# Copyright 2018 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Because of use of Enum (dynamic attrs) # pylint: disable=no-member import logging from copy import copy from datetime import datetime from wa.framework import pluginloader, signal, instrument from wa.framework.configuration.core import Status from wa.utils.log import indentcontext from wa.framework.run import JobState class Job(object): _workload_cache = {} @property def id(self): return self.spec.id @property def label(self): return self.spec.label @property def status(self): return self.state.status @property def has_been_initialized(self): return self._has_been_initialized @property def retries(self): return self.state.retries @status.setter def status(self, value): self.state.status = value self.state.timestamp = datetime.utcnow() if self.output: self.output.status = value @retries.setter def retries(self, value): self.state.retries = value def __init__(self, spec, iteration, context): self.logger = logging.getLogger('job') self.spec = spec self.iteration = iteration self.context = context self.workload = None self.output = None self.run_time = None self.classifiers = copy(self.spec.classifiers) self._has_been_initialized = False self.state = JobState(self.id, self.label, self.iteration, Status.NEW) def load(self, target, loader=pluginloader): self.logger.info('Loading job {}'.format(self)) if self.id not in self._workload_cache: self.workload = loader.get_workload(self.spec.workload_name, target, **self.spec.workload_parameters) self.workload.init_resources(self.context) self.workload.validate() self._workload_cache[self.id] = self.workload else: self.workload = self._workload_cache[self.id] def set_output(self, output): output.classifiers = copy(self.classifiers) self.output = output def initialize(self, context): self.logger.info('Initializing job {}'.format(self)) with indentcontext(): with signal.wrap('WORKLOAD_INITIALIZED', self, context): self.workload.logger.context = context self.workload.initialize(context) self.set_status(Status.PENDING) self._has_been_initialized = True def configure_augmentations(self, context, pm): self.logger.info('Configuring augmentations') with indentcontext(): instruments_to_enable = set() output_processors_to_enable = set() enabled_instruments = set(i.name for i in instrument.get_enabled()) enabled_output_processors = set(p.name for p in pm.get_enabled()) for augmentation in list(self.spec.augmentations.values()): augmentation_cls = context.cm.plugin_cache.get_plugin_class(augmentation) if augmentation_cls.kind == 'instrument': instruments_to_enable.add(augmentation) elif augmentation_cls.kind == 'output_processor': output_processors_to_enable.add(augmentation) # Disable unrequired instruments for instrument_name in enabled_instruments.difference(instruments_to_enable): instrument.disable(instrument_name) # Enable additional instruments for instrument_name in instruments_to_enable.difference(enabled_instruments): instrument.enable(instrument_name) # Disable unrequired output_processors for processor in enabled_output_processors.difference(output_processors_to_enable): pm.disable(processor) # Enable additional output_processors for processor in output_processors_to_enable.difference(enabled_output_processors): pm.enable(processor) def configure_target(self, context): self.logger.info('Configuring target for job {}'.format(self)) with indentcontext(): context.tm.commit_runtime_parameters(self.spec.runtime_parameters) def setup(self, context): self.logger.info('Setting up job {}'.format(self)) with indentcontext(): with signal.wrap('WORKLOAD_SETUP', self, context): self.workload.setup(context) def run(self, context): self.logger.info('Running job {}'.format(self)) with indentcontext(): with signal.wrap('WORKLOAD_EXECUTION', self, context): start_time = datetime.utcnow() try: self.workload.run(context) finally: self.run_time = datetime.utcnow() - start_time def process_output(self, context): if not context.tm.is_responsive: self.logger.info('Target unresponsive; not processing job output.') return self.logger.info('Processing output for job {}'.format(self)) with indentcontext(): if self.status != Status.FAILED: with signal.wrap('WORKLOAD_RESULT_EXTRACTION', self, context): self.workload.extract_results(context) context.extract_results() with signal.wrap('WORKLOAD_OUTPUT_UPDATE', self, context): self.workload.update_output(context) def teardown(self, context): if not context.tm.is_responsive: self.logger.info('Target unresponsive; not tearing down.') return self.logger.info('Tearing down job {}'.format(self)) with indentcontext(): with signal.wrap('WORKLOAD_TEARDOWN', self, context): self.workload.teardown(context) def finalize(self, context): if not self._has_been_initialized: return if not context.tm.is_responsive: self.logger.info('Target unresponsive; not finalizing.') return self.logger.info('Finalizing job {} '.format(self)) with indentcontext(): with signal.wrap('WORKLOAD_FINALIZED', self, context): self.workload.finalize(context) def set_status(self, status, force=False): status = Status(status) if force or self.status < status: self.status = status def add_classifier(self, name, value, overwrite=False): if name in self.classifiers and not overwrite: raise ValueError('Cannot overwrite "{}" classifier.'.format(name)) self.classifiers[name] = value def __str__(self): return '{} ({}) [{}]'.format(self.id, self.label, self.iteration) def __repr__(self): return 'Job({})'.format(self)