1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-09-03 11:52:36 +01:00

Merge pull request #277 from jimboatarm/fps-gfxinfo

FPS. Added gfxinfo methods of obtaining fps stats.
This commit is contained in:
setrofim
2016-11-04 17:11:59 +00:00
committed by GitHub
2 changed files with 228 additions and 56 deletions

112
wlauto/utils/fps.py Normal file → Executable file
View File

@@ -12,6 +12,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import collections
try:
import pandas as pd
except ImportError:
pd = None
SurfaceFlingerFrame = collections.namedtuple('SurfaceFlingerFrame', 'desired_present_time actual_present_time frame_ready_time')
GfxInfoFrame = collections.namedtuple('GfxInfoFrame', 'Flags IntendedVsync Vsync OldestInputEvent NewestInputEvent HandleInputStart AnimationStart PerformTraversalsStart DrawStart SyncQueued SyncStart IssueDrawCommandsStart SwapBuffers FrameCompleted')
# https://android.googlesource.com/platform/frameworks/base/+/marshmallow-release/libs/hwui/JankTracker.cpp
# Frames that are exempt from jank metrics.
# First-draw frames, for example, are expected to be slow,
# this is hidden from the user with window animations and other tricks
# Similarly, we don't track direct-drawing via Surface:lockHardwareCanvas() for now
# Android M: WindowLayoutChanged | SurfaceCanvas
GFXINFO_EXEMPT = 1 | 4
class FpsProcessor(object):
@@ -22,7 +38,7 @@ class FpsProcessor(object):
This processor returns the four frame statistics below:
:FPS: Frames Per Second. This is the frame rate of the workload.
:frames: The total number of frames rendered during the execution of
:frame_count: The total number of frames rendered during the execution of
the workload.
:janks: The number of "janks" that occurred during execution of the
workload. Janks are sudden shifts in frame rate. They result
@@ -31,13 +47,15 @@ class FpsProcessor(object):
vsync cycle.
"""
def __init__(self, data, action=None):
def __init__(self, data, action=None, extra_data=None):
"""
data - a pandas.DataFrame object with frame data (e.g. frames.csv)
action - output metrics names with additional action specifier
extra_data - extra data given to use for calculations of metrics
"""
self.data = data
self.action = action
self.extra_data = extra_data
def process(self, refresh_period, drop_threshold): # pylint: disable=too-many-locals
"""
@@ -49,39 +67,85 @@ class FpsProcessor(object):
fps = float('nan')
frame_count, janks, not_at_vsync = 0, 0, 0
vsync_interval = refresh_period
per_frame_fps = pd.Series()
# fiter out bogus frames.
bogus_frames_filter = self.data.actual_present_time != 0x7fffffffffffffff
actual_present_times = self.data.actual_present_time[bogus_frames_filter]
# SurfaceFlinger Algorithm
if self.data.columns.tolist() == list(SurfaceFlingerFrame._fields):
# fiter out bogus frames.
bogus_frames_filter = self.data.actual_present_time != 0x7fffffffffffffff
actual_present_times = self.data.actual_present_time[bogus_frames_filter]
actual_present_time_deltas = actual_present_times - actual_present_times.shift()
actual_present_time_deltas = actual_present_time_deltas.drop(0)
actual_present_time_deltas = actual_present_times - actual_present_times.shift()
actual_present_time_deltas = actual_present_time_deltas.drop(0)
vsyncs_to_compose = actual_present_time_deltas / vsync_interval
vsyncs_to_compose.apply(lambda x: int(round(x, 0)))
vsyncs_to_compose = actual_present_time_deltas / vsync_interval
vsyncs_to_compose.apply(lambda x: int(round(x, 0)))
# drop values lower than drop_threshold FPS as real in-game frame
# rate is unlikely to drop below that (except on loading screens
# etc, which should not be factored in frame rate calculation).
per_frame_fps = (1.0 / (vsyncs_to_compose * (vsync_interval / 1e9)))
keep_filter = per_frame_fps > drop_threshold
filtered_vsyncs_to_compose = vsyncs_to_compose[keep_filter]
per_frame_fps.name = 'fps'
# drop values lower than drop_threshold FPS as real in-game frame
# rate is unlikely to drop below that (except on loading screens
# etc, which should not be factored in frame rate calculation).
per_frame_fps = (1.0 / (vsyncs_to_compose * (vsync_interval / 1e9)))
keep_filter = per_frame_fps > drop_threshold
filtered_vsyncs_to_compose = vsyncs_to_compose[keep_filter]
per_frame_fps.name = 'fps'
if not filtered_vsyncs_to_compose.empty:
total_vsyncs = filtered_vsyncs_to_compose.sum()
frame_count = filtered_vsyncs_to_compose.size
if not filtered_vsyncs_to_compose.empty:
total_vsyncs = filtered_vsyncs_to_compose.sum()
frame_count = filtered_vsyncs_to_compose.size
if total_vsyncs:
fps = 1e9 * frame_count / (vsync_interval * total_vsyncs)
if total_vsyncs:
fps = 1e9 * frame_count / (vsync_interval * total_vsyncs)
janks = self._calc_janks(filtered_vsyncs_to_compose)
not_at_vsync = self._calc_not_at_vsync(vsyncs_to_compose)
janks = self._calc_janks(filtered_vsyncs_to_compose)
not_at_vsync = self._calc_not_at_vsync(vsyncs_to_compose)
# GfxInfo Algorithm
elif self.data.columns.tolist() == list(GfxInfoFrame._fields):
frame_time = self.data.FrameCompleted - self.data.IntendedVsync
per_frame_fps = (1e9 / frame_time)
keep_filter = per_frame_fps > drop_threshold
per_frame_fps = per_frame_fps[keep_filter]
per_frame_fps.name = 'fps'
frame_count = self.data.index.size
janks = frame_time[frame_time >= vsync_interval].count()
not_at_vsync = self.data.IntendedVsync - self.data.Vsync
not_at_vsync = not_at_vsync[not_at_vsync != 0].count()
duration = self.data.Vsync.iloc[-1] - self.data.Vsync.iloc[0]
fps = (1e9 * frame_count) / float(duration)
# If gfxinfocsv is provided, get stats from that instead
if self.extra_data:
series = pd.read_csv(self.extra_data, header=None, index_col=0, squeeze=True)
if not series.empty: # pylint: disable=maybe-no-member
frame_count = series['Total frames rendered']
janks = series['Janky frames']
not_at_vsync = series['Number Missed Vsync']
metrics = (fps, frame_count, janks, not_at_vsync)
return per_frame_fps, metrics
def percentiles(self):
# SurfaceFlinger Algorithm
if self.data.columns.tolist() == list(SurfaceFlingerFrame._fields):
frame_time = self.data.frame_ready_time.diff()
# GfxInfo Algorithm
elif self.data.columns.tolist() == list(GfxInfoFrame._fields):
frame_time = self.data.FrameCompleted - self.data.IntendedVsync
data = frame_time.quantile([0.90, 0.95, 0.99])
# Convert to ms, round to nearest, cast to int
data = data.div(1e6).round().astype('int')
# If gfxinfocsv is provided, get stats from that instead
if self.extra_data:
series = pd.read_csv(self.extra_data, header=None, index_col=0, squeeze=True)
if not series.empty: # pylint: disable=maybe-no-member
data = series[series.index.str.contains('th percentile')] # pylint: disable=maybe-no-member
return list(data.get_values())
@staticmethod
def _calc_janks(filtered_vsyncs_to_compose):
"""