import logging import os import shutil import string import sys import uuid from copy import copy from datetime import datetime, timedelta from wa.framework.configuration.core import JobSpec, Status from wa.framework.configuration.execution import ConfigManager from wa.framework.exception import HostError from wa.framework.run import RunState, RunInfo from wa.framework.target.info import TargetInfo from wa.utils.misc import touch, ensure_directory_exists from wa.utils.serializer import write_pod, read_pod from wa.utils.types import enum, numeric logger = logging.getLogger('output') class Output(object): kind = None @property def resultfile(self): return os.path.join(self.basepath, 'result.json') @property def event_summary(self): num_events = len(self.events) if num_events: lines = self.events[0].message.split('\n') message = '({} event(s)): {}' if num_events > 1 or len(lines) > 1: message += '[...]' return message.format(num_events, lines[0]) return '' @property def status(self): if self.result is None: return None return self.result.status @status.setter def status(self, value): self.result.status = value @property def metrics(self): if self.result is None: return [] return self.result.metrics @property def artifacts(self): if self.result is None: return [] return self.result.artifacts def __init__(self, path): self.basepath = path self.result = None self.events = [] def reload(self): pod = read_pod(self.resultfile) self.result = Result.from_pod(pod) def write_result(self): write_pod(self.result.to_pod(), self.resultfile) def get_path(self, subpath): return os.path.join(self.basepath, subpath.strip(os.sep)) def add_metric(self, name, value, units=None, lower_is_better=False, classifiers=None): self.result.add_metric(name, value, units, lower_is_better, classifiers) def add_artifact(self, name, path, kind, description=None, classifiers=None): if not os.path.exists(path): path = self.get_path(path) if not os.path.exists(path): msg = 'Attempting to add non-existing artifact: {}' raise HostError(msg.format(path)) path = os.path.relpath(path, self.basepath) if isinstance(kind, basestring): kind = ArtifactType(kind) self.result.add_artifact(name, path, kind, description, classifiers) def add_event(self, message): self.result.add_event(message) def get_metric(self, name): return self.result.get_metric(name) def get_artifact(self, name): return self.result.get_artifact(name) def get_artifact_path(self, name): artifact = self.get_artifact(name) return self.get_path(artifact.path) class RunOutput(Output): kind = 'run' @property def logfile(self): return os.path.join(self.basepath, 'run.log') @property def metadir(self): return os.path.join(self.basepath, '__meta') @property def infofile(self): return os.path.join(self.metadir, 'run_info.json') @property def statefile(self): return os.path.join(self.basepath, '.run_state.json') @property def configfile(self): return os.path.join(self.metadir, 'config.json') @property def targetfile(self): return os.path.join(self.metadir, 'target_info.json') @property def jobsfile(self): return os.path.join(self.metadir, 'jobs.json') @property def raw_config_dir(self): return os.path.join(self.metadir, 'raw_config') @property def failed_dir(self): path = os.path.join(self.basepath, '__failed') return ensure_directory_exists(path) def __init__(self, path): super(RunOutput, self).__init__(path) self.info = None self.state = None self.result = None self.jobs = [] if (not os.path.isfile(self.statefile) or not os.path.isfile(self.infofile)): msg = '"{}" does not exist or is not a valid WA output directory.' raise ValueError(msg.format(self.basepath)) self.reload() def reload(self): super(RunOutput, self).reload() self.info = RunInfo.from_pod(read_pod(self.infofile)) self.state = RunState.from_pod(read_pod(self.statefile)) # TODO: propulate the jobs from info in the state def write_info(self): write_pod(self.info.to_pod(), self.infofile) def write_state(self): write_pod(self.state.to_pod(), self.statefile) def write_config(self, config): write_pod(config.to_pod(), self.configfile) def read_config(self): if not os.path.isfile(self.configfile): return None return ConfigManager.from_pod(read_pod(self.configfile)) def write_target_info(self, ti): write_pod(ti.to_pod(), self.targetfile) def read_target_config(self): if not os.path.isfile(self.targetfile): return None return TargetInfo.from_pod(read_pod(self.targetfile)) def write_job_specs(self, job_specs): job_specs[0].to_pod() js_pod = {'jobs': [js.to_pod() for js in job_specs]} write_pod(js_pod, self.jobsfile) def read_job_specs(self): if not os.path.isfile(self.jobsfile): return None pod = read_pod(self.jobsfile) return [JobSpec.from_pod(jp) for jp in pod['jobs']] def move_failed(self, job_output): name = os.path.basename(job_output.basepath) attempt = job_output.retry + 1 failed_name = '{}-attempt{:02}'.format(name, attempt) failed_path = os.path.join(self.failed_dir, failed_name) if os.path.exists(failed_path): raise ValueError('Path {} already exists'.format(failed_path)) shutil.move(job_output.basepath, failed_path) job_output.basepath = failed_path class JobOutput(Output): kind = 'job' def __init__(self, path, id, label, iteration, retry): super(JobOutput, self).__init__(path) self.id = id self.label = label self.iteration = iteration self.retry = retry self.result = None self.reload() class Result(object): @staticmethod def from_pod(pod): instance = Result() instance.status = Status(pod['status']) instance.metrics = [Metric.from_pod(m) for m in pod['metrics']] instance.artifacts = [Artifact.from_pod(a) for a in pod['artifacts']] instance.events = [Event.from_pod(e) for e in pod['events']] return instance def __init__(self): self.status = Status.NEW self.metrics = [] self.artifacts = [] self.events = [] def add_metric(self, name, value, units=None, lower_is_better=False, classifiers=None): metric = Metric(name, value, units, lower_is_better, classifiers) logger.debug('Adding metric: {}'.format(metric)) self.metrics.append(metric) def add_artifact(self, name, path, kind, description=None, classifiers=None): artifact = Artifact(name, path, kind, description=description, classifiers=classifiers) logger.debug('Adding artifact: {}'.format(artifact)) self.artifacts.append(artifact) def add_event(self, message): self.events.append(Event(message)) def get_metric(self, name): for metric in self.metrics: if metric.name == name: return metric return None def get_artifact(self, name): for artifact in self.artifacts: if artifact.name == name: return artifact raise HostError('Artifact "{}" not found'.format(name)) def to_pod(self): return dict( status=str(self.status), metrics=[m.to_pod() for m in self.metrics], artifacts=[a.to_pod() for a in self.artifacts], events=[e.to_pod() for e in self.events], ) ArtifactType = enum(['log', 'meta', 'data', 'export', 'raw']) class Artifact(object): """ This is an artifact generated during execution/post-processing of a workload. Unlike metrics, this represents an actual artifact, such as a file, generated. This may be "result", such as trace, or it could be "meta data" such as logs. These are distinguished using the ``kind`` attribute, which also helps WA decide how it should be handled. Currently supported kinds are: :log: A log file. Not part of "results" as such but contains information about the run/workload execution that be useful for diagnostics/meta analysis. :meta: A file containing metadata. This is not part of "results", but contains information that may be necessary to reproduce the results (contrast with ``log`` artifacts which are *not* necessary). :data: This file contains new data, not available otherwise and should be considered part of the "results" generated by WA. Most traces would fall into this category. :export: Exported version of results or some other artifact. This signifies that this artifact does not contain any new data that is not available elsewhere and that it may be safely discarded without losing information. :raw: Signifies that this is a raw dump/log that is normally processed to extract useful information and is then discarded. In a sense, it is the opposite of ``export``, but in general may also be discarded. .. note:: whether a file is marked as ``log``/``data`` or ``raw`` depends on how important it is to preserve this file, e.g. when archiving, vs how much space it takes up. Unlike ``export`` artifacts which are (almost) always ignored by other exporters as that would never result in data loss, ``raw`` files *may* be processed by exporters if they decided that the risk of losing potentially (though unlikely) useful data is greater than the time/space cost of handling the artifact (e.g. a database uploader may choose to ignore ``raw`` artifacts, where as a network filer archiver may choose to archive them). .. note: The kind parameter is intended to represent the logical function of a particular artifact, not it's intended means of processing -- this is left entirely up to the result processors. """ @staticmethod def from_pod(pod): pod['kind'] = ArtifactType(pod['kind']) return Artifact(**pod) def __init__(self, name, path, kind, description=None, classifiers=None): """" :param name: Name that uniquely identifies this artifact. :param path: The *relative* path of the artifact. Depending on the ``level`` must be either relative to the run or iteration output directory. Note: this path *must* be delimited using ``/`` irrespective of the operating system. :param kind: The type of the artifact this is (e.g. log file, result, etc.) this will be used a hit to result processors. This must be one of ``'log'``, ``'meta'``, ``'data'``, ``'export'``, ``'raw'``. :param description: A free-form description of what this artifact is. :param classifiers: A set of key-value pairs to further classify this metric beyond current iteration (e.g. this can be used to identify sub-tests). """ self.name = name self.path = path.replace('/', os.sep) if path is not None else path try: self.kind = ArtifactType(kind) except ValueError: msg = 'Invalid Artifact kind: {}; must be in {}' raise ValueError(msg.format(kind, self.valid_kinds)) self.description = description self.classifiers = classifiers or {} def to_pod(self): pod = copy(self.__dict__) pod['kind'] = str(self.kind) return pod def __str__(self): return self.path def __repr__(self): return '{} ({}): {}'.format(self.name, self.kind, self.path) class Metric(object): """ This is a single metric collected from executing a workload. :param name: the name of the metric. Uniquely identifies the metric within the results. :param value: The numerical value of the metric for this execution of a workload. This can be either an int or a float. :param units: Units for the collected value. Can be None if the value has no units (e.g. it's a count or a standardised score). :param lower_is_better: Boolean flag indicating where lower values are better than higher ones. Defaults to False. :param classifiers: A set of key-value pairs to further classify this metric beyond current iteration (e.g. this can be used to identify sub-tests). """ __slots__ = ['name', 'value', 'units', 'lower_is_better', 'classifiers'] @staticmethod def from_pod(pod): return Metric(**pod) def __init__(self, name, value, units=None, lower_is_better=False, classifiers=None): self.name = name self.value = numeric(value) self.units = units self.lower_is_better = lower_is_better self.classifiers = classifiers or {} def to_pod(self): return dict( name=self.name, value=self.value, units=self.units, lower_is_better=self.lower_is_better, classifiers=self.classifiers, ) def __str__(self): result = '{}: {}'.format(self.name, self.value) if self.units: result += ' ' + self.units result += ' ({})'.format('-' if self.lower_is_better else '+') return result def __repr__(self): text = self.__str__() if self.classifiers: return '<{} {}>'.format(text, self.classifiers) else: return '<{}>'.format(text) class Event(object): """ An event that occured during a run. """ __slots__ = ['timestamp', 'message'] @staticmethod def from_pod(pod): instance = Event(pod['message']) instance.timestamp = pod['timestamp'] return instance @property def summary(self): lines = self.message.split('\n') result = lines[0] if len(lines) > 1: result += '[...]' return result def __init__(self, message): self.timestamp = datetime.utcnow() self.message = message def to_pod(self): return dict( timestamp=self.timestamp, message=self.message, ) def __str__(self): return '[{}] {}'.format(self.timestamp, self.message) __repr__ = __str__ def init_run_output(path, wa_state, force=False): if os.path.exists(path): if force: logger.info('Removing existing output directory.') shutil.rmtree(os.path.abspath(path)) else: raise RuntimeError('path exists: {}'.format(path)) logger.info('Creating output directory.') os.makedirs(path) meta_dir = os.path.join(path, '__meta') os.makedirs(meta_dir) _save_raw_config(meta_dir, wa_state) touch(os.path.join(path, 'run.log')) info = RunInfo( run_name=wa_state.run_config.run_name, project=wa_state.run_config.project, project_stage=wa_state.run_config.project_stage, ) write_pod(info.to_pod(), os.path.join(meta_dir, 'run_info.json')) write_pod(RunState().to_pod(), os.path.join(path, '.run_state.json')) write_pod(Result().to_pod(), os.path.join(path, 'result.json')) return RunOutput(path) def init_job_output(run_output, job): output_name = '{}-{}-{}'.format(job.id, job.spec.label, job.iteration) path = os.path.join(run_output.basepath, output_name) ensure_directory_exists(path) write_pod(Result().to_pod(), os.path.join(path, 'result.json')) job_output = JobOutput(path, job.id, job.label, job.iteration, job.retries) job_output.status = job.status run_output.jobs.append(job_output) return job_output def _save_raw_config(meta_dir, state): raw_config_dir = os.path.join(meta_dir, 'raw_config') os.makedirs(raw_config_dir) for i, source in enumerate(state.loaded_config_sources): if not os.path.isfile(source): continue basename = os.path.basename(source) dest_path = os.path.join(raw_config_dir, 'cfg{}-{}'.format(i, basename)) shutil.copy(source, dest_path)