# Copyright 2014-2015 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from copy import copy from collections import OrderedDict import logging import shutil from glob import glob from itertools import chain from wlauto.exceptions import ConfigError from wlauto.utils.misc import merge_dicts, merge_lists, load_struct_from_file from wlauto.utils.types import regex_type, identifier, integer, boolean, list_of_strings from wlauto.core import pluginloader from wlauto.utils.serializer import json, WAJSONEncoder from wlauto.exceptions import ConfigError from wlauto.utils.misc import isiterable, get_article from wlauto.utils.serializer import read_pod, yaml class ConfigurationPoint(object): """ This defines a gneric configuration point for workload automation. This is used to handle global settings, plugin parameters, etc. """ # Mapping for kind conversion; see docs for convert_types below kind_map = { int: integer, bool: boolean, } def __init__(self, name, kind=None, mandatory=None, default=None, override=False, allowed_values=None, description=None, constraint=None, merge=False, aliases=None, convert_types=True): """ Create a new Parameter object. :param name: The name of the parameter. This will become an instance member of the plugin object to which the parameter is applied, so it must be a valid python identifier. This is the only mandatory parameter. :param kind: The type of parameter this is. This must be a callable that takes an arbitrary object and converts it to the expected type, or raised ``ValueError`` if such conversion is not possible. Most Python standard types -- ``str``, ``int``, ``bool``, etc. -- can be used here. This defaults to ``str`` if not specified. :param mandatory: If set to ``True``, then a non-``None`` value for this parameter *must* be provided on plugin object construction, otherwise ``ConfigError`` will be raised. :param default: The default value for this parameter. If no value is specified on plugin construction, this value will be used instead. (Note: if this is specified and is not ``None``, then ``mandatory`` parameter will be ignored). :param override: A ``bool`` that specifies whether a parameter of the same name further up the hierarchy should be overridden. If this is ``False`` (the default), an exception will be raised by the ``AttributeCollection`` instead. :param allowed_values: This should be the complete list of allowed values for this parameter. Note: ``None`` value will always be allowed, even if it is not in this list. If you want to disallow ``None``, set ``mandatory`` to ``True``. :param constraint: If specified, this must be a callable that takes the parameter value as an argument and return a boolean indicating whether the constraint has been satisfied. Alternatively, can be a two-tuple with said callable as the first element and a string describing the constraint as the second. :param merge: The default behaviour when setting a value on an object that already has that attribute is to overrided with the new value. If this is set to ``True`` then the two values will be merged instead. The rules by which the values are merged will be determined by the types of the existing and new values -- see ``merge_config_values`` documentation for details. :param aliases: Alternative names for the same configuration point. These are largely for backwards compatibility. :param convert_types: If ``True`` (the default), will automatically convert ``kind`` values from native Python types to WA equivalents. This allows more ituitive interprestation of parameter values, e.g. the string ``"false"`` being interpreted as ``False`` when specifed as the value for a boolean Parameter. """ self.name = identifier(name) if kind is not None and not callable(kind): raise ValueError('Kind must be callable.') if convert_types and kind in self.kind_map: kind = self.kind_map[kind] self.kind = kind self.mandatory = mandatory self.default = default self.override = override self.allowed_values = allowed_values self.description = description if self.kind is None and not self.override: self.kind = str if constraint is not None and not callable(constraint) and not isinstance(constraint, tuple): raise ValueError('Constraint must be callable or a (callable, str) tuple.') self.constraint = constraint self.merge = merge self.aliases = aliases or [] def match(self, name): if name == self.name: return True elif name in self.aliases: return True return False def set_value(self, obj, value=None): if value is None: if self.default is not None: value = self.default elif self.mandatory: msg = 'No values specified for mandatory parameter {} in {}' raise ConfigError(msg.format(self.name, obj.name)) else: try: value = self.kind(value) except (ValueError, TypeError): typename = self.get_type_name() msg = 'Bad value "{}" for {}; must be {} {}' article = get_article(typename) raise ConfigError(msg.format(value, self.name, article, typename)) if self.merge and hasattr(obj, self.name): value = merge_config_values(getattr(obj, self.name), value) setattr(obj, self.name, value) def validate(self, obj): value = getattr(obj, self.name, None) if value is not None: if self.allowed_values: self._validate_allowed_values(obj, value) if self.constraint: self._validate_constraint(obj, value) else: if self.mandatory: msg = 'No value specified for mandatory parameter {} in {}.' raise ConfigError(msg.format(self.name, obj.name)) def get_type_name(self): typename = str(self.kind) if '\'' in typename: typename = typename.split('\'')[1] elif typename.startswith(' plugin_config. """ def __init__(self, loader=pluginloader): self.loader = loader self.config = {} def update(self, name, config): if not hasattr(config, 'get'): raise ValueError('config must be a dict-like object got: {}'.format(config)) name, alias_config = self.loader.resolve_alias(name) existing_config = self.config.get(name) if existing_config is None: existing_config = alias_config new_config = config or {} self.config[name] = merge_config_values(existing_config, new_config) def merge_config_values(base, other): """ This is used to merge two objects, typically when setting the value of a ``ConfigurationPoint``. First, both objects are categorized into c: A scalar value. Basically, most objects. These values are treated as atomic, and not mergeable. s: A sequence. Anything iterable that is not a dict or a string (strings are considered scalars). m: A key-value mapping. ``dict`` and it's derivatives. n: ``None``. o: A mergeable object; this is an object that implements both ``merge_with`` and ``merge_into`` methods. The merge rules based on the two categories are then as follows: (c1, c2) --> c2 (s1, s2) --> s1 . s2 (m1, m2) --> m1 . m2 (c, s) --> [c] . s (s, c) --> s . [c] (s, m) --> s . [m] (m, s) --> [m] . s (m, c) --> ERROR (c, m) --> ERROR (o, X) --> o.merge_with(X) (X, o) --> o.merge_into(X) (X, n) --> X (n, X) --> X where: '.' means concatenation (for maps, contcationation of (k, v) streams then converted back into a map). If the types of the two objects differ, the type of ``other`` is used for the result. 'X' means "any category" '[]' used to indicate a literal sequence (not necessarily a ``list``). when this is concatenated with an actual sequence, that sequencies type is used. notes: - When a mapping is combined with a sequence, that mapping is treated as a scalar value. - When combining two mergeable objects, they're combined using ``o1.merge_with(o2)`` (_not_ using o2.merge_into(o1)). - Combining anything with ``None`` yields that value, irrespective of the order. So a ``None`` value is eqivalent to the corresponding item being omitted. - When both values are scalars, merging is equivalent to overwriting. - There is no recursion (e.g. if map values are lists, they will not be merged; ``other`` will overwrite ``base`` values). If complicated merging semantics (such as recursion) are required, they should be implemented within custom mergeable types (i.e. those that implement ``merge_with`` and ``merge_into``). While this can be used as a generic "combine any two arbitry objects" function, the semantics have been selected specifically for merging configuration point values. """ cat_base = categorize(base) cat_other = categorize(other) if cat_base == 'n': return other elif cat_other == 'n': return base if cat_base == 'o': return base.merge_with(other) elif cat_other == 'o': return other.merge_into(base) if cat_base == 'm': if cat_other == 's': return merge_sequencies([base], other) elif cat_other == 'm': return merge_maps(base, other) else: message = 'merge error ({}, {}): "{}" and "{}"' raise ValueError(message.format(cat_base, cat_other, base, other)) elif cat_base == 's': if cat_other == 's': return merge_sequencies(base, other) else: return merge_sequencies(base, [other]) else: # cat_base == 'c' if cat_other == 's': return merge_sequencies([base], other) elif cat_other == 'm': message = 'merge error ({}, {}): "{}" and "{}"' raise ValueError(message.format(cat_base, cat_other, base, other)) else: return other def merge_sequencies(s1, s2): return type(s2)(chain(s1, s2)) def merge_maps(m1, m2): return type(m2)(chain(m1.iteritems(), m2.iteritems())) def categorize(v): if hasattr(v, 'merge_with') and hasattr(v, 'merge_into'): return 'o' elif hasattr(v, 'iteritems'): return 'm' elif isiterable(v): return 's' elif v is None: return 'n' else: return 'c' settings = WAConfiguration() class SharedConfiguration(object): def __init__(self): self.number_of_iterations = None self.workload_name = None self.label = None self.boot_parameters = OrderedDict() self.runtime_parameters = OrderedDict() self.workload_parameters = OrderedDict() self.instrumentation = [] class WorkloadRunSpec(object): """ Specifies execution of a workload, including things like the number of iterations, device runtime_parameters configuration, etc. """ # These should be handled by the framework if not explicitly specified # so it's a programming error if they're not framework_mandatory_parameters = ['id', 'number_of_iterations'] # These *must* be specified by the user (through one mechanism or another) # and it is a configuration error if they're not. mandatory_parameters = ['workload_name'] def __init__(self, id=None, # pylint: disable=W0622 number_of_iterations=None, workload_name=None, boot_parameters=None, label=None, section_id=None, workload_parameters=None, runtime_parameters=None, instrumentation=None, flash=None, classifiers=None, ): # pylint: disable=W0622 self.id = id self.number_of_iterations = number_of_iterations self.workload_name = workload_name self.label = label or self.workload_name self.section_id = section_id self.boot_parameters = boot_parameters or OrderedDict() self.runtime_parameters = runtime_parameters or OrderedDict() self.workload_parameters = workload_parameters or OrderedDict() self.instrumentation = instrumentation or [] self.flash = flash or OrderedDict() self.classifiers = classifiers or OrderedDict() self._workload = None self._section = None self.enabled = True def set(self, param, value): if param in ['id', 'section_id', 'number_of_iterations', 'workload_name', 'label']: if value is not None: setattr(self, param, value) elif param in ['boot_parameters', 'runtime_parameters', 'workload_parameters', 'flash', 'classifiers']: setattr(self, param, merge_dicts(getattr(self, param), value, list_duplicates='last', dict_type=OrderedDict, should_normalize=False)) elif param in ['instrumentation']: setattr(self, param, merge_lists(getattr(self, param), value, duplicates='last')) else: raise ValueError('Unexpected workload spec parameter: {}'.format(param)) def validate(self): for param_name in self.framework_mandatory_parameters: param = getattr(self, param_name) if param is None: msg = '{} not set for workload spec.' raise RuntimeError(msg.format(param_name)) for param_name in self.mandatory_parameters: param = getattr(self, param_name) if param is None: msg = '{} not set for workload spec for workload {}' raise ConfigError(msg.format(param_name, self.id)) def match_selectors(self, selectors): """ Returns ``True`` if this spec matches the specified selectors, and ``False`` otherwise. ``selectors`` must be a dict-like object with attribute names mapping onto selector values. At the moment, only equality selection is supported; i.e. the value of the attribute of the spec must match exactly the corresponding value specified in the ``selectors`` dict. """ if not selectors: return True for k, v in selectors.iteritems(): if getattr(self, k, None) != v: return False return True @property def workload(self): if self._workload is None: raise RuntimeError("Workload for {} has not been loaded".format(self)) return self._workload @property def secition(self): if self.section_id and self._section is None: raise RuntimeError("Section for {} has not been loaded".format(self)) return self._section def load(self, device, ext_loader): """Loads the workload for the specified device using the specified loader. This must be done before attempting to execute the spec.""" self._workload = ext_loader.get_workload(self.workload_name, device, **self.workload_parameters) def to_pod(self): d = copy(self.__dict__) del d['_workload'] del d['_section'] return d @staticmethod def from_pod(pod): instance = WorkloadRunSpec(id=pod['id'], # pylint: disable=W0622 number_of_iterations=pod['number_of_iterations'], workload_name=pod['workload_name'], boot_parameters=pod['boot_parameters'], label=pod['label'], section_id=pod['section_id'], workload_parameters=pod['workload_parameters'], runtime_parameters=pod['runtime_parameters'], instrumentation=pod['instrumentation'], flash=pod['flash'], classifiers=pod['classifiers'], ) return instance def copy(self): other = WorkloadRunSpec() other.id = self.id other.number_of_iterations = self.number_of_iterations other.workload_name = self.workload_name other.label = self.label other.section_id = self.section_id other.boot_parameters = copy(self.boot_parameters) other.runtime_parameters = copy(self.runtime_parameters) other.workload_parameters = copy(self.workload_parameters) other.instrumentation = copy(self.instrumentation) other.flash = copy(self.flash) other.classifiers = copy(self.classifiers) other._section = self._section # pylint: disable=protected-access other.enabled = self.enabled return other def __str__(self): return '{} {}'.format(self.id, self.label) def __cmp__(self, other): if not isinstance(other, WorkloadRunSpec): return cmp('WorkloadRunSpec', other.__class__.__name__) return cmp(self.id, other.id) class _SpecConfig(object): # TODO: This is a bit of HACK for alias resolution. This formats Alias # params as if they came from config. def __init__(self, name, params=None): setattr(self, name, params or {}) class RebootPolicy(object): """ Represents the reboot policy for the execution -- at what points the device should be rebooted. This, in turn, is controlled by the policy value that is passed in on construction and would typically be read from the user's settings. Valid policy values are: :never: The device will never be rebooted. :as_needed: Only reboot the device if it becomes unresponsive, or needs to be flashed, etc. :initial: The device will be rebooted when the execution first starts, just before executing the first workload spec. :each_spec: The device will be rebooted before running a new workload spec. :each_iteration: The device will be rebooted before each new iteration. """ valid_policies = ['never', 'as_needed', 'initial', 'each_spec', 'each_iteration'] def __init__(self, policy): policy = policy.strip().lower().replace(' ', '_') if policy not in self.valid_policies: message = 'Invalid reboot policy {}; must be one of {}'.format(policy, ', '.join(self.valid_policies)) raise ConfigError(message) self.policy = policy @property def can_reboot(self): return self.policy != 'never' @property def perform_initial_boot(self): return self.policy not in ['never', 'as_needed'] @property def reboot_on_each_spec(self): return self.policy in ['each_spec', 'each_iteration'] @property def reboot_on_each_iteration(self): return self.policy == 'each_iteration' def __str__(self): return self.policy __repr__ = __str__ def __cmp__(self, other): if isinstance(other, RebootPolicy): return cmp(self.policy, other.policy) else: return cmp(self.policy, other) def to_pod(self): return self.policy @staticmethod def from_pod(pod): return RebootPolicy(pod) class RunConfigurationItem(object): """ This represents a predetermined "configuration point" (an individual setting) and describes how it must be handled when encountered. """ # Also defines the NULL value for each category valid_categories = { 'scalar': None, 'list': [], 'dict': {}, } # A callable that takes an arbitrary number of positional arguments # is also valid. valid_methods = ['keep', 'replace', 'merge'] def __init__(self, name, category, method): if category not in self.valid_categories: raise ValueError('Invalid category: {}'.format(category)) if not callable(method) and method not in self.valid_methods: raise ValueError('Invalid method: {}'.format(method)) if category == 'scalar' and method == 'merge': raise ValueError('Method cannot be "merge" for a scalar') self.name = name self.category = category self.method = method def combine(self, *args): """ Combine the provided values according to the method for this configuration item. Order matters -- values are assumed to be in the order they were specified by the user. The resulting value is also checked to patch the specified type. """ args = [a for a in args if a is not None] if not args: return self.valid_categories[self.category] if self.method == 'keep' or len(args) == 1: value = args[0] elif self.method == 'replace': value = args[-1] elif self.method == 'merge': if self.category == 'list': value = merge_lists(*args, duplicates='last', dict_type=OrderedDict) elif self.category == 'dict': value = merge_dicts(*args, should_merge_lists=True, should_normalize=False, list_duplicates='last', dict_type=OrderedDict) else: raise ValueError('Unexpected category for merge : "{}"'.format(self.category)) elif callable(self.method): value = self.method(*args) else: raise ValueError('Unexpected method: "{}"'.format(self.method)) return value def __str__(self): return "RCI(name: {}, category: {}, method: {})".format(self.name, self.category, self.method) __repr__ = __str__ def _combine_ids(*args): return '_'.join(args) class status_list(list): def append(self, item): list.append(self, str(item).upper()) class RunConfiguration(object): """ Loads and maintains the unified configuration for this run. This includes configuration for WA execution as a whole, and parameters for specific specs. WA configuration mechanism aims to be flexible and easy to use, while at the same time providing storing validation and early failure on error. To meet these requirements, the implementation gets rather complicated. This is going to be a quick overview of the underlying mechanics. .. note:: You don't need to know this to use WA, or to write plugins for it. From the point of view of plugin writers, configuration from various sources "magically" appears as attributes of their classes. This explanation peels back the curtain and is intended for those who, for one reason or another, need to understand how the magic works. **terminology** run A single execution of a WA agenda. run config(uration) (object) An instance of this class. There is one per run. config(uration) item A single configuration entry or "setting", e.g. the device interface to use. These can be for the run as a whole, or for a specific plugin. (workload) spec A specification of a single workload execution. This combines workload configuration with things like the number of iterations to run, which instruments to enable, etc. More concretely, this is an instance of :class:`WorkloadRunSpec`. **overview** There are three types of WA configuration: 1. "Meta" configuration that determines how the rest of the configuration is processed (e.g. where plugins get loaded from). Since this does not pertain to *run* configuration, it will not be covered further. 2. Global run configuration, e.g. which workloads, result processors and instruments will be enabled for a run. 3. Per-workload specification configuration, that determines how a particular workload instance will get executed (e.g. what workload parameters will be used, how many iterations. **run configuration** Run configuration may appear in a config file (usually ``~/.workload_automation/config.py``), or in the ``config`` section of an agenda. Configuration is specified as a nested structure of dictionaries (associative arrays, or maps) and lists in the syntax following the format implied by the file plugin (currently, YAML and Python are supported). If the same configuration item appears in more than one source, they are merged with conflicting entries taking the value from the last source that specified them. In addition to a fixed set of global configuration items, configuration for any WA Plugin (instrument, result processor, etc) may also be specified, namespaced under the plugin's name (i.e. the plugins name is a key in the global config with value being a dict of parameters and their values). Some Plugin parameters also specify a "global alias" that may appear at the top-level of the config rather than under the Plugin's name. It is *not* an error to specify configuration for an Plugin that has not been enabled for a particular run; such configuration will be ignored. **per-workload configuration** Per-workload configuration can be specified in three places in the agenda: the workload entry in the ``workloads`` list, the ``global`` entry (configuration there will be applied to every workload entry), and in a section entry in ``sections`` list ( configuration in every section will be applied to every workload entry separately, creating a "cross-product" of section and workload configurations; additionally, sections may specify their own workload lists). If they same configuration item appears in more than one of the above places, they will be merged in the following order: ``global``, ``section``, ``workload``, with conflicting scalar values in the later overriding those from previous locations. **Global parameter aliases** As mentioned above, an Plugin's parameter may define a global alias, which will be specified and picked up from the top-level config, rather than config for that specific plugin. It is an error to specify the value for a parameter both through a global alias and through plugin config dict in the same configuration file. It is, however, possible to use a global alias in one file, and specify plugin configuration for the same parameter in another file, in which case, the usual merging rules would apply. **Loading and validation of configuration** Validation of user-specified configuration happens at several stages of run initialisation, to ensure that appropriate context for that particular type of validation is available and that meaningful errors can be reported, as early as is feasible. - Syntactic validation is performed when configuration is first loaded. This is done by the loading mechanism (e.g. YAML parser), rather than WA itself. WA propagates any errors encountered as ``ConfigError``\ s. - Once a config file is loaded into a Python structure, it scanned to extract settings. Static configuration is validated and added to the config. Plugin configuration is collected into a collection of "raw" config, and merged as appropriate, but is not processed further at this stage. - Once all configuration sources have been processed, the configuration as a whole is validated (to make sure there are no missing settings, etc). - Plugins are loaded through the run config object, which instantiates them with appropriate parameters based on the "raw" config collected earlier. When an Plugin is instantiated in such a way, its config is "officially" added to run configuration tracked by the run config object. Raw config is discarded at the end of the run, so that any config that wasn't loaded in this way is not recoded (as it was not actually used). - Plugin parameters a validated individually (for type, value ranges, etc) as they are loaded in the Plugin's __init__. - An plugin's ``validate()`` method is invoked before it is used (exactly when this happens depends on the plugin's type) to perform any final validation *that does not rely on the target being present* (i.e. this would happen before WA connects to the target). This can be used perform inter-parameter validation for an plugin (e.g. when valid range for one parameter depends on another), and more general WA state assumptions (e.g. a result processor can check that an instrument it depends on has been installed). - Finally, it is the responsibility of individual plugins to validate any assumptions they make about the target device (usually as part of their ``setup()``). **Handling of Plugin aliases.** WA plugins can have zero or more aliases (not to be confused with global aliases for plugin *parameters*). An plugin allows associating an alternative name for the plugin with a set of parameter values. In other words aliases associate common configurations for an plugin with a name, providing a shorthand for it. For example, "t-rex_offscreen" is an alias for "glbenchmark" workload that specifies that "use_case" should be "t-rex" and "variant" should be "offscreen". **special loading rules** Note that as a consequence of being able to specify configuration for *any* Plugin namespaced under the Plugin's name in the top-level config, two distinct mechanisms exist form configuring devices and workloads. This is valid, however due to their nature, they are handled in a special way. This may be counter intuitive, so configuration of devices and workloads creating entries for their names in the config is discouraged in favour of using the "normal" mechanisms of configuring them (``device_config`` for devices and workload specs in the agenda for workloads). In both cases (devices and workloads), "normal" config will always override named plugin config *irrespective of which file it was specified in*. So a ``adb_name`` name specified in ``device_config`` inside ``~/.workload_automation/config.py`` will override ``adb_name`` specified for ``juno`` in the agenda (even when device is set to "juno"). Again, this ignores normal loading rules, so the use of named plugin configuration for devices and workloads is discouraged. There maybe some situations where this behaviour is useful however (e.g. maintaining configuration for different devices in one config file). """ default_reboot_policy = 'as_needed' default_execution_order = 'by_iteration' # This is generic top-level configuration. general_config = [ RunConfigurationItem('run_name', 'scalar', 'replace'), RunConfigurationItem('output_directory', 'scalar', 'replace'), RunConfigurationItem('meta_directory', 'scalar', 'replace'), RunConfigurationItem('project', 'scalar', 'replace'), RunConfigurationItem('project_stage', 'dict', 'replace'), RunConfigurationItem('execution_order', 'scalar', 'replace'), RunConfigurationItem('reboot_policy', 'scalar', 'replace'), RunConfigurationItem('device', 'scalar', 'replace'), RunConfigurationItem('flashing_config', 'dict', 'replace'), RunConfigurationItem('retry_on_status', 'list', 'replace'), RunConfigurationItem('max_retries', 'scalar', 'replace'), ] # Configuration specified for each workload spec. "workload_parameters" # aren't listed because they are handled separately. workload_config = [ RunConfigurationItem('id', 'scalar', _combine_ids), RunConfigurationItem('number_of_iterations', 'scalar', 'replace'), RunConfigurationItem('workload_name', 'scalar', 'replace'), RunConfigurationItem('label', 'scalar', 'replace'), RunConfigurationItem('section_id', 'scalar', 'replace'), RunConfigurationItem('boot_parameters', 'dict', 'merge'), RunConfigurationItem('runtime_parameters', 'dict', 'merge'), RunConfigurationItem('instrumentation', 'list', 'merge'), RunConfigurationItem('flash', 'dict', 'merge'), RunConfigurationItem('classifiers', 'dict', 'merge'), ] # List of names that may be present in configuration (and it is valid for # them to be there) but are not handled buy RunConfiguration. ignore_names = WA_CONFIGURATION.keys() def get_reboot_policy(self): if not self._reboot_policy: self._reboot_policy = RebootPolicy(self.default_reboot_policy) return self._reboot_policy def set_reboot_policy(self, value): if isinstance(value, RebootPolicy): self._reboot_policy = value else: self._reboot_policy = RebootPolicy(value) reboot_policy = property(get_reboot_policy, set_reboot_policy) @property def meta_directory(self): path = os.path.join(self.output_directory, "__meta") if not os.path.exists(path): os.makedirs(os.path.abspath(path)) return path @property def log_file(self): path = os.path.join(self.output_directory, "run.log") return os.path.abspath(path) @property def all_instrumentation(self): result = set() for spec in self.workload_specs: result = result.union(set(spec.instrumentation)) return result def __init__(self, ext_loader=pluginloader): self.ext_loader = ext_loader self.device = None self.device_config = None self.execution_order = None self.project = None self.project_stage = None self.run_name = None self.output_directory = settings.default_output_directory self.instrumentation = {} self.result_processors = {} self.workload_specs = [] self.flashing_config = {} self.other_config = {} # keeps track of used config for plugins other than of the four main kinds. self.retry_on_status = status_list(['FAILED', 'PARTIAL']) self.max_retries = 3 self._used_config_items = [] self._global_instrumentation = [] self._reboot_policy = None self.agenda = None self._finalized = False self._general_config_map = {i.name: i for i in self.general_config} self._workload_config_map = {i.name: i for i in self.workload_config} # Config files may contains static configuration for plugins that # would not be part of this of this run (e.g. DB connection settings # for a result processor that has not been enabled). Such settings # should not be part of configuration for this run (as they will not # be affecting it), but we still need to keep track it in case a later # config (e.g. from the agenda) enables the plugin. # For this reason, all plugin config is first loaded into the # following dict and when an plugin is identified as need for the # run, its config is picked up from this "raw" dict and it becomes part # of the run configuration. self._raw_config = {'instrumentation': [], 'result_processors': []} def get_plugin(self, name=None, kind=None, *args, **kwargs): self._check_finalized() self._load_default_config_if_necessary(name) ext_config = self._raw_config[name] ext_cls = self.ext_loader.get_plugin_class(name) if ext_cls.kind not in ['workload', 'device', 'instrument', 'result_processor']: self.other_config[name] = ext_config ext_config.update(kwargs) return self.ext_loader.get_plugin(name=name, *args, **ext_config) def to_dict(self): d = copy(self.__dict__) to_remove = ['ext_loader', 'workload_specs'] + [k for k in d.keys() if k.startswith('_')] for attr in to_remove: del d[attr] d['workload_specs'] = [s.to_dict() for s in self.workload_specs] d['reboot_policy'] = self.reboot_policy # this is a property so not in __dict__ return d def load_config(self, source): """Load configuration from the specified source. The source must be either a path to a valid config file or a dict-like object. Currently, config files can be either python modules (.py plugin) or YAML documents (.yaml plugin).""" if self._finalized: raise ValueError('Attempting to load a config file after run configuration has been finalized.') try: config_struct = _load_raw_struct(source) self._merge_config(config_struct) except ConfigError as e: message = 'Error in {}:\n\t{}' raise ConfigError(message.format(getattr(source, 'name', None), e.message)) def set_agenda(self, agenda, selectors=None): """Set the agenda for this run; Unlike with config files, there can only be one agenda.""" if self.agenda: # note: this also guards against loading an agenda after finalized() has been called, # as that would have required an agenda to be set. message = 'Attempting to set a second agenda {};\n\talready have agenda {} set' raise ValueError(message.format(agenda.filepath, self.agenda.filepath)) try: self._merge_config(agenda.config or {}) self._load_specs_from_agenda(agenda, selectors) self.agenda = agenda except ConfigError as e: message = 'Error in {}:\n\t{}' raise ConfigError(message.format(agenda.filepath, e.message)) def finalize(self): """This must be invoked once all configuration sources have been loaded. This will do the final processing, setting instrumentation and result processor configuration for the run And making sure that all the mandatory config has been specified.""" if self._finalized: return if not self.agenda: raise ValueError('Attempting to finalize run configuration before an agenda is loaded.') self._finalize_config_list('instrumentation') self._finalize_config_list('result_processors') if not self.device: raise ConfigError('Device not specified in the config.') self._finalize_device_config() if not self.reboot_policy.reboot_on_each_spec: for spec in self.workload_specs: if spec.boot_parameters: message = 'spec {} specifies boot_parameters; reboot policy must be at least "each_spec"' raise ConfigError(message.format(spec.id)) for spec in self.workload_specs: for globinst in self._global_instrumentation: if globinst not in spec.instrumentation: spec.instrumentation.append(globinst) spec.validate() self._finalized = True def _merge_config(self, config): """ Merge the settings specified by the ``config`` dict-like object into current configuration. """ if not isinstance(config, dict): raise ValueError('config must be a dict; found {}'.format(config.__class__.__name__)) for k, v in config.iteritems(): k = identifier(k) if k in self.ext_loader.global_param_aliases: self._resolve_global_alias(k, v) elif k in self._general_config_map: self._set_run_config_item(k, v) elif self.ext_loader.has_plugin(k): self._set_plugin_config(k, v) elif k == 'device_config': self._set_raw_dict(k, v) elif k in ['instrumentation', 'result_processors']: # Instrumentation can be enabled and disabled by individual # workloads, so we need to track it in two places: a list of # all instruments for the run (as they will all need to be # initialized and installed, and a list of only the "global" # instruments which can then be merged into instrumentation # lists of individual workload specs. self._set_raw_list('_global_{}'.format(k), v) self._set_raw_list(k, v) elif k in self.ignore_names: pass else: raise ConfigError('Unknown configuration option: {}'.format(k)) def _resolve_global_alias(self, name, value): ga = self.ext_loader.global_param_aliases[name] for param, ext in ga.iteritems(): for name in [ext.name] + [a.name for a in ext.aliases]: self._load_default_config_if_necessary(name) self._raw_config[identifier(name)][param.name] = value def _set_run_config_item(self, name, value): item = self._general_config_map[name] combined_value = item.combine(getattr(self, name, None), value) setattr(self, name, combined_value) def _set_plugin_config(self, name, value): default_config = self.ext_loader.get_default_config(name) self._set_raw_dict(name, value, default_config) def _set_raw_dict(self, name, value, default_config=None): existing_config = self._raw_config.get(name, default_config or {}) new_config = _merge_config_dicts(existing_config, value) self._raw_config[identifier(name)] = new_config def _set_raw_list(self, name, value): old_value = self._raw_config.get(name, []) new_value = merge_lists(old_value, value, duplicates='last') self._raw_config[identifier(name)] = new_value def _finalize_config_list(self, attr_name): """Note: the name is somewhat misleading. This finalizes a list form the specified configuration (e.g. "instrumentation"); internal representation is actually a dict, not a list...""" ext_config = {} raw_list = self._raw_config.get(attr_name, []) for extname in raw_list: default_config = self.ext_loader.get_default_config(extname) ext_config[extname] = self._raw_config.get(identifier(extname), default_config) list_name = '_global_{}'.format(attr_name) global_list = self._raw_config.get(list_name, []) setattr(self, list_name, global_list) setattr(self, attr_name, ext_config) def _finalize_device_config(self): self._load_default_config_if_necessary(self.device) config = _merge_config_dicts(self._raw_config.get(self.device, {}), self._raw_config.get('device_config', {}), list_duplicates='all') self.device_config = config def _load_default_config_if_necessary(self, name): name = identifier(name) if name not in self._raw_config: self._raw_config[name] = self.ext_loader.get_default_config(name) def _load_specs_from_agenda(self, agenda, selectors): global_dict = agenda.global_.to_dict() if agenda.global_ else {} if agenda.sections: for section_entry in agenda.sections: section_dict = section_entry.to_dict() for workload_entry in agenda.workloads + section_entry.workloads: workload_dict = workload_entry.to_dict() self._load_workload_spec(global_dict, section_dict, workload_dict, selectors) else: # no sections were specified for workload_entry in agenda.workloads: workload_dict = workload_entry.to_dict() self._load_workload_spec(global_dict, {}, workload_dict, selectors) def _load_workload_spec(self, global_dict, section_dict, workload_dict, selectors): spec = WorkloadRunSpec() for name, config in self._workload_config_map.iteritems(): value = config.combine(global_dict.get(name), section_dict.get(name), workload_dict.get(name)) spec.set(name, value) if section_dict: spec.set('section_id', section_dict.get('id')) realname, alias_config = self.ext_loader.resolve_alias(spec.workload_name) if not spec.label: spec.label = spec.workload_name spec.workload_name = realname dicts = [self.ext_loader.get_default_config(realname), alias_config, self._raw_config.get(spec.workload_name), global_dict.get('workload_parameters'), section_dict.get('workload_parameters'), workload_dict.get('workload_parameters')] dicts = [d for d in dicts if d is not None] value = _merge_config_dicts(*dicts) spec.set('workload_parameters', value) if not spec.number_of_iterations: spec.number_of_iterations = 1 if spec.match_selectors(selectors): instrumentation_config = self._raw_config['instrumentation'] for instname in spec.instrumentation: if instname not in instrumentation_config: instrumentation_config.append(instname) self.workload_specs.append(spec) def _check_finalized(self): if not self._finalized: raise ValueError('Attempting to access configuration before it has been finalized.') @staticmethod def from_pod(pod, ext_loader=pluginloader): instance = RunConfiguration self.device = pod['device'] self.execution_order = pod['execution_order'] self.project = pod['project'] self.project_stage = pod['project_stage'] self.run_name = pod['run_name'] self.max_retries = pod['max_retries'] self._reboot_policy.policy = RebootPolicy.from_pod(pod['_reboot_policy']) self.output_directory = pod['output_directory'] self.device_config = pod['device_config'] self.instrumentation = pod['instrumentation'] self.result_processors = pod['result_processors'] self.workload_specs = [WorkloadRunSpec.from_pod(pod) for pod in pod['workload_specs']] self.flashing_config = pod['flashing_config'] self.other_config = pod['other_config'] self.retry_on_status = pod['retry_on_status'] self._used_config_items = pod['_used_config_items'] self._global_instrumentation = pod['_global_instrumentation'] def to_pod(self): if not self._finalized: raise Exception("Cannot use `to_pod` until the config is finalis") pod = {} pod['device'] = self.device pod['execution_order'] = self.execution_order pod['project'] = self.project pod['project_stage'] = self.project_stage pod['run_name'] = self.run_name pod['max_retries'] = self.max_retries pod['_reboot_policy'] = self._reboot_policy.to_pod() pod['output_directory'] = os.path.abspath(self.output_directory) pod['device_config'] = self.device_config pod['instrumentation'] = self.instrumentation pod['result_processors'] = self.result_processors pod['workload_specs'] = [w.to_pod() for w in self.workload_specs] pod['flashing_config'] = self.flashing_config pod['other_config'] = self.other_config pod['retry_on_status'] = self.retry_on_status pod['_used_config_items'] = self._used_config_items pod['_global_instrumentation'] = self._global_instrumentation return pod def _load_raw_struct(source): """Load a raw dict config structure from the specified source.""" if isinstance(source, basestring): if os.path.isfile(source): raw = load_struct_from_file(filepath=source) else: raise ConfigError('File "{}" does not exit'.format(source)) elif isinstance(source, dict): raw = source else: raise ConfigError('Unknown config source: {}'.format(source)) return raw def _merge_config_dicts(*args, **kwargs): """Provides a different set of default settings for ```merge_dicts`` """ return merge_dicts(*args, should_merge_lists=kwargs.get('should_merge_lists', False), should_normalize=kwargs.get('should_normalize', False), list_duplicates=kwargs.get('list_duplicates', 'last'), dict_type=kwargs.get('dict_type', OrderedDict))