import csv from wa import ResultProcessor, Parameter from wa.framework.exception import ConfigError from wa.utils.types import list_of_strings class CsvReportProcessor(ResultProcessor): name = 'csv' description = """ Creates a ``results.csv`` in the output directory containing results for all iterations in CSV format, each line containing a single metric. """ parameters = [ Parameter('use_all_classifiers', kind=bool, default=False, global_alias='use_all_classifiers', description=""" If set to ``True``, this will add a column for every classifier that features in at least one collected metric. .. note:: This cannot be ``True`` if ``extra_columns`` is set. """), Parameter('extra_columns', kind=list_of_strings, description=""" List of classifiers to use as columns. .. note:: This cannot be set if ``use_all_classifiers`` is ``True``. """), ] def validate(self): super(CsvReportProcessor, self).validate() if self.use_all_classifiers and self.extra_columns: msg = 'extra_columns cannot be specified when '\ 'use_all_classifiers is True' raise ConfigError(msg) def initialize(self): self.outputs_so_far = [] # pylint: disable=attribute-defined-outside-init self.artifact_added = False def process_job_output(self, output, target_info, run_output): self.outputs_so_far.append(output) self._write_outputs(self.outputs_so_far, run_output) if not self.artifact_added: run_output.add_artifact('run_result_csv', 'results.csv', 'export') self.artifact_added = True def process_run_output(self, output, target_info): self.outputs_so_far.append(output) self._write_outputs(self.outputs_so_far, output) if not self.artifact_added: output.add_artifact('run_result_csv', 'results.csv', 'export') self.artifact_added = True def _write_outputs(self, outputs, output): if self.use_all_classifiers: classifiers = set([]) for out in outputs: for metric in out.metrics: classifiers.update(metric.classifiers.keys()) extra_columns = list(classifiers) elif self.extra_columns: extra_columns = self.extra_columns else: extra_columns = [] outfile = output.get_path('results.csv') with open(outfile, 'wb') as wfh: writer = csv.writer(wfh) writer.writerow(['id', 'workload', 'iteration', 'metric', ] + extra_columns + ['value', 'units']) for o in outputs: if o.kind == 'job': header = [o.id, o.label, o.iteration] elif o.kind == 'run': # Should be a RunOutput. Run-level metrics aren't attached # to any job so we leave 'id' and 'iteration' blank, and use # the run name for the 'label' field. header = [None, o.info.run_name, None] else: raise RuntimeError( 'Output of kind "{}" unrecognised by csvproc'.format(o.kind)) for metric in o.result.metrics: row = (header + [metric.name] + [str(metric.classifiers.get(c, '')) for c in extra_columns] + [str(metric.value), metric.units or '']) writer.writerow(row)