =protected-access instance.is_dir = pod.pop('is_dir') return instance def __init__(self, name, path, kind, description=None, classifiers=None, is_dir=False): """" :param name: Name that uniquely identifies this artifact. :param path: The *relative* path of the artifact. Depending on the ``level`` must be either relative to the run or iteration output directory. Note: this path *must* be delimited using ``/`` irrespective of the operating system. :param kind: The type of the artifact this is (e.g. log file, result, etc.) this will be used as a hint to output processors. This must be one of ``'log'``, ``'meta'``, ``'data'``, ``'export'``, ``'raw'``. :param description: A free-form description of what this artifact is. :param classifiers: A set of key-value pairs to further classify this metric beyond current iteration (e.g. this can be used to identify sub-tests). """ super(Artifact, self).__init__() self.name = name self.path = path.replace('/', os.sep) if path is not None else path try: self.kind = ArtifactType(kind) except ValueError: msg = 'Invalid Artifact kind: {}; must be in {}' raise ValueError(msg.format(kind, ARTIFACT_TYPES)) self.description = description self.classifiers = classifiers or {} self.is_dir = is_dir def to_pod(self): pod = super(Artifact, self).to_pod() pod.update(self.__dict__) pod['kind'] = str(self.kind) pod['is_dir'] = self.is_dir return pod @staticmethod def _pod_upgrade_v1(pod): pod['_pod_version'] = pod.get('_pod_version', 1) return pod @staticmethod def _pod_upgrade_v2(pod): pod['is_dir'] = pod.get('is_dir', False) return pod def __str__(self): return self.path def __repr__(self): ft = 'dir' if self.is_dir else 'file' return '{} ({}) ({}): {}'.format(self.name, ft, self.kind, self.path) class Metric(Podable): """ This is a single metric collected from executing a workload. :param name: the name of the metric. Uniquely identifies the metric within the results. :param value: The numerical value of the metric for this execution of a workload. This can be either an int or a float. :param units: Units for the collected value. Can be None if the value has no units (e.g. it's a count or a standardised score). :param lower_is_better: Boolean flag indicating where lower values are better than higher ones. Defaults to False. :param classifiers: A set of key-value pairs to further classify this metric beyond current iteration (e.g. this can be used to identify sub-tests). """ __slots__ = ['name', 'value', 'units', 'lower_is_better', 'classifiers'] _pod_serialization_version = 1 @staticmethod def from_pod(pod): pod = Metric._upgrade_pod(pod) pod_version = pod.pop('_pod_version') instance = Metric(**pod) instance._pod_version = pod_version # pylint: disable =protected-access return instance @property def label(self): parts = ['{}={}'.format(n, v) for n, v in self.classifiers.items()] parts.insert(0, self.name) return '/'.join(parts) def __init__(self, name, value, units=None, lower_is_better=False, classifiers=None): super(Metric, self).__init__() self.name = name self.value = numeric(value) self.units = units self.lower_is_better = lower_is_better self.classifiers = classifiers or {} def to_pod(self): pod = super(Metric, self).to_pod() pod['name'] = self.name pod['value'] = self.value pod['units'] = self.units pod['lower_is_better'] = self.lower_is_better pod['classifiers'] = self.classifiers return pod @staticmethod def _pod_upgrade_v1(pod): pod['_pod_version'] = pod.get('_pod_version', 1) return pod def __str__(self): result = '{}: {}'.format(self.name, self.value) if self.units: result += ' ' + self.units result += ' ({})'.format('-' if self.lower_is_better else '+') return result def __repr__(self): text = self.__str__() if self.classifiers: return '<{} {}>'.format(text, format_ordered_dict(self.classifiers)) else: return '<{}>'.format(text) class Event(Podable): """ An event that occured during a run. """ __slots__ = ['timestamp', 'message'] _pod_serialization_version = 1 @staticmethod def from_pod(pod): pod = Event._upgrade_pod(pod) pod_version = pod.pop('_pod_version') instance = Event(pod['message']) instance.timestamp = pod['timestamp'] instance._pod_version = pod_version # pylint: disable =protected-access return instance @property def summary(self): lines = self.message.split('\n') result = lines[0] if len(lines) > 1: result += '[...]' return result def __init__(self, message): super(Event, self).__init__() self.timestamp = datetime.utcnow() self.message = str(message) def to_pod(self): pod = super(Event, self).to_pod() pod['timestamp'] = self.timestamp pod['message'] = self.message return pod @staticmethod def _pod_upgrade_v1(pod): pod['_pod_version'] = pod.get('_pod_version', 1) return pod def __str__(self): return '[{}] {}'.format(self.timestamp, self.message) __repr__ = __str__ def init_run_output(path, wa_state, force=False): if os.path.exists(path): if force: logger.info('Removing existing output directory.') shutil.rmtree(os.path.abspath(path)) else: raise RuntimeError('path exists: {}'.format(path)) logger.info('Creating output directory.') os.makedirs(path) meta_dir = os.path.join(path, '__meta') os.makedirs(meta_dir) _save_raw_config(meta_dir, wa_state) touch(os.path.join(path, 'run.log')) info = RunInfo( run_name=wa_state.run_config.run_name, project=wa_state.run_config.project, project_stage=wa_state.run_config.project_stage, ) write_pod(info.to_pod(), os.path.join(meta_dir, 'run_info.json')) write_pod(RunState().to_pod(), os.path.join(path, '.run_state.json')) write_pod(Result().to_pod(), os.path.join(path, 'result.json')) ro = RunOutput(path) ro.update_metadata('versions', 'wa', get_wa_version_with_commit()) ro.update_metadata('versions', 'devlib', devlib.__full_version__) return ro def init_job_output(run_output, job): output_name = '{}-{}-{}'.format(job.id, job.spec.label, job.iteration) path = os.path.join(run_output.basepath, output_name) ensure_directory_exists(path) write_pod(Result().to_pod(), os.path.join(path, 'result.json')) job_output = JobOutput(path, job.id, job.label, job.iteration, job.retries) job_output.spec = job.spec job_output.status = job.status run_output.jobs.append(job_output) return job_output def discover_wa_outputs(path): for root, dirs, _ in os.walk(path): if '__meta' in dirs: yield RunOutput(root) def _save_raw_config(meta_dir, state): raw_config_dir = os.path.join(meta_dir, 'raw_config') os.makedirs(raw_config_dir) for i, source in enumerate(state.loaded_config_sources): if not os.path.isfile(source): continue basename = os.path.basename(source) dest_path = os.path.join(raw_config_dir, 'cfg{}-{}'.format(i, basename)) shutil.copy(source, dest_path) class DatabaseOutput(Output): kind = None @property def resultfile(self): if self.conn is None or self.oid is None: return {} pod = self._get_pod_version() pod['metrics'] = self._get_metrics() pod['status'] = self._get_status() pod['classifiers'] = self._get_classifiers(self.oid, 'run') pod['events'] = self._get_events() pod['artifacts'] = self._get_artifacts() return pod @staticmethod def _build_command(columns, tables, conditions=None, joins=None): cmd = '''SELECT\n\t{}\nFROM\n\t{}'''.format(',\n\t'.join(columns), ',\n\t'.join(tables)) if joins: for join in joins: cmd += '''\nLEFT JOIN {} ON {}'''.format(join[0], join[1]) if conditions: cmd += '''\nWHERE\n\t{}'''.format('\nAND\n\t'.join(conditions)) return cmd + ';' def __init__(self, conn, oid=None, reload=True): # pylint: disable=super-init-not-called self.conn = conn self.oid = oid self.result = None if reload: self.reload() def __repr__(self): return '<{} {}>'.format(self.__class__.__name__, self.oid) def __str__(self): return self.oid def reload(self): try: self.result = Result.from_pod(self.resultfile) except Exception as e: # pylint: disable=broad-except self.result = Result() self.result.status = Status.UNKNOWN self.add_event(str(e)) def get_artifact_path(self, name): artifact = self.get_artifact(name) if artifact.is_dir: return self._read_dir_artifact(artifact) else: return self._read_file_artifact(artifact) def _read_dir_artifact(self, artifact): artifact_path = tempfile.mkdtemp(prefix='wa_') with tarfile.open(fileobj=self.conn.lobject(int(artifact.path), mode='b'), mode='r|gz') as tar_file: tar_file.extractall(artifact_path) self.conn.commit() return artifact_path def _read_file_artifact(self, artifact): artifact = StringIO(self.conn.lobject(int(artifact.path)).read()) self.conn.commit() return artifact # pylint: disable=too-many-locals def _read_db(self, columns, tables, conditions=None, join=None, as_dict=True): # Automatically remove table name from column when using column names as keys or # allow for column names to be aliases when retrieving the data, # (db_column_name, alias) db_columns = [] aliases_colunms = [] for column in columns: if isinstance(column, tuple): db_columns.append(column[0]) aliases_colunms.append(column[1]) else: db_columns.append(column) aliases_colunms.append(column.rsplit('.', 1)[-1]) cmd = self._build_command(db_columns, tables, conditions, join) logger.debug(cmd) with self.conn.cursor() as cursor: cursor.execute(cmd) results = cursor.fetchall() self.conn.commit() if not as_dict: return results # Format the output dict using column names as keys output = [] for result in results: entry = {} for k, v in zip(aliases_colunms, result): entry[k] = v output.append(entry) return output def _get_pod_version(self): columns = ['_pod_version', '_pod_serialization_version'] tables = ['{}s'.format(self.kind)] conditions = ['{}s.oid = \'{}\''.format(self.kind, self.oid)] results = self._read_db(columns, tables, conditions) if results: return results[0] else: return None def _populate_classifers(self, pod, kind): for entry in pod: oid = entry.pop('oid') entry['classifiers'] = self._get_classifiers(oid, kind) return pod def _get_classifiers(self, oid, kind): columns = ['classifiers.key', 'classifiers.value'] tables = ['classifiers'] conditions = ['{}_oid = \'{}\''.format(kind, oid)] results = self._read_db(columns, tables, conditions, as_dict=False) classifiers = {} for (k, v) in results: classifiers[k] = v return classifiers def _get_metrics(self): columns = ['metrics.name', 'metrics.value', 'metrics.units', 'metrics.lower_is_better', 'metrics.oid', 'metrics._pod_version', 'metrics._pod_serialization_version'] tables = ['metrics'] joins = [('classifiers', 'classifiers.metric_oid = metrics.oid')] conditions = ['metrics.{}_oid = \'{}\''.format(self.kind, self.oid)] pod = self._read_db(columns, tables, conditions, joins) return self._populate_classifers(pod, 'metric') def _get_status(self): columns = ['{}s.status'.format(self.kind)] tables = ['{}s'.format(self.kind)] conditions = ['{}s.oid = \'{}\''.format(self.kind, self.oid)] results = self._read_db(columns, tables, conditions, as_dict=False) if results: return results[0][0] else: return None def _get_artifacts(self): columns = ['artifacts.name', 'artifacts.description', 'artifacts.kind', ('largeobjects.lo_oid', 'path'), 'artifacts.oid', 'artifacts.is_dir', 'artifacts._pod_version', 'artifacts._pod_serialization_version'] tables = ['largeobjects', 'artifacts'] joins = [('classifiers', 'classifiers.artifact_oid = artifacts.oid')] conditions = ['artifacts.{}_oid = \'{}\''.format(self.kind, self.oid), 'artifacts.large_object_uuid = largeobjects.oid'] # If retrieving run level artifacts we want those that don't also belong to a job if self.kind == 'run': conditions.append('artifacts.job_oid IS NULL') pod = self._read_db(columns, tables, conditions, joins) for artifact in pod: artifact['path'] = str(artifact['path']) return self._populate_classifers(pod, 'metric') def _get_events(self): columns = ['events.message', 'events.timestamp'] tables = ['events'] conditions = ['events.{}_oid = \'{}\''.format(self.kind, self.oid)] return self._read_db(columns, tables, conditions) def kernel_config_from_db(raw): kernel_config = {} if raw: for k, v in zip(raw[0], raw[1]): kernel_config[k] = v return kernel_config class RunDatabaseOutput(DatabaseOutput, RunOutputCommon): kind = 'run' @property def basepath(self): return 'db:({})-{}@{}:{}'.format(self.dbname, self.user, self.host, self.port) @property def augmentations(self): columns = ['augmentations.name'] tables = ['augmentations'] conditions = ['augmentations.run_oid = \'{}\''.format(self.oid)] results = self._read_db(columns, tables, conditions, as_dict=False) return [a for augs in results for a in augs] @property def _db_infofile(self): columns = ['start_time', 'project', ('run_uuid', 'uuid'), 'end_time', 'run_name', 'duration', '_pod_version', '_pod_serialization_version'] tables = ['runs'] conditions = ['runs.run_uuid = \'{}\''.format(self.run_uuid)] pod = self._read_db(columns, tables, conditions) if not pod: return {} return pod[0] @property def _db_targetfile(self): columns = ['os', 'is_rooted', 'target', 'modules', 'abi', 'cpus', 'os_version', 'hostid', 'hostname', 'kernel_version', 'kernel_release', 'kernel_sha1', 'kernel_config', 'sched_features', 'page_size_kb', 'system_id', 'screen_resolution', 'prop', 'android_id', '_pod_version', '_pod_serialization_version'] tables = ['targets'] conditions = ['targets.run_oid = \'{}\''.format(self.oid)] pod = self._read_db(columns, tables, conditions) if not pod: return {} pod = pod[0] try: pod['cpus'] = [json.loads(cpu) for cpu in pod.pop('cpus')] except SerializerSyntaxError: pod['cpus'] = [] logger.debug('Failed to deserialize target cpu information') pod['kernel_config'] = kernel_config_from_db(pod['kernel_config']) return pod @property def _db_statefile(self): # Read overall run information columns = ['runs.state'] tables = ['runs'] conditions = ['runs.run_uuid = \'{}\''.format(self.run_uuid)] pod = self._read_db(columns, tables, conditions) pod = pod[0].get('state') if not pod: return {} # Read job information columns = ['jobs.job_id', 'jobs.oid'] tables = ['jobs'] conditions = ['jobs.run_oid = \'{}\''.format(self.oid)] job_oids = self._read_db(columns, tables, conditions) # Match job oid with jobs from state file for job in pod.get('jobs', []): for job_oid in job_oids: if job['id'] == job_oid['job_id']: job['oid'] = job_oid['oid'] break return pod @property def _db_jobsfile(self): workload_params = self._get_parameters('workload') runtime_params = self._get_parameters('runtime') columns = [('jobs.job_id', 'id'), 'jobs.label', 'jobs.workload_name', 'jobs.oid', 'jobs._pod_version', 'jobs._pod_serialization_version'] tables = ['jobs'] conditions = ['jobs.run_oid = \'{}\''.format(self.oid)] jobs = self._read_db(columns, tables, conditions) for job in jobs: job['augmentations'] = self._get_job_augmentations(job['oid']) job['workload_parameters'] = workload_params.pop(job['oid'], {}) job['runtime_parameters'] = runtime_params.pop(job['oid'], {}) job.pop('oid') return jobs @property def _db_run_config(self): pod = defaultdict(dict) parameter_types = ['augmentation', 'resource_getter'] for parameter_type in parameter_types: columns = ['parameters.name', 'parameters.value', 'parameters.value_type', ('{}s.name'.format(parameter_type), '{}'.format(parameter_type))] tables = ['parameters', '{}s'.format(parameter_type)] conditions = ['parameters.run_oid = \'{}\''.format(self.oid), 'parameters.type = \'{}\''.format(parameter_type), 'parameters.{0}_oid = {0}s.oid'.format(parameter_type)] configs = self._read_db(columns, tables, conditions) for config in configs: entry = {config['name']: json.loads(config['value'])} pod['{}s'.format(parameter_type)][config.pop(parameter_type)] = entry # run config columns = ['runs.max_retries', 'runs.allow_phone_home', 'runs.bail_on_init_failure', 'runs.retry_on_status'] tables = ['runs'] conditions = ['runs.oid = \'{}\''.format(self.oid)] config = self._read_db(columns, tables, conditions) if not config: return {} config = config[0] # Convert back into a string representation of an enum list config['retry_on_status'] = config['retry_on_status'][1:-1].split(',') pod.update(config) return pod def __init__(self, password=None, dbname='wa', host='localhost', port='5432', user='postgres', run_uuid=None, list_runs=False): if psycopg2 is None: msg = 'Please install the psycopg2 in order to connect to postgres databases' raise HostError(msg) self.dbname = dbname self.host = host self.port = port self.user = user self.password = password self.run_uuid = run_uuid self.conn = None self.info = None self.state = None self.result = None self.target_info = None self._combined_config = None self.jobs = [] self.job_specs = [] self.connect() super(RunDatabaseOutput, self).__init__(conn=self.conn, reload=False) local_schema_version, db_schema_version = get_schema_versions(self.conn) if local_schema_version != db_schema_version: self.disconnect() msg = 'The current database schema is v{} however the local ' \ 'schema version is v{}. Please update your database ' \ 'with the create command' raise HostError(msg.format(db_schema_version, local_schema_version)) if list_runs: print('Available runs are:') self._list_runs() self.disconnect() return if not self.run_uuid: print('Please specify "Run uuid"') self._list_runs() self.disconnect() return if not self.oid: self.oid = self._get_oid() self.reload() def read_job_specs(self): job_specs = [] for job in self._db_jobsfile: job_specs.append(JobSpec.from_pod(job)) return job_specs def connect(self): if self.conn and not self.conn.closed: return try: self.conn = psycopg2.connect(dbname=self.dbname, user=self.user, host=self.host, password=self.password, port=self.port) except Psycopg2Error as e: raise HostError('Unable to connect to the Database: "{}'.format(e.args[0])) def disconnect(self): self.conn.commit() self.conn.close() def reload(self): super(RunDatabaseOutput, self).reload() info_pod = self._db_infofile state_pod = self._db_statefile if not info_pod or not state_pod: msg = '"{}" does not appear to be a valid WA Database Output.' raise ValueError(msg.format(self.oid)) self.info = RunInfo.from_pod(info_pod) self.state = RunState.from_pod(state_pod) self._combined_config = CombinedConfig.from_pod({'run_config': self._db_run_config}) self.target_info = TargetInfo.from_pod(self._db_targetfile) self.job_specs = self.read_job_specs() for job_state in self._db_statefile['jobs']: job = JobDatabaseOutput(self.conn, job_state.get('oid'), job_state['id'], job_state['label'], job_state['iteration'], job_state['retries']) job.status = job_state['status'] job.spec = self.get_job_spec(job.id) if job.spec is None: logger.warning('Could not find spec for job {}'.format(job.id)) self.jobs.append(job) def _get_oid(self): columns = ['{}s.oid'.format(self.kind)] tables = ['{}s'.format(self.kind)] conditions = ['runs.run_uuid = \'{}\''.format(self.run_uuid)] oid = self._read_db(columns, tables, conditions, as_dict=False) if not oid: raise ConfigError('No matching run entries found for run_uuid {}'.format(self.run_uuid)) if len(oid) > 1: raise ConfigError('Multiple entries found for run_uuid: {}'.format(self.run_uuid)) return oid[0][0] def _get_parameters(self, param_type): columns = ['parameters.job_oid', 'parameters.name', 'parameters.value'] tables = ['parameters'] conditions = ['parameters.type = \'{}\''.format(param_type), 'parameters.run_oid = \'{}\''.format(self.oid)] params = self._read_db(columns, tables, conditions, as_dict=False) parm_dict = defaultdict(dict) for (job_oid, k, v) in params: try: parm_dict[job_oid][k] = json.loads(v) except SerializerSyntaxError: logger.debug('Failed to deserialize job_oid:{}-"{}":"{}"'.format(job_oid, k, v)) return parm_dict def _get_job_augmentations(self, job_oid): columns = ['jobs_augs.augmentation_oid', 'augmentations.name', 'augmentations.oid', 'jobs_augs.job_oid'] tables = ['jobs_augs', 'augmentations'] conditions = ['jobs_augs.job_oid = \'{}\''.format(job_oid), 'jobs_augs.augmentation_oid = augmentations.oid'] augmentations = self._read_db(columns, tables, conditions) return [aug['name'] for aug in augmentations] def _list_runs(self): columns = ['runs.run_uuid', 'runs.run_name', 'runs.project', 'runs.project_stage', 'runs.status', 'runs.start_time', 'runs.end_time'] tables = ['runs'] pod = self._read_db(columns, tables) if pod: headers = ['Run Name', 'Project', 'Project Stage', 'Start Time', 'End Time', 'run_uuid'] run_list = [] for entry in pod: # Format times to display better start_time = entry['start_time'] end_time = entry['end_time'] if start_time: start_time = start_time.strftime("%Y-%m-%d %H:%M:%S") if end_time: end_time = end_time.strftime("%Y-%m-%d %H:%M:%S") run_list.append([ entry['run_name'], entry['project'], entry['project_stage'], start_time, end_time, entry['run_uuid']]) print(format_simple_table(run_list, headers)) else: print('No Runs Found') class JobDatabaseOutput(DatabaseOutput): kind = 'job' def __init__(self, conn, oid, job_id, label, iteration, retry): super(JobDatabaseOutput, self).__init__(conn, oid=oid) self.id = job_id self.label = label self.iteration = iteration self.retry = retry self.result = None self.spec = None self.reload() def __repr__(self): return '<{} {}-{}-{}>'.format(self.__class__.__name__, self.id, self.label, self.iteration) def __str__(self): return '{}-{}-{}'.format(self.id, self.label, self.iteration) @property def augmentations(self): job_augs = set([]) if self.spec: for aug in self.spec.augmentations: job_augs.add(aug) return list(job_augs)