1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-18 20:11:20 +00:00

Adding energy_model instrument.

This instrument can be used to generate an energy model for a device
based on collected power and performance measurments. The instrument
produces a C file with an energy model and an accompanying HTML report.

This instrument is very different from other instrumentation, as it
actually generates the run queue on the fly based on the operating
frequencies and idle states it discovers on the device. The agenda needs
only to contain the single "base" spec that defines the workload to be
used for performance measurement.
This commit is contained in:
Sergei Trofimov 2015-04-09 12:43:11 +01:00
parent 6b041e6822
commit c52d562411
3 changed files with 862 additions and 0 deletions

View File

@ -0,0 +1,688 @@
#pylint: disable=attribute-defined-outside-init,access-member-before-definition,redefined-outer-name
from __future__ import division
import os
import math
from tempfile import mktemp
from base64 import b64encode
from copy import deepcopy
from collections import Counter, namedtuple
try:
import jinja2
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import_error = None
except ImportError as e:
import_error = e
jinja2 = None
pd = None
plt = None
np = None
from wlauto import Instrument, Parameter, File
from wlauto.exceptions import ConfigError, InstrumentError, DeviceError
from wlauto.instrumentation import instrument_is_installed
from wlauto.utils.types import caseless_string, list_of_ints
from wlauto.utils.misc import list_to_mask
FREQ_TABLE_FILE = 'frequency_power_perf_data.csv'
CPUS_TABLE_FILE = 'cap_power.csv'
IDLE_TABLE_FILE = 'idle_power_perf_data.csv'
REPORT_TEMPLATE_FILE = 'report.template'
EM_TEMPLATE_FILE = 'em.template'
IdlePowerState = namedtuple('IdlePowerState', ['power'])
CapPowerState = namedtuple('CapPowerState', ['cap', 'power'])
class EnergyModel(object):
def __init__(self):
self.big_cluster_idle_states = []
self.little_cluster_idle_states = []
self.big_cluster_cap_states = []
self.little_cluster_cap_states = []
self.big_core_idle_states = []
self.little_core_idle_states = []
self.big_core_cap_states = []
self.little_core_cap_states = []
def add_cap_entry(self, cluster, perf, clust_pow, core_pow):
if cluster == 'big':
self.big_cluster_cap_states.append(CapPowerState(perf, clust_pow))
self.big_core_cap_states.append(CapPowerState(perf, core_pow))
elif cluster == 'little':
self.little_cluster_cap_states.append(CapPowerState(perf, clust_pow))
self.little_core_cap_states.append(CapPowerState(perf, core_pow))
else:
raise ValueError('Unexpected cluster: {}'.format(cluster))
def add_cluster_idle(self, cluster, values):
for value in values:
if cluster == 'big':
self.big_cluster_idle_states.append(IdlePowerState(value))
elif cluster == 'little':
self.little_cluster_idle_states.append(IdlePowerState(value))
else:
raise ValueError('Unexpected cluster: {}'.format(cluster))
def add_core_idle(self, cluster, values):
for value in values:
if cluster == 'big':
self.big_core_idle_states.append(IdlePowerState(value))
elif cluster == 'little':
self.little_core_idle_states.append(IdlePowerState(value))
else:
raise ValueError('Unexpected cluster: {}'.format(cluster))
class PowerPerformanceAnalysis(object):
def __init__(self, data):
self.summary = {}
big_freqs = data[data.cluster == 'big'].frequency.unique()
little_freqs = data[data.cluster == 'little'].frequency.unique()
self.summary['frequency'] = max(set(big_freqs).intersection(set(little_freqs)))
big_sc = data[(data.cluster == 'big') &
(data.frequency == self.summary['frequency']) &
(data.cpus == 1)]
little_sc = data[(data.cluster == 'little') &
(data.frequency == self.summary['frequency']) &
(data.cpus == 1)]
self.summary['performance_ratio'] = big_sc.performance.item() / little_sc.performance.item()
self.summary['power_ratio'] = big_sc.power.item() / little_sc.power.item()
self.summary['max_performance'] = data[data.cpus == 1].performance.max()
self.summary['max_power'] = data[data.cpus == 1].power.max()
low_filter = np.vectorize(lambda x: x > 0 and x or 0)
def build_energy_model(freq_power_table, cpus_power, idle_power, first_cluster_idle_state):
# pylint: disable=too-many-locals
em = EnergyModel()
idle_power_sc = idle_power[idle_power.cpus == 1]
perf_data = get_normalized_single_core_data(freq_power_table)
for cluster in ['little', 'big']:
cluster_cpus_power = cpus_power[cluster].dropna()
cluster_power = cluster_cpus_power['cluster'].apply(int)
core_power = (cluster_cpus_power['1'] - cluster_power).apply(int)
performance = (perf_data[perf_data.cluster == cluster].performance_norm * 1024 / 100).apply(int)
for perf, clust_pow, core_pow in zip(performance, cluster_power, core_power):
em.add_cap_entry(cluster, perf, clust_pow, core_pow)
all_idle_power = idle_power_sc[idle_power_sc.cluster == cluster].power.values
# CORE idle states
# We want the delta of each state w.r.t. the power
# consumption of the shallowest one at this level (core_ref)
idle_core_power = low_filter(all_idle_power[:first_cluster_idle_state] -
all_idle_power[first_cluster_idle_state - 1])
# CLUSTER idle states
# We want the absolute value of each idle state
idle_cluster_power = low_filter(all_idle_power[first_cluster_idle_state - 1:])
em.add_cluster_idle(cluster, idle_cluster_power)
em.add_core_idle(cluster, idle_core_power)
return em
def generate_em_c_file(em, big_core, little_core, em_template_file, outfile):
with open(em_template_file) as fh:
em_template = jinja2.Template(fh.read())
em_text = em_template.render(
big_core=big_core,
little_core=little_core,
em=em,
)
with open(outfile, 'w') as wfh:
wfh.write(em_text)
return em_text
def generate_report(freq_power_table, cpus_table, idle_power_table,
report_template_file, device_name, em_text, outfile):
# pylint: disable=too-many-locals
cap_power_analysis = PowerPerformanceAnalysis(freq_power_table)
single_core_norm = get_normalized_single_core_data(freq_power_table)
cap_power_plot = get_cap_power_plot(single_core_norm)
idle_power_plot = get_idle_power_plot(idle_power_table)
fig, axes = plt.subplots(1, 2)
fig.set_size_inches(16, 8)
for i, cluster in enumerate(reversed(cpus_table.columns.levels[0])):
plot_cpus_table(cpus_table[cluster].dropna(), axes[i], cluster)
cpus_plot_data = get_figure_data(fig)
with open(report_template_file) as fh:
report_template = jinja2.Template(fh.read())
html = report_template.render(
device_name=device_name,
freq_power_table=freq_power_table.set_index(['cluster', 'cpus', 'frequency']).to_html(),
cap_power_analysis=cap_power_analysis,
cap_power_plot=get_figure_data(cap_power_plot),
idle_power_table=idle_power_table.set_index(['cluster', 'cpus', 'state']).to_html(),
idle_power_plot=get_figure_data(idle_power_plot),
cpus_table=cpus_table.to_html(),
cpus_plot=cpus_plot_data,
em_text=em_text,
)
with open(outfile, 'w') as wfh:
wfh.write(html)
return html
def wa_result_to_power_perf_table(df, performance_metric, index):
table = df.pivot_table(index=index + ['iteration'],
columns='metric', values='value').reset_index()
result_mean = table.groupby(index).mean()
result_std = table.groupby(index).std()
result_std.columns = [c + ' std' for c in result_std.columns]
result_count = table.groupby(index).count()
result_count.columns = [c + ' count' for c in result_count.columns]
count_sqrt = result_count.apply(lambda x: x.apply(math.sqrt))
count_sqrt.columns = result_std.columns # match column names for division
result_error = 1.96 * result_std / count_sqrt # 1.96 == 95% confidence interval
result_error.columns = [c + ' error' for c in result_mean.columns]
result = pd.concat([result_mean, result_std, result_count, result_error], axis=1)
del result['iteration']
del result['iteration std']
del result['iteration count']
del result['iteration error']
updated_columns = []
for column in result.columns:
if column == performance_metric:
updated_columns.append('performance')
elif column == performance_metric + ' std':
updated_columns.append('performance_std')
elif column == performance_metric + ' error':
updated_columns.append('performance_error')
else:
updated_columns.append(column.replace(' ', '_'))
result.columns = updated_columns
result = result[sorted(result.columns)]
result.reset_index(inplace=True)
return result
def get_figure_data(fig, fmt='png'):
tmp = mktemp()
fig.savefig(tmp, format=fmt, bbox_inches='tight')
with open(tmp, 'rb') as fh:
image_data = b64encode(fh.read())
os.remove(tmp)
return image_data
def get_normalized_single_core_data(data):
finite_power = np.isfinite(data.power)
finite_perf = np.isfinite(data.performance)
data_single_core = data[(data.cpus == 1) & finite_perf & finite_power].copy()
data_single_core['performance_norm'] = (data_single_core.performance /
data_single_core.performance.max() * 100).apply(int)
data_single_core['power_norm'] = (data_single_core.power /
data_single_core.power.max() * 100).apply(int)
return data_single_core
def get_cap_power_plot(data_single_core):
big_single_core = data_single_core[(data_single_core.cluster == 'big') &
(data_single_core.cpus == 1)]
little_single_core = data_single_core[(data_single_core.cluster == 'little') &
(data_single_core.cpus == 1)]
fig, axes = plt.subplots(1, 1, figsize=(12, 8))
axes.plot(big_single_core.performance_norm,
big_single_core.power_norm,
marker='o')
axes.plot(little_single_core.performance_norm,
little_single_core.power_norm,
marker='o')
axes.set_xlim(0, 105)
axes.set_ylim(0, 105)
axes.set_xlabel('Performance (Normalized)')
axes.set_ylabel('Power (Normalized)')
axes.grid()
axes.legend(['big cluster', 'little cluster'], loc=0)
return fig
def get_idle_power_plot(df):
fig, axes = plt.subplots(1, 2, figsize=(15, 7))
for cluster, ax in zip(['big', 'little'], axes):
data = df[df.cluster == cluster].pivot_table(index=['state'], columns='cpus', values='power')
err = df[df.cluster == cluster].pivot_table(index=['state'], columns='cpus', values='power_error')
data.plot(kind='bar', ax=ax, rot=30, yerr=err)
ax.set_title('{} cluster'.format(cluster))
ax.set_xlim(-1, len(data.columns) - 0.5)
ax.set_ylabel('Power (mW)')
return fig
def get_cpus_power_table(data, index):
power_table = data[[index, 'cluster', 'cpus', 'power']].pivot_table(index=index,
columns=['cluster', 'cpus'],
values='power')
for cluster in power_table.columns.levels[0]:
power_table[cluster, 0] = (power_table[cluster, 1] -
(power_table[cluster, 2] -
power_table[cluster, 1]))
# re-order columns and rename colum '0' to 'cluster'
power_table = power_table[sorted(power_table.columns,
cmp=lambda x, y: cmp(y[0], x[0]) or cmp(x[1], y[1]))]
old_levels = power_table.columns.levels
power_table.columns.set_levels([old_levels[0], list(map(str, old_levels[1])[:-1]) + ['cluster']],
inplace=True)
return power_table
def plot_cpus_table(cpus_table, ax, cluster):
cpus_table.T.plot(ax=ax, marker='o')
ax.set_title('{} cluster'.format(cluster))
ax.set_xticklabels(cpus_table.columns)
ax.set_xticks(range(0, 5))
ax.set_xlim(-0.5, len(cpus_table.columns) - 0.5)
ax.set_ylabel('Power (mW)')
ax.grid(True)
class EnergyModelInstrument(Instrument):
name = 'energy_model'
desicription = """
Generates a power mode for the device based on specified workload.
This insturment will execute the workload specified by the agenda (currently, only ``sysbench`` is
supported) and will use the resulting performance and power measurments to generate a power mode for
the device.
This instrument requires certain features to be present in the kernel:
1. cgroups and cpusets must be enabled.
2. cpufreq and userspace governor must be enabled.
3. cpuidle must be enabled.
"""
parameters = [
Parameter('device_name', kind=caseless_string,
description="""The name of the device to be used in generating the model. If not specified,
``device.name`` will be used. """),
Parameter('big_core', kind=caseless_string,
description="""The name of the "big" core in the big.LITTLE system; must match
one of the values in ``device.core_names``. """),
Parameter('performance_metric', kind=caseless_string, mandatory=True,
description="""Metric to be used as the performance indicator."""),
Parameter('power_metric', kind=caseless_string, mandatory=True,
description="""Metric to be used as the power indicator. The value may contain a
``{core}`` format specifier that will be replaced with names of big
and little cores to drive the name of the metric for that cluster."""),
Parameter('power_scaling_factor', kind=float, default=1.0,
description="""Power model specfies power in milliWatts. This is a scaling factor that
power_metric values will be multiplied by to get milliWatts."""),
Parameter('big_frequencies', kind=list_of_ints,
description="""List of frequencies to be used for big cores. These frequencies must
be supported by the cores. If this is not specified, all available
frequencies for the core (as read from cpufreq) will be used."""),
Parameter('little_frequencies', kind=list_of_ints,
description="""List of frequencies to be used for little cores. These frequencies must
be supported by the cores. If this is not specified, all available
frequencies for the core (as read from cpufreq) will be used."""),
Parameter('idle_workload', kind=str, default='idle',
description="Workload to be used while measuring idle power."),
Parameter('idle_workload_params', kind=dict, default={},
description="Parameter to pass to the idle workload."),
Parameter('first_cluster_idle_state', kind=int, default=-1,
description='''The index of the first cluster idle state on the device. Previous states
are assumed to be core idles. The default is ``-1``, i.e. only the last
idle state is assumed to affect the entire cluster.'''),
]
def validate(self):
if import_error:
message = 'energy_model instrument requires pandas, jinja2 and matplotlib Python packages to be installed; got: "{}"'
raise InstrumentError(message.format(import_error.message))
for capability in ['cgroups', 'cpuidle']:
if not self.device.has(capability):
message = 'The Device does not appear to support {}; does it have the right module installed?'
raise ConfigError(message.format(capability))
device_cores = set(self.device.core_names)
if not device_cores:
raise ConfigError('The Device does not appear to have core_names configured.')
elif len(device_cores) != 2:
raise ConfigError('The Device does not appear to be a big.LITTLE device.')
if self.big_core and self.big_core not in self.device.core_names:
raise ConfigError('Specified big_core "{}" is in divice {}'.format(self.big_core, self.device.name))
if not self.big_core:
self.big_core = self.device.core_names[-1] # the last core is usually "big" in existing big.LITTLE devices
if not self.device_name:
self.device_name = self.device.name
def initialize(self, context):
self.report_template_file = context.resolver.get(File(self, REPORT_TEMPLATE_FILE))
self.em_template_file = context.resolver.get(File(self, EM_TEMPLATE_FILE))
self.little_core = (set(self.device.core_names) - set([self.big_core])).pop()
self.perform_runtime_validation()
self.enable_all_cores()
self.configure_clusters()
self.discover_idle_states()
self.disable_thermal_management()
self.initialize_job_queue(context)
self.initialize_result_tracking()
def setup(self, context):
if not context.spec.label.startswith('idle_'):
return
for idle_state in self.get_device_idle_states(self.measured_cluster):
if idle_state.id == context.spec.idle_state_id:
idle_state.disable = 0
else:
idle_state.disable = 1
def on_iteration_start(self, context):
self.setup_measurement(context.spec.cluster)
# slow to make sure power results have been generated
def slow_update_result(self, context):
spec = context.result.spec
cluster = spec.cluster
seen_perf = False
seen_power = False
is_freq_iteration = spec.label.startswith('freq_')
for metric in context.result.metrics:
if metric.name == self.performance_metric:
metric_name = 'performance'
metric_value = metric.value
seen_perf = True
elif ((cluster == 'big' and metric.name == self.big_power_metric) or
(cluster == 'little' and metric.name == self.little_power_metric)):
metric_name = 'power'
metric_value = metric.value * self.power_scaling_factor
seen_power = True
else:
metric_name = None
metric_value = None
if metric_name:
if is_freq_iteration:
self.freq_data.append([
cluster,
spec.num_cpus,
spec.frequency,
context.result.iteration,
metric_name,
metric_value,
])
else:
self.idle_data.append([
cluster,
spec.num_cpus,
spec.idle_state_id,
spec.idle_state_desc,
context.result.iteration,
metric_name,
metric_value,
])
if not (seen_power and (seen_perf or not is_freq_iteration)):
message = 'Incomplete results for {} iteration{}'
raise InstrumentError(message.format(context.result.spec.id, context.current_iteration))
def before_overall_results_processing(self, context):
# pylint: disable=too-many-locals
if not self.idle_data or not self.freq_data:
self.logger.warning('Run aborted early; not generating energy_model.')
return
output_directory = os.path.join(context.output_directory, 'energy_model')
os.makedirs(output_directory)
df = pd.DataFrame(self.idle_data, columns=['cluster', 'cpus', 'state_id',
'state', 'iteration', 'metric', 'value'])
idle_power_table = wa_result_to_power_perf_table(df, '', index=['cluster', 'cpus', 'state'])
idle_output = os.path.join(output_directory, IDLE_TABLE_FILE)
with open(idle_output, 'w') as wfh:
idle_power_table.to_csv(wfh, index=False)
context.add_artifact('idle_power_table', idle_output, 'export')
df = pd.DataFrame(self.freq_data,
columns=['cluster', 'cpus', 'frequency', 'iteration', 'metric', 'value'])
freq_power_table = wa_result_to_power_perf_table(df, self.performance_metric,
index=['cluster', 'cpus', 'frequency'])
freq_output = os.path.join(output_directory, FREQ_TABLE_FILE)
with open(freq_output, 'w') as wfh:
freq_power_table.to_csv(wfh, index=False)
context.add_artifact('freq_power_table', freq_output, 'export')
cpus_table = get_cpus_power_table(freq_power_table, 'frequency')
cpus_output = os.path.join(output_directory, CPUS_TABLE_FILE)
with open(cpus_output, 'w') as wfh:
cpus_table.to_csv(wfh)
context.add_artifact('cpus_table', cpus_output, 'export')
em = build_energy_model(freq_power_table, cpus_table, idle_power_table, self.first_cluster_idle_state)
em_file = os.path.join(output_directory, '{}_em.c'.format(self.device_name))
em_text = generate_em_c_file(em, self.big_core, self.little_core,
self.em_template_file, em_file)
context.add_artifact('em', em_file, 'data')
report_file = os.path.join(output_directory, 'report.html')
generate_report(freq_power_table, cpus_table, idle_power_table,
self.report_template_file, self.device_name, em_text,
report_file)
context.add_artifact('pm_report', report_file, 'export')
def initialize_result_tracking(self):
self.freq_data = []
self.idle_data = []
self.big_power_metric = self.power_metric.format(core=self.big_core)
self.little_power_metric = self.power_metric.format(core=self.little_core)
def configure_clusters(self):
self.measured_cores = None
self.measuring_cores = None
self.cpuset = self.device.get_cgroup_controller('cpuset')
self.cpuset.create_group('big', self.big_cpus, [0])
self.cpuset.create_group('little', self.little_cpus, [0])
for cluster in set(self.device.core_clusters):
self.device.set_cluster_governor(cluster, 'userspace')
def discover_idle_states(self):
online_cpu = self.device.get_online_cpus(self.big_core)[0]
self.big_idle_states = self.device.get_cpuidle_states(online_cpu)
online_cpu = self.device.get_online_cpus(self.little_core)[0]
self.little_idle_states = self.device.get_cpuidle_states(online_cpu)
if not (len(self.big_idle_states) >= 2 and len(self.little_idle_states) >= 2):
raise DeviceError('There do not appeart to be at least two idle states '
'on at least one of the clusters.')
def setup_measurement(self, measured):
measuring = 'big' if measured == 'little' else 'little'
self.measured_cluster = measured
self.measuring_cluster = measuring
self.measured_cpus = self.big_cpus
self.measuring_cpus = self.little_cpus
self.reset()
def reset(self):
self.enable_all_cores()
self.enable_all_idle_states()
self.reset_cgroups()
self.cpuset.move_all_tasks_to(self.measuring_cluster)
server_process = 'adbd' if self.device.platform == 'android' else 'sshd'
server_pids = self.device.get_pids_of(server_process)
self.cpuset.root.add_tasks(server_pids)
for pid in server_pids:
self.device.execute('busybox taskset -p 0x{:x} {}'.format(list_to_mask(self.measuring_cpus), pid))
def enable_all_cores(self):
counter = Counter(self.device.core_names)
for core, number in counter.iteritems():
self.device.set_number_of_online_cpus(core, number)
self.big_cpus = self.device.get_online_cpus(self.big_core)
self.little_cpus = self.device.get_online_cpus(self.little_core)
def enable_all_idle_states(self):
for state in self.big_idle_states:
state.disable = 0
for state in self.little_idle_states:
state.disable = 0
def reset_cgroups(self):
self.big_cpus = self.device.get_online_cpus(self.big_core)
self.little_cpus = self.device.get_online_cpus(self.little_core)
self.cpuset.big.set(self.big_cpus, 0)
self.cpuset.little.set(self.little_cpus, 0)
def perform_runtime_validation(self):
if not self.device.is_rooted:
raise InstrumentError('the device must be rooted to generate energy models')
if 'userspace' not in self.device.list_available_cluster_governors(0):
raise InstrumentError('userspace cpufreq governor must be enabled')
error_message = 'Frequency {} is not supported by {} cores'
available_frequencies = self.device.list_available_core_frequencies(self.big_core)
if self.big_frequencies:
for freq in self.big_frequencies:
if freq not in available_frequencies:
raise ConfigError(error_message.format(freq, self.big_core))
else:
self.big_frequencies = available_frequencies
available_frequencies = self.device.list_available_core_frequencies(self.little_core)
if self.little_frequencies:
for freq in self.little_frequencies:
if freq not in available_frequencies:
raise ConfigError(error_message.format(freq, self.little_core))
else:
self.little_frequencies = available_frequencies
def initialize_job_queue(self, context):
old_specs = []
for job in context.runner.job_queue:
if job.spec not in old_specs:
old_specs.append(job.spec)
new_specs = self.get_cluster_specs(old_specs, 'big', context)
new_specs.extend(self.get_cluster_specs(old_specs, 'little', context))
# Update config to refect jobs that will actually run.
context.config.workload_specs = new_specs
config_file = os.path.join(context.host_working_directory, 'run_config.json')
with open(config_file, 'wb') as wfh:
context.config.serialize(wfh)
context.runner.init_queue(new_specs)
def get_cluster_specs(self, old_specs, cluster, context):
core = self.get_core_name(cluster)
number_of_cpus = sum([1 for c in self.device.core_names if c == core])
cluster_frequencies = self.get_frequencies_param(cluster)
if not cluster_frequencies:
raise InstrumentError('Could not read available frequencies for {}'.format(core))
idle_states = self.get_device_idle_states(cluster)
new_specs = []
for state in idle_states:
for num_cpus in xrange(1, number_of_cpus + 1):
spec = old_specs[0].copy()
spec.workload_name = self.idle_workload
spec.workload_parameters = self.idle_workload_params
spec.idle_state_id = state.id
spec.idle_state_desc = state.desc
spec.runtime_parameters['{}_cores'.format(core)] = num_cpus
spec.cluster = cluster
spec.num_cpus = num_cpus
spec.id = '{}_idle_{}_{}'.format(cluster, state.id, num_cpus)
spec.label = 'idle_{}'.format(cluster)
spec.number_of_iterations = old_specs[0].number_of_iterations
spec.load(self.device, context.config.ext_loader)
spec.workload.init_resources(context)
spec.workload.validate()
new_specs.append(spec)
for old_spec in old_specs:
if old_spec.workload_name != 'sysbench':
raise ConfigError('Only sysbench workload currently supported for energy_model generation.')
for freq in cluster_frequencies:
for num_cpus in xrange(1, number_of_cpus + 1):
spec = old_spec.copy()
spec.runtime_parameters['{}_frequency'.format(core)] = freq
spec.runtime_parameters['{}_cores'.format(core)] = num_cpus
spec.id = '{}_{}_{}'.format(cluster, num_cpus, freq)
spec.label = 'freq_{}_{}'.format(cluster, spec.label)
spec.workload_parameters['taskset_mask'] = list_to_mask(self.get_cpus(cluster))
spec.workload_parameters['num_threads'] = len(self.get_cpus(cluster))
spec.cluster = cluster
spec.num_cpus = num_cpus
spec.frequency = freq
spec.load(self.device, context.config.ext_loader)
spec.workload.init_resources(context)
spec.workload.validate()
new_specs.append(spec)
return new_specs
def disable_thermal_management(self):
if self.device.file_exists('/sys/class/thermal'):
tzone_paths = self.device.execute('ls /sys/class/thermal/thermal_zone*')
for tzpath in tzone_paths.strip().split():
mode_file = '{}/mode'.format(tzpath)
if self.device.file_exists(mode_file):
self.device.set_sysfile_value(mode_file, 'disabled')
def get_device_idle_states(self, cluster):
if cluster == 'big':
return self.big_idle_states
else:
return self.little_idle_states
def get_core_name(self, cluster):
if cluster == 'big':
return self.big_core
else:
return self.little_core
def get_cpus(self, cluster):
if cluster == 'big':
return self.big_cpus
else:
return self.little_cpus
def get_frequencies_param(self, cluster):
if cluster == 'big':
return self.big_frequencies
else:
return self.little_frequencies
if __name__ == '__main__':
import sys
indir, outdir = sys.argv[1], sys.argv[2]
device_name = 'odroidxu3'
big_core = 'a15'
little_core = 'a7'
first_cluster_idle_state = -1
this_dir = os.path.dirname(__file__)
report_template_file = os.path.join(this_dir, REPORT_TEMPLATE_FILE)
em_template_file = os.path.join(this_dir, EM_TEMPLATE_FILE)
freq_power_table = pd.read_csv(os.path.join(indir, FREQ_TABLE_FILE))
cpus_table = pd.read_csv(os.path.join(indir, CPUS_TABLE_FILE),
header=range(2), index_col=0)
idle_power_table = pd.read_csv(os.path.join(indir, IDLE_TABLE_FILE))
if not os.path.exists(outdir):
os.makedirs(outdir)
report_file = os.path.join(outdir, 'report.html')
em_file = os.path.join(outdir, '{}_em.c'.format(device_name))
em = build_energy_model(freq_power_table, cpus_table,
idle_power_table, first_cluster_idle_state)
em_text = generate_em_c_file(em, big_core, little_core,
em_template_file, em_file)
generate_report(freq_power_table, cpus_table, idle_power_table,
report_template_file, device_name, em_text,
report_file)

View File

@ -0,0 +1,51 @@
static struct idle_state idle_states_cluster_{{ little_core|lower }}[] = {
{% for entry in em.little_cluster_idle_states -%}
{ .power = {{ entry.power }}, },
{% endfor %}
};
static struct idle_state idle_states_cluster_{{ big_core|lower }}[] = {
{% for entry in em.big_cluster_idle_states -%}
{ .power = {{ entry.power }}, },
{% endfor %}
};
static struct capacity_state cap_states_cluster_{{ little_core|lower }}[] = {
/* Power per cluster */
{% for entry in em.little_cluster_cap_states -%}
{ .cap = {{ entry.cap }}, .power = {{ entry.power }}, },
{% endfor %}
};
static struct capacity_state cap_states_cluster_{{ big_core|lower }}[] = {
/* Power per cluster */
{% for entry in em.big_cluster_cap_states -%}
{ .cap = {{ entry.cap }}, .power = {{ entry.power }}, },
{% endfor %}
};
static struct idle_state idle_states_core_{{ little_core|lower }}[] = {
{% for entry in em.little_core_idle_states -%}
{ .power = {{ entry.power }}, },
{% endfor %}
};
static struct idle_state idle_states_core_{{ big_core|lower }}[] = {
{% for entry in em.big_core_idle_states -%}
{ .power = {{ entry.power }}, },
{% endfor %}
};
static struct capacity_state cap_states_core_{{ little_core|lower }}[] = {
/* Power per cpu */
{% for entry in em.little_core_cap_states -%}
{ .cap = {{ entry.cap }}, .power = {{ entry.power }}, },
{% endfor %}
}
static struct capacity_state cap_states_core_{{ big_core|lower }}[] = {
/* Power per cpu */
{% for entry in em.big_core_cap_states -%}
{ .cap = {{ entry.cap }}, .power = {{ entry.power }}, },
{% endfor %}
};

View File

@ -0,0 +1,123 @@
<html>
<body>
<style>
.toggle-box {
display: none;
}
.toggle-box + label {
cursor: pointer;
display: block;
font-weight: bold;
line-height: 21px;
margin-bottom: 5px;
}
.toggle-box + label + div {
display: none;
margin-bottom: 10px;
}
.toggle-box:checked + label + div {
display: block;
}
.toggle-box + label:before {
background-color: #4F5150;
-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;
color: #FFFFFF;
content: "+";
display: block;
float: left;
font-weight: bold;
height: 20px;
line-height: 20px;
margin-right: 5px;
text-align: center;
width: 20px;
}
.toggle-box:checked + label:before {
content: "\2212";
}
.document {
width: 800px;
margin-left:auto;
margin-right:auto;
}
img {
margin-left:auto;
margin-right:auto;
}
h1.title {
text-align: center;
}
</style>
<div class="document">
<h1 class="title">{{ device_name }} Energy Model Report</h1>
<h2>Power/Performance Analysis</h2>
<div>
<h3>Summary</h3>
At {{ cap_power_analysis.summary['frequency']|round(2) }} Hz<br />
big is {{ cap_power_analysis.summary['performance_ratio']|round(2) }} times faster<br />
big consumes {{ cap_power_analysis.summary['power_ratio']|round(2) }} times more power<br />
<br />
max performance: {{ cap_power_analysis.summary['max_performance']|round(2) }}<br />
max power: {{ cap_power_analysis.summary['max_power']|round(2) }}<br />
</div>
<div>
<h3>Single Core Power/Perfromance Plot</h3>
These are the traditional power-performance curves for the single-core runs.
<img align="middle" width="600px" src="data:image/png;base64,{{ cap_power_plot }}" />
</div>
<div>
<input class="toggle-box" id="freq_table" type="checkbox" >
<label for="freq_table">Expand view all power/performance data</label>
<div>
{{ freq_power_table }}
</div>
</div>
<div>
<h3>CPUs Power Plot</h3>
Each line correspond to the cluster running at a different OPP. Each
point corresponds to the average power with a certain number of CPUs
executing. To get the contribution of the cluster we have to extend the
lines on the left (what it would be the average power of just the cluster).
<img align="middle" width="600px" src="data:image/png;base64,{{ cpus_plot }}" />
</div>
<div>
<input class="toggle-box" id="cpus_table" type="checkbox" >
<label for="cpus_table">Expand view CPUS power data</label>
<div>
{{ cpus_table }}
</div>
</div>
<div>
<h3>Idle Power</h3>
<img align="middle" width="600px" src="data:image/png;base64,{{ idle_power_plot }}" />
</div>
<div>
<input class="toggle-box" id="idle_power_table" type="checkbox" >
<label for="idle_power_table">Expand view idle power data</label>
<div>
{{ idle_power_table }}
</div>
</div>
</div>
</body>
</html>
<!-- vim: ft=htmljinja
-->