1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-02-20 20:09:11 +00:00

energy_measurement: Allow multiple IIO devices for ACME

Devlib's ACME instrument uses iio-capture under the hood, which can
only capture data from one IIO device at a time. Devlib's instrument
API expects to produce a single CSV file for the Instrument, with a
single axis of sample timestamps. These two things cannot be
correctly reconciled without changing the devlib Instrument API -
get_data would need to be able to return two distinct sets of data.

Instead, where required WA will instantiate the ACME instrument
multiple times (once for each IIO device), producing two separate CSV
files. Aggregated energy info (as opposed to timestamped samples of
energy data) _can_ be meaningfully combined from multiple IIO
devices, so the derived stats are summed.

This requires altering the internal API of the energy_measurement
module - rather than a single instrument the super-instrument now has
a dictionary mapping 'device' keys (this is really an arbitrary key,
but I think that 'device' is a justifiable metaphor for whatever
might separate multiple instruments, plus it is the terminology used
by IIO/ACME) to Instrument objects.  Existing instruments simply
return a dict with a single entry, with None as the key.

It may in future be possible to solve this problem in devlib's ACME
instrument by avoiding the use of the iio-capture tool. In that case,
it should be possible to basically revert this patch and get the
required funcitonality from devlib.
This commit is contained in:
Brendan Jackman 2017-10-05 18:53:47 +01:00
parent 1fe3ed9f96
commit e672ea3faf

View File

@ -16,6 +16,7 @@
# pylint: disable=W0613,E1101
from __future__ import division
from collections import defaultdict
import os
from devlib import DerivedEnergyMeasurements
@ -46,6 +47,14 @@ class EnergyInstrumentBackend(Plugin):
def validate_parameters(self, params):
pass
def get_instruments(self, target, **kwargs):
"""
Get a dict mapping device keys to an Instruments
Typically there is just a single device/instrument, in which case the
device key is arbitrary.
"""
return {None: self.instrument(target, **kwargs)}
class DAQBackend(EnergyInstrumentBackend):
@ -156,7 +165,8 @@ class AcmeCapeBackend(EnergyInstrumentBackend):
description="""
Host name (or IP address) of the ACME cape board.
"""),
Parameter('iio-device', default='iio:device0',
Parameter('iio-devices', default='iio:device0',
kind=list_or_string,
description="""
"""),
Parameter('buffer-size', kind=int, default=256,
@ -165,7 +175,30 @@ class AcmeCapeBackend(EnergyInstrumentBackend):
"""),
]
instrument = AcmeCapeInstrument
def get_instruments(self, target,
iio_capture, host, iio_devices, buffer_size):
#
# Devlib's ACME instrument uses iio-capture under the hood, which can
# only capture data from one IIO device at a time. Devlib's instrument
# API expects to produce a single CSV file for the Instrument, with a
# single axis of sample timestamps. These two things cannot be correctly
# reconciled without changing the devlib Instrument API - get_data would
# need to be able to return two distinct sets of data.
#
# Instead, where required WA will instantiate the ACME instrument
# multiple times (once for each IIO device), producing two separate CSV
# files. Aggregated energy info _can_ be meaningfully combined from
# multiple IIO devices, so we will later sum the derived stats across
# each of the channels reported by the instruments.
#
ret = {}
for iio_device in iio_devices:
ret[iio_device] = AcmeCapeInstrument(
target, iio_capture=iio_capture, host=host,
iio_device=iio_device, buffer_size=buffer_size)
return ret
class EnergyMeasurement(Instrument):
@ -211,15 +244,11 @@ class EnergyMeasurement(Instrument):
def __init__(self, target, loader=pluginloader, **kwargs):
super(EnergyMeasurement, self).__init__(target, **kwargs)
self.instrumentation = None
self.measurement_csv = None
self.measurement_csvs = {}
self.loader = loader
self.backend = self.loader.get_plugin(self.instrument)
self.params = obj_dict()
if self.backend.instrument.mode != CONTINUOUS:
msg = '{} instrument does not support continuous measurement collection'
raise ConfigError(msg.format(self.instrument))
supported_params = self.backend.get_parameters()
for name, param in supported_params.iteritems():
value = self.instrument_parameters.get(name)
@ -227,30 +256,79 @@ class EnergyMeasurement(Instrument):
self.backend.validate_parameters(self.params)
def initialize(self, context):
self.instrumentation = self.backend.instrument(self.target, **self.params)
self.instruments = self.backend.get_instruments(self.target, **self.params)
for instrument in self.instruments.itervalues():
if instrument.mode != CONTINUOUS:
msg = '{} instrument does not support continuous measurement collection'
raise ConfigError(msg.format(self.instrument))
for channel in self.channels or []:
if not self.instrumentation.get_channels(channel):
raise ConfigError('No channels found for "{}"'.format(channel))
# Check that the expeccted channels exist.
# If there are multiple Instruments, they were all constructed with
# the same channels param, so check them all.
for instrument in self.instruments.itervalues():
if not instrument.get_channels(channel):
raise ConfigError('No channels found for "{}"'.format(channel))
def setup(self, context):
self.instrumentation.reset(sites=self.sites,
kinds=self.kinds,
channels=self.channels)
for instrument in self.instruments.itervalues():
instrument.reset(sites=self.sites,
kinds=self.kinds,
channels=self.channels)
def start(self, context):
self.instrumentation.start()
for instrument in self.instruments.itervalues():
instrument.start()
def stop(self, context):
self.instrumentation.stop()
for instrument in self.instruments.itervalues():
instrument.stop()
def update_result(self, context):
outfile = os.path.join(context.output_directory, 'energy_instrument_output.csv')
self.measurement_csv = self.instrumentation.get_data(outfile)
context.add_artifact('energy_instrument_output', outfile, 'data')
for device, instrument in self.instruments.iteritems():
# Append the device key to the filename and artifact name, unless
# it's None (as it will be for backends with only 1
# devce/instrument)
if device is not None:
name = 'energy_instrument_output_{}'.format(device)
else:
name = 'energy_instrument_output'
outfile = os.path.join(context.output_directory, '{}.csv'.format(name))
self.measurement_csvs[device] = instrument.get_data(outfile)
context.add_artifact(name, outfile, 'data',
classifiers={'device': device})
self.extract_metrics(context)
def extract_metrics(self, context):
derived_measurements = DerivedEnergyMeasurements.process(self.measurement_csv)
for meas in derived_measurements:
context.add_metric(meas.name, meas.value, meas.units)
metrics_by_name = defaultdict(list)
for device in self.instruments:
csv = self.measurement_csvs[device]
derived_measurements = DerivedEnergyMeasurements.process(csv)
for meas in derived_measurements:
# Append the device key to the metric name, unless it's None (as
# it will be for backends with only 1 devce/instrument)
if device is not None:
metric_name = '{}_{}'.format(meas.name, device)
else:
metric_name = meas.name
context.add_metric(metric_name, meas.value, meas.units,
classifiers={'device': device})
metrics_by_name[meas.name].append(meas)
# Where we have multiple instruments, add up all the metrics with the
# same name. For instance with ACME we may have multiple IIO devices
# each reporting 'device_energy' and 'device_power', so sum them up to
# produce aggregated energy and power metrics.
# (Note that metrics_by_name uses the metric name originally reported by
# the devlib instrument, before we potentially appended a device key to
# it)
if len(self.instruments) > 1:
for name, metrics in metrics_by_name.iteritems():
units = metrics[0].units
value = sum(m.value for m in metrics)
context.add_metric(name, value, units)