mirror of
https://github.com/ARM-software/workload-automation.git
synced 2025-09-01 10:52:33 +01:00
Initial commit of open source Workload Automation.
This commit is contained in:
184
doc/Makefile
Normal file
184
doc/Makefile
Normal file
@@ -0,0 +1,184 @@
|
||||
# Makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line.
|
||||
SPHINXOPTS =
|
||||
SPHINXBUILD = sphinx-build
|
||||
PAPER =
|
||||
BUILDDIR = build
|
||||
|
||||
SPHINXAPI = sphinx-apidoc
|
||||
SPHINXAPIOPTS =
|
||||
|
||||
WAEXT = ./build_extension_docs.py
|
||||
WAEXTOPTS = source/extensions ../wlauto ../wlauto/external ../wlauto/tests
|
||||
|
||||
|
||||
# Internal variables.
|
||||
PAPEROPT_a4 = -D latex_paper_size=a4
|
||||
PAPEROPT_letter = -D latex_paper_size=letter
|
||||
ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source
|
||||
ALLSPHINXAPIOPTS = -f $(SPHINXAPIOPTS) -o source/api ../wlauto
|
||||
# the i18n builder cannot share the environment and doctrees with the others
|
||||
I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) source
|
||||
|
||||
.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext
|
||||
|
||||
help:
|
||||
@echo "Please use \`make <target>' where <target> is one of"
|
||||
@echo " html to make standalone HTML files"
|
||||
@echo " dirhtml to make HTML files named index.html in directories"
|
||||
@echo " singlehtml to make a single large HTML file"
|
||||
@echo " pickle to make pickle files"
|
||||
@echo " json to make JSON files"
|
||||
@echo " htmlhelp to make HTML files and a HTML help project"
|
||||
@echo " qthelp to make HTML files and a qthelp project"
|
||||
@echo " devhelp to make HTML files and a Devhelp project"
|
||||
@echo " epub to make an epub"
|
||||
@echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter"
|
||||
@echo " latexpdf to make LaTeX files and run them through pdflatex"
|
||||
@echo " text to make text files"
|
||||
@echo " man to make manual pages"
|
||||
@echo " texinfo to make Texinfo files"
|
||||
@echo " info to make Texinfo files and run them through makeinfo"
|
||||
@echo " gettext to make PO message catalogs"
|
||||
@echo " changes to make an overview of all changed/added/deprecated items"
|
||||
@echo " linkcheck to check all external links for integrity"
|
||||
@echo " doctest to run all doctests embedded in the documentation (if enabled)"
|
||||
@echo " coverage to run documentation coverage checks"
|
||||
|
||||
clean:
|
||||
rm -rf $(BUILDDIR)/*
|
||||
rm -rf source/api/*
|
||||
rm -rf source/extensions/*
|
||||
rm -rf source/instrumentation_method_map.rst
|
||||
|
||||
coverage:
|
||||
$(SPHINXBUILD) -b coverage $(ALLSPHINXOPTS) $(BUILDDIR)/coverage
|
||||
@echo
|
||||
@echo "Build finished. The coverage reports are in $(BUILDDIR)/coverage."
|
||||
|
||||
api: ../wlauto
|
||||
rm -rf source/api/*
|
||||
$(SPHINXAPI) $(ALLSPHINXAPIOPTS)
|
||||
|
||||
waext: ../wlauto
|
||||
rm -rf source/extensions
|
||||
mkdir -p source/extensions
|
||||
$(WAEXT) $(WAEXTOPTS)
|
||||
|
||||
|
||||
sigtab: ../wlauto/core/instrumentation.py source/instrumentation_method_map.template
|
||||
rm -rf source/instrumentation_method_map.rst
|
||||
./build_instrumentation_method_map.py source/instrumentation_method_map.rst
|
||||
|
||||
html: api waext sigtab
|
||||
$(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html
|
||||
@echo
|
||||
@echo "Build finished. The HTML pages are in $(BUILDDIR)/html."
|
||||
|
||||
dirhtml: api waext sigtab
|
||||
$(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml
|
||||
@echo
|
||||
@echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml."
|
||||
|
||||
singlehtml: api waext sigtab
|
||||
$(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml
|
||||
@echo
|
||||
@echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml."
|
||||
|
||||
pickle: api waext sigtab
|
||||
$(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle
|
||||
@echo
|
||||
@echo "Build finished; now you can process the pickle files."
|
||||
|
||||
json: api waext sigtab
|
||||
$(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json
|
||||
@echo
|
||||
@echo "Build finished; now you can process the JSON files."
|
||||
|
||||
htmlhelp: api waext sigtab
|
||||
$(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp
|
||||
@echo
|
||||
@echo "Build finished; now you can run HTML Help Workshop with the" \
|
||||
".hhp project file in $(BUILDDIR)/htmlhelp."
|
||||
|
||||
qthelp: api waext sigtab
|
||||
$(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp
|
||||
@echo
|
||||
@echo "Build finished; now you can run "qcollectiongenerator" with the" \
|
||||
".qhcp project file in $(BUILDDIR)/qthelp, like this:"
|
||||
@echo "# qcollectiongenerator $(BUILDDIR)/qthelp/WorkloadAutomation2.qhcp"
|
||||
@echo "To view the help file:"
|
||||
@echo "# assistant -collectionFile $(BUILDDIR)/qthelp/WorkloadAutomation2.qhc"
|
||||
|
||||
devhelp: api
|
||||
$(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp
|
||||
@echo
|
||||
@echo "Build finished."
|
||||
@echo "To view the help file:"
|
||||
@echo "# mkdir -p $$HOME/.local/share/devhelp/WorkloadAutomation2"
|
||||
@echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/WorkloadAutomation2"
|
||||
@echo "# devhelp"
|
||||
|
||||
epub: api waext sigtab
|
||||
$(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub
|
||||
@echo
|
||||
@echo "Build finished. The epub file is in $(BUILDDIR)/epub."
|
||||
|
||||
latex: api waext sigtab
|
||||
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
|
||||
@echo
|
||||
@echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex."
|
||||
@echo "Run \`make' in that directory to run these through (pdf)latex" \
|
||||
"(use \`make latexpdf' here to do that automatically)."
|
||||
|
||||
latexpdf: api waext sigtab
|
||||
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
|
||||
@echo "Running LaTeX files through pdflatex..."
|
||||
$(MAKE) -C $(BUILDDIR)/latex all-pdf
|
||||
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
|
||||
|
||||
text: api waext sigtab
|
||||
$(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text
|
||||
@echo
|
||||
@echo "Build finished. The text files are in $(BUILDDIR)/text."
|
||||
|
||||
man: api waext sigtab
|
||||
$(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man
|
||||
@echo
|
||||
@echo "Build finished. The manual pages are in $(BUILDDIR)/man."
|
||||
|
||||
texinfo: api waext sigtab
|
||||
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
|
||||
@echo
|
||||
@echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo."
|
||||
@echo "Run \`make' in that directory to run these through makeinfo" \
|
||||
"(use \`make info' here to do that automatically)."
|
||||
|
||||
info: api waext sigtab
|
||||
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
|
||||
@echo "Running Texinfo files through makeinfo..."
|
||||
make -C $(BUILDDIR)/texinfo info
|
||||
@echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo."
|
||||
|
||||
gettext: api waext sigtab
|
||||
$(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale
|
||||
@echo
|
||||
@echo "Build finished. The message catalogs are in $(BUILDDIR)/locale."
|
||||
|
||||
changes: api waext sigtab
|
||||
$(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes
|
||||
@echo
|
||||
@echo "The overview file is in $(BUILDDIR)/changes."
|
||||
|
||||
linkcheck: api waext sigtab
|
||||
$(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck
|
||||
@echo
|
||||
@echo "Link check complete; look for any errors in the above output " \
|
||||
"or in $(BUILDDIR)/linkcheck/output.txt."
|
||||
|
||||
doctest: api waext sigtab
|
||||
$(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest
|
||||
@echo "Testing of doctests in the sources finished, look at the " \
|
||||
"results in $(BUILDDIR)/doctest/output.txt."
|
46
doc/build_extension_docs.py
Executable file
46
doc/build_extension_docs.py
Executable file
@@ -0,0 +1,46 @@
|
||||
#!/usr/bin/env python
|
||||
# Copyright 2014-2015 ARM Limited
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
from wlauto import ExtensionLoader
|
||||
from wlauto.utils.doc import get_rst_from_extension, underline
|
||||
from wlauto.utils.misc import capitalize
|
||||
|
||||
|
||||
GENERATE_FOR = ['workload', 'instrument', 'result_processor', 'device']
|
||||
|
||||
|
||||
def generate_extension_documentation(source_dir, outdir, ignore_paths):
|
||||
loader = ExtensionLoader(keep_going=True)
|
||||
loader.clear()
|
||||
loader.update(paths=[source_dir], ignore_paths=ignore_paths)
|
||||
for ext_type in loader.extension_kinds:
|
||||
if not ext_type in GENERATE_FOR:
|
||||
continue
|
||||
outfile = os.path.join(outdir, '{}s.rst'.format(ext_type))
|
||||
with open(outfile, 'w') as wfh:
|
||||
wfh.write('.. _{}s:\n\n'.format(ext_type))
|
||||
wfh.write(underline(capitalize('{}s'.format(ext_type))))
|
||||
exts = loader.list_extensions(ext_type)
|
||||
for ext in sorted(exts, key=lambda x: x.name):
|
||||
wfh.write(get_rst_from_extension(ext))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
generate_extension_documentation(sys.argv[2], sys.argv[1], sys.argv[3:])
|
48
doc/build_instrumentation_method_map.py
Executable file
48
doc/build_instrumentation_method_map.py
Executable file
@@ -0,0 +1,48 @@
|
||||
#!/usr/bin/env python
|
||||
# Copyright 2015-2015 ARM Limited
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import os
|
||||
import sys
|
||||
import string
|
||||
from copy import copy
|
||||
|
||||
from wlauto.core.instrumentation import SIGNAL_MAP, PRIORITY_MAP
|
||||
from wlauto.utils.doc import format_simple_table
|
||||
|
||||
|
||||
CONVINIENCE_ALIASES = ['initialize', 'setup', 'start', 'stop', 'process_workload_result',
|
||||
'update_result', 'teardown', 'finalize']
|
||||
|
||||
OUTPUT_TEMPLATE_FILE = os.path.join(os.path.dirname(__file__), 'source', 'instrumentation_method_map.template')
|
||||
|
||||
|
||||
def escape_trailing_underscore(value):
|
||||
if value.endswith('_'):
|
||||
return value[:-1] + '\_'
|
||||
|
||||
|
||||
def generate_instrumentation_method_map(outfile):
|
||||
signal_table = format_simple_table([(k, v) for k, v in SIGNAL_MAP.iteritems()],
|
||||
headers=['method name', 'signal'], align='<<')
|
||||
priority_table = format_simple_table([(escape_trailing_underscore(k), v) for k, v in PRIORITY_MAP.iteritems()],
|
||||
headers=['prefix', 'priority'], align='<>')
|
||||
with open(OUTPUT_TEMPLATE_FILE) as fh:
|
||||
template = string.Template(fh.read())
|
||||
with open(outfile, 'w') as wfh:
|
||||
wfh.write(template.substitute(signal_names=signal_table, priority_prefixes=priority_table))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
generate_instrumentation_method_map(sys.argv[1])
|
0
doc/source/_static/.gitignore
vendored
Normal file
0
doc/source/_static/.gitignore
vendored
Normal file
0
doc/source/_templates/.gitignore
vendored
Normal file
0
doc/source/_templates/.gitignore
vendored
Normal file
101
doc/source/additional_topics.rst
Normal file
101
doc/source/additional_topics.rst
Normal file
@@ -0,0 +1,101 @@
|
||||
Additional Topics
|
||||
+++++++++++++++++
|
||||
|
||||
Modules
|
||||
=======
|
||||
|
||||
Modules are essentially plug-ins for Extensions. They provide a way of defining
|
||||
common and reusable functionality. An Extension can load zero or more modules
|
||||
during it's creation. Loaded modules will then add their capabilities (see
|
||||
Capabilities_) to those of the Extension. When calling code tries to access an
|
||||
attribute of an Extension the Extension doesn't have, it will try to find the
|
||||
attribute among it's loaded modules and will return that instead.
|
||||
|
||||
.. note:: Modules are themselves extensions, and can therefore load their own
|
||||
modules. *Do not* abuse this.
|
||||
|
||||
For example, calling code may wish to reboot an unresponsive device by calling
|
||||
``device.hard_reset()``, but the ``Device`` in question does not have a
|
||||
``hard_reset`` method; however the ``Device`` has loaded ``netio_switch``
|
||||
module which allows to disable power supply over a network (say this device
|
||||
is in a rack and is powered through such a switch). The module has
|
||||
``reset_power`` capability (see Capabilities_ below) and so implements
|
||||
``hard_reset``. This will get invoked when ``device.hard_rest()`` is called.
|
||||
|
||||
.. note:: Modules can only extend Extensions with new attributes; they cannot
|
||||
override existing functionality. In the example above, if the
|
||||
``Device`` has implemented ``hard_reset()`` itself, then *that* will
|
||||
get invoked irrespective of which modules it has loaded.
|
||||
|
||||
If two loaded modules have the same capability or implement the same method,
|
||||
then the last module to be loaded "wins" and its method will be invoke,
|
||||
effectively overriding the module that was loaded previously.
|
||||
|
||||
Specifying Modules
|
||||
------------------
|
||||
|
||||
Modules get loaded when an Extension is instantiated by the extension loader.
|
||||
There are two ways to specify which modules should be loaded for a device.
|
||||
|
||||
|
||||
Capabilities
|
||||
============
|
||||
|
||||
Capabilities define the functionality that is implemented by an Extension,
|
||||
either within the Extension itself or through loadable modules. A capability is
|
||||
just a label, but there is an implied contract. When an Extension claims to have
|
||||
a particular capability, it promises to expose a particular set of
|
||||
functionality through a predefined interface.
|
||||
|
||||
Currently used capabilities are described below.
|
||||
|
||||
.. note:: Since capabilities are basically random strings, the user can always
|
||||
define their own; and it is then up to the user to define, enforce and
|
||||
document the contract associated with their capability. Below, are the
|
||||
"standard" capabilities used in WA.
|
||||
|
||||
|
||||
.. note:: The method signatures in the descriptions below show the calling
|
||||
signature (i.e. they're omitting the initial self parameter).
|
||||
|
||||
active_cooling
|
||||
--------------
|
||||
|
||||
Intended to be used by devices and device modules, this capability implies
|
||||
that the device implements a controllable active cooling solution (e.g.
|
||||
a programmable fan). The device/module must implement the following methods:
|
||||
|
||||
start_active_cooling()
|
||||
Active cooling is started (e.g. the fan is turned on)
|
||||
|
||||
stop_active_cooling()
|
||||
Active cooling is stopped (e.g. the fan is turned off)
|
||||
|
||||
|
||||
reset_power
|
||||
-----------
|
||||
|
||||
Intended to be used by devices and device modules, this capability implies
|
||||
that the device is capable of performing a hard reset by toggling power. The
|
||||
device/module must implement the following method:
|
||||
|
||||
hard_reset()
|
||||
The device is restarted. This method cannot rely on the device being
|
||||
responsive and must work even if the software on the device has crashed.
|
||||
|
||||
|
||||
flash
|
||||
-----
|
||||
|
||||
Intended to be used by devices and device modules, this capability implies
|
||||
that the device can be flashed with new images. The device/module must
|
||||
implement the following method:
|
||||
|
||||
flash(image_bundle=None, images=None)
|
||||
``image_bundle`` is a path to a "bundle" (e.g. a tarball) that contains
|
||||
all the images to be flashed. Which images go where must also be defined
|
||||
within the bundle. ``images`` is a dict mapping image destination (e.g.
|
||||
partition name) to the path to that specific image. Both
|
||||
``image_bundle`` and ``images`` may be specified at the same time. If
|
||||
there is overlap between the two, ``images`` wins and its contents will
|
||||
be flashed in preference to the ``image_bundle``.
|
608
doc/source/agenda.rst
Normal file
608
doc/source/agenda.rst
Normal file
@@ -0,0 +1,608 @@
|
||||
.. _agenda:
|
||||
|
||||
======
|
||||
Agenda
|
||||
======
|
||||
|
||||
An agenda specifies what is to be done during a Workload Automation run,
|
||||
including which workloads will be run, with what configuration, which
|
||||
instruments and result processors will be enabled, etc. Agenda syntax is
|
||||
designed to be both succinct and expressive.
|
||||
|
||||
Agendas are specified using YAML_ notation. It is recommended that you
|
||||
familiarize yourself with the linked page.
|
||||
|
||||
.. _YAML: http://en.wikipedia.org/wiki/YAML
|
||||
|
||||
.. note:: Earlier versions of WA have supported CSV-style agendas. These were
|
||||
there to facilitate transition from WA1 scripts. The format was more
|
||||
awkward and supported only a limited subset of the features. Support
|
||||
for it has now been removed.
|
||||
|
||||
|
||||
Specifying which workloads to run
|
||||
=================================
|
||||
|
||||
The central purpose of an agenda is to specify what workloads to run. A
|
||||
minimalist agenda contains a single entry at the top level called "workloads"
|
||||
that maps onto a list of workload names to run:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
workloads:
|
||||
- dhrystone
|
||||
- memcpy
|
||||
- cyclictest
|
||||
|
||||
This specifies a WA run consisting of ``dhrystone`` followed by ``memcpy``, followed by
|
||||
``cyclictest`` workloads, and using instruments and result processors specified in
|
||||
config.py (see :ref:`configuration-specification` section).
|
||||
|
||||
.. note:: If you're familiar with YAML, you will recognize the above as a single-key
|
||||
associative array mapping onto a list. YAML has two notations for both
|
||||
associative arrays and lists: block notation (seen above) and also
|
||||
in-line notation. This means that the above agenda can also be
|
||||
written in a single line as ::
|
||||
|
||||
workloads: [dhrystone, memcpy, cyclictest]
|
||||
|
||||
(with the list in-lined), or ::
|
||||
|
||||
{workloads: [dhrystone, memcpy, cyclictest]}
|
||||
|
||||
(with both the list and the associative array in-line). WA doesn't
|
||||
care which of the notations is used as they all get parsed into the
|
||||
same structure by the YAML parser. You can use whatever format you
|
||||
find easier/clearer.
|
||||
|
||||
Multiple iterations
|
||||
-------------------
|
||||
|
||||
There will normally be some variability in workload execution when running on a
|
||||
real device. In order to quantify it, multiple iterations of the same workload
|
||||
are usually performed. You can specify the number of iterations for each
|
||||
workload by adding ``iterations`` field to the workload specifications (or
|
||||
"specs"):
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
workloads:
|
||||
- name: dhrystone
|
||||
iterations: 5
|
||||
- name: memcpy
|
||||
iterations: 5
|
||||
- name: cyclictest
|
||||
iterations: 5
|
||||
|
||||
Now that we're specifying both the workload name and the number of iterations in
|
||||
each spec, we have to explicitly name each field of the spec.
|
||||
|
||||
It is often the case that, as in in the example above, you will want to run all
|
||||
workloads for the same number of iterations. Rather than having to specify it
|
||||
for each and every spec, you can do with a single entry by adding a ``global``
|
||||
section to your agenda:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
global:
|
||||
iterations: 5
|
||||
workloads:
|
||||
- dhrystone
|
||||
- memcpy
|
||||
- cyclictest
|
||||
|
||||
The global section can contain the same fields as a workload spec. The
|
||||
fields in the global section will get added to each spec. If the same field is
|
||||
defined both in global section and in a spec, then the value in the spec will
|
||||
overwrite the global value. For example, suppose we wanted to run all our workloads
|
||||
for five iterations, except cyclictest which we want to run for ten (e.g.
|
||||
because we know it to be particularly unstable). This can be specified like
|
||||
this:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
global:
|
||||
iterations: 5
|
||||
workloads:
|
||||
- dhrystone
|
||||
- memcpy
|
||||
- name: cyclictest
|
||||
iterations: 10
|
||||
|
||||
Again, because we are now specifying two fields for cyclictest spec, we have to
|
||||
explicitly name them.
|
||||
|
||||
Configuring workloads
|
||||
---------------------
|
||||
|
||||
Some workloads accept configuration parameters that modify their behavior. These
|
||||
parameters are specific to a particular workload and can alter the workload in
|
||||
any number of ways, e.g. set the duration for which to run, or specify a media
|
||||
file to be used, etc. The vast majority of workload parameters will have some
|
||||
default value, so it is only necessary to specify the name of the workload in
|
||||
order for WA to run it. However, sometimes you want more control over how a
|
||||
workload runs.
|
||||
|
||||
For example, by default, dhrystone will execute 10 million loops across four
|
||||
threads. Suppose you device has six cores available and you want the workload to
|
||||
load them all. You also want to increase the total number of loops accordingly
|
||||
to 15 million. You can specify this using dhrystone's parameters:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
global:
|
||||
iterations: 5
|
||||
workloads:
|
||||
- name: dhrystone
|
||||
params:
|
||||
threads: 6
|
||||
mloops: 15
|
||||
- memcpy
|
||||
- name: cyclictest
|
||||
iterations: 10
|
||||
|
||||
.. note:: You can find out what parameters a workload accepts by looking it up
|
||||
in the :ref:`Workloads` section. You can also look it up using WA itself
|
||||
with "show" command::
|
||||
|
||||
wa show dhrystone
|
||||
|
||||
see the :ref:`Invocation` section for details.
|
||||
|
||||
In addition to configuring the workload itself, we can also specify
|
||||
configuration for the underlying device. This can be done by setting runtime
|
||||
parameters in the workload spec. For example, suppose we want to ensure the
|
||||
maximum score for our benchmarks, at the expense of power consumption, by
|
||||
setting the cpufreq governor to "performance" on cpu0 (assuming all our cores
|
||||
are in the same DVFS domain and so setting the governor for cpu0 will affect all
|
||||
cores). This can be done like this:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
global:
|
||||
iterations: 5
|
||||
workloads:
|
||||
- name: dhrystone
|
||||
runtime_params:
|
||||
sysfile_values:
|
||||
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: performance
|
||||
workload_params:
|
||||
threads: 6
|
||||
mloops: 15
|
||||
- memcpy
|
||||
- name: cyclictest
|
||||
iterations: 10
|
||||
|
||||
|
||||
Here, we're specifying ``sysfile_values`` runtime parameter for the device. The
|
||||
value for this parameter is a mapping (an associative array, in YAML) of file
|
||||
paths onto values that should be written into those files. ``sysfile_values`` is
|
||||
the only runtime parameter that is available for any (Linux) device. Other
|
||||
runtime parameters will depend on the specifics of the device used (e.g. its
|
||||
CPU cores configuration). I've renamed ``params`` to ``workload_params`` for
|
||||
clarity, but that wasn't strictly necessary as ``params`` is interpreted as
|
||||
``workload_params`` inside a workload spec.
|
||||
|
||||
.. note:: ``params`` field is interpreted differently depending on whether it's in a
|
||||
workload spec or the global section. In a workload spec, it translates to
|
||||
``workload_params``, in the global section it translates to ``runtime_params``.
|
||||
|
||||
Runtime parameters do not automatically reset at the end of workload spec
|
||||
execution, so all subsequent iterations will also be affected unless they
|
||||
explicitly change the parameter (in the example above, performance governor will
|
||||
also be used for ``memcpy`` and ``cyclictest``. There are two ways around this:
|
||||
either set ``reboot_policy`` WA setting (see :ref:`configuration-specification` section) such that
|
||||
the device gets rebooted between spec executions, thus being returned to its
|
||||
initial state, or set the default runtime parameter values in the ``global``
|
||||
section of the agenda so that they get set for every spec that doesn't
|
||||
explicitly override them.
|
||||
|
||||
.. note:: "In addition to ``runtime_params`` there are also ``boot_params`` that
|
||||
work in a similar way, but they get passed to the device when it
|
||||
reboots. At the moment ``TC2`` is the only device that defines a boot
|
||||
parameter, which is explained in ``TC2`` documentation, so boot
|
||||
parameters will not be mentioned further.
|
||||
|
||||
IDs and Labels
|
||||
--------------
|
||||
|
||||
It is possible to list multiple specs with the same workload in an agenda. You
|
||||
may wish to this if you want to run a workload with different parameter values
|
||||
or under different runtime configurations of the device. The workload name
|
||||
therefore does not uniquely identify a spec. To be able to distinguish between
|
||||
different specs (e.g. in reported results), each spec has an ID which is unique
|
||||
to all specs within an agenda (and therefore with a single WA run). If an ID
|
||||
isn't explicitly specified using ``id`` field (note that the field name is in
|
||||
lower case), one will be automatically assigned to the spec at the beginning of
|
||||
the WA run based on the position of the spec within the list. The first spec
|
||||
*without an explicit ID* will be assigned ID ``1``, the second spec *without an
|
||||
explicit ID* will be assigned ID ``2``, and so forth.
|
||||
|
||||
Numerical IDs aren't particularly easy to deal with, which is why it is
|
||||
recommended that, for non-trivial agendas, you manually set the ids to something
|
||||
more meaningful (or use labels -- see below). An ID can be pretty much anything
|
||||
that will pass through the YAML parser. The only requirement is that it is
|
||||
unique to the agenda. However, is usually better to keep them reasonably short
|
||||
(they don't need to be *globally* unique), and to stick with alpha-numeric
|
||||
characters and underscores/dashes. While WA can handle other characters as well,
|
||||
getting too adventurous with your IDs may cause issues further down the line
|
||||
when processing WA results (e.g. when uploading them to a database that may have
|
||||
its own restrictions).
|
||||
|
||||
In addition to IDs, you can also specify labels for your workload specs. These
|
||||
are similar to IDs but do not have the uniqueness restriction. If specified,
|
||||
labels will be used by some result processes instead of (or in addition to) the
|
||||
workload name. For example, the ``csv`` result processor will put the label in the
|
||||
"workload" column of the CSV file.
|
||||
|
||||
It is up to you how you chose to use IDs and labels. WA itself doesn't expect
|
||||
any particular format (apart from uniqueness for IDs). Below is the earlier
|
||||
example updated to specify explicit IDs and label dhrystone spec to reflect
|
||||
parameters used.
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
global:
|
||||
iterations: 5
|
||||
workloads:
|
||||
- id: 01_dhry
|
||||
name: dhrystone
|
||||
label: dhrystone_15over6
|
||||
runtime_params:
|
||||
sysfile_values:
|
||||
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: performance
|
||||
workload_params:
|
||||
threads: 6
|
||||
mloops: 15
|
||||
- id: 02_memc
|
||||
name: memcpy
|
||||
- id: 03_cycl
|
||||
name: cyclictest
|
||||
iterations: 10
|
||||
|
||||
|
||||
Result Processors and Instrumentation
|
||||
=====================================
|
||||
|
||||
Result Processors
|
||||
-----------------
|
||||
|
||||
Result processors, as the name suggests, handle the processing of results
|
||||
generated form running workload specs. By default, WA enables a couple of basic
|
||||
result processors (e.g. one generates a csv file with all scores reported by
|
||||
workloads), which you can see in ``~/.workload_automation/config.py``. However,
|
||||
WA has a number of other, more specialized, result processors (e.g. for
|
||||
uploading to databases). You can list available result processors with
|
||||
``wa list result_processors`` command. If you want to permanently enable a
|
||||
result processor, you can add it to your ``config.py``. You can also enable a
|
||||
result processor for a particular run by specifying it in the ``config`` section
|
||||
in the agenda. As the name suggests, ``config`` section mirrors the structure of
|
||||
``config.py``\ (although using YAML rather than Python), and anything that can
|
||||
be specified in the latter, can also be specified in the former.
|
||||
|
||||
As with workloads, result processors may have parameters that define their
|
||||
behavior. Parameters of result processors are specified a little differently,
|
||||
however. Result processor parameter values are listed in the config section,
|
||||
namespaced under the name of the result processor.
|
||||
|
||||
For example, suppose we want to be able to easily query the results generated by
|
||||
the workload specs we've defined so far. We can use ``sqlite`` result processor
|
||||
to have WA create an sqlite_ database file with the results. By default, this
|
||||
file will be generated in WA's output directory (at the same level as
|
||||
results.csv); but suppose we want to store the results in the same file for
|
||||
every run of the agenda we do. This can be done by specifying an alternative
|
||||
database file with ``database`` parameter of the result processor:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
config:
|
||||
result_processors: [sqlite]
|
||||
sqlite:
|
||||
database: ~/my_wa_results.sqlite
|
||||
global:
|
||||
iterations: 5
|
||||
workloads:
|
||||
- id: 01_dhry
|
||||
name: dhrystone
|
||||
label: dhrystone_15over6
|
||||
runtime_params:
|
||||
sysfile_values:
|
||||
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: performance
|
||||
workload_params:
|
||||
threads: 6
|
||||
mloops: 15
|
||||
- id: 02_memc
|
||||
name: memcpy
|
||||
- id: 03_cycl
|
||||
name: cyclictest
|
||||
iterations: 10
|
||||
|
||||
A couple of things to observe here:
|
||||
|
||||
- There is no need to repeat the result processors listed in ``config.py``. The
|
||||
processors listed in ``result_processors`` entry in the agenda will be used
|
||||
*in addition to* those defined in the ``config.py``.
|
||||
- The database file is specified under "sqlite" entry in the config section.
|
||||
Note, however, that this entry alone is not enough to enable the result
|
||||
processor, it must be listed in ``result_processors``, otherwise the "sqilte"
|
||||
config entry will be ignored.
|
||||
- The database file must be specified as an absolute path, however it may use
|
||||
the user home specifier '~' and/or environment variables.
|
||||
|
||||
.. _sqlite: http://www.sqlite.org/
|
||||
|
||||
|
||||
Instrumentation
|
||||
---------------
|
||||
|
||||
WA can enable various "instruments" to be used during workload execution.
|
||||
Instruments can be quite diverse in their functionality, but the majority of
|
||||
instruments available in WA today are there to collect additional data (such as
|
||||
trace) from the device during workload execution. You can view the list of
|
||||
available instruments by using ``wa list instruments`` command. As with result
|
||||
processors, a few are enabled by default in the ``config.py`` and additional
|
||||
ones may be added in the same place, or specified in the agenda using
|
||||
``instrumentation`` entry.
|
||||
|
||||
For example, we can collect core utilisation statistics (for what proportion of
|
||||
workload execution N cores were utilized above a specified threshold) using
|
||||
``coreutil`` instrument.
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
config:
|
||||
instrumentation: [coreutil]
|
||||
coreutil:
|
||||
threshold: 80
|
||||
result_processors: [sqlite]
|
||||
sqlite:
|
||||
database: ~/my_wa_results.sqlite
|
||||
global:
|
||||
iterations: 5
|
||||
workloads:
|
||||
- id: 01_dhry
|
||||
name: dhrystone
|
||||
label: dhrystone_15over6
|
||||
runtime_params:
|
||||
sysfile_values:
|
||||
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: performance
|
||||
workload_params:
|
||||
threads: 6
|
||||
mloops: 15
|
||||
- id: 02_memc
|
||||
name: memcpy
|
||||
- id: 03_cycl
|
||||
name: cyclictest
|
||||
iterations: 10
|
||||
|
||||
Instrumentation isn't "free" and it is advisable not to have too many
|
||||
instruments enabled at once as that might skew results. For example, you don't
|
||||
want to have power measurement enabled at the same time as event tracing, as the
|
||||
latter may prevent cores from going into idle states and thus affecting the
|
||||
reading collected by the former.
|
||||
|
||||
Unlike result processors, instrumentation may be enabled (and disabled -- see below)
|
||||
on per-spec basis. For example, suppose we want to collect /proc/meminfo from the
|
||||
device when we run ``memcpy`` workload, but not for the other two. We can do that using
|
||||
``sysfs_extractor`` instrument, and we will only enable it for ``memcpy``:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
config:
|
||||
instrumentation: [coreutil]
|
||||
coreutil:
|
||||
threshold: 80
|
||||
sysfs_extractor:
|
||||
paths: [/proc/meminfo]
|
||||
result_processors: [sqlite]
|
||||
sqlite:
|
||||
database: ~/my_wa_results.sqlite
|
||||
global:
|
||||
iterations: 5
|
||||
workloads:
|
||||
- id: 01_dhry
|
||||
name: dhrystone
|
||||
label: dhrystone_15over6
|
||||
runtime_params:
|
||||
sysfile_values:
|
||||
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: performance
|
||||
workload_params:
|
||||
threads: 6
|
||||
mloops: 15
|
||||
- id: 02_memc
|
||||
name: memcpy
|
||||
instrumentation: [sysfs_extractor]
|
||||
- id: 03_cycl
|
||||
name: cyclictest
|
||||
iterations: 10
|
||||
|
||||
As with ``config`` sections, ``instrumentation`` entry in the spec needs only to
|
||||
list additional instruments and does not need to repeat instruments specified
|
||||
elsewhere.
|
||||
|
||||
.. note:: At present, it is only possible to enable/disable instrumentation on
|
||||
per-spec base. It is *not* possible to provide configuration on
|
||||
per-spec basis in the current version of WA (e.g. in our example, it
|
||||
is not possible to specify different ``sysfs_extractor`` paths for
|
||||
different workloads). This restriction may be lifted in future
|
||||
versions of WA.
|
||||
|
||||
Disabling result processors and instrumentation
|
||||
-----------------------------------------------
|
||||
|
||||
As seen above, extensions specified with ``instrumentation`` and
|
||||
``result_processor`` clauses get added to those already specified previously.
|
||||
Just because an instrument specified in ``config.py`` is not listed in the
|
||||
``config`` section of the agenda, does not mean it will be disabled. If you do
|
||||
want to disable an instrument, you can always remove/comment it out from
|
||||
``config.py``. However that will be introducing a permanent configuration change
|
||||
to your environment (one that can be easily reverted, but may be just as
|
||||
easily forgotten). If you want to temporarily disable a result processor or an
|
||||
instrument for a particular run, you can do that in your agenda by prepending a
|
||||
tilde (``~``) to its name.
|
||||
|
||||
For example, let's say we want to disable ``cpufreq`` instrument enabled in our
|
||||
``config.py`` (suppose we're going to send results via email and so want to
|
||||
reduce to total size of the output directory):
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
config:
|
||||
instrumentation: [coreutil, ~cpufreq]
|
||||
coreutil:
|
||||
threshold: 80
|
||||
sysfs_extractor:
|
||||
paths: [/proc/meminfo]
|
||||
result_processors: [sqlite]
|
||||
sqlite:
|
||||
database: ~/my_wa_results.sqlite
|
||||
global:
|
||||
iterations: 5
|
||||
workloads:
|
||||
- id: 01_dhry
|
||||
name: dhrystone
|
||||
label: dhrystone_15over6
|
||||
runtime_params:
|
||||
sysfile_values:
|
||||
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: performance
|
||||
workload_params:
|
||||
threads: 6
|
||||
mloops: 15
|
||||
- id: 02_memc
|
||||
name: memcpy
|
||||
instrumentation: [sysfs_extractor]
|
||||
- id: 03_cycl
|
||||
name: cyclictest
|
||||
iterations: 10
|
||||
|
||||
|
||||
Sections
|
||||
========
|
||||
|
||||
It is a common requirement to be able to run the same set of workloads under
|
||||
different device configurations. E.g. you may want to investigate impact of
|
||||
changing a particular setting to different values on the benchmark scores, or to
|
||||
quantify the impact of enabling a particular feature in the kernel. WA allows
|
||||
this by defining "sections" of configuration with an agenda.
|
||||
|
||||
For example, suppose what we really want, is to measure the impact of using
|
||||
interactive cpufreq governor vs the performance governor on the three
|
||||
benchmarks. We could create another three workload spec entries similar to the
|
||||
ones we already have and change the sysfile value being set to "interactive".
|
||||
However, this introduces a lot of duplication; and what if we want to change
|
||||
spec configuration? We would have to change it in multiple places, running the
|
||||
risk of forgetting one.
|
||||
|
||||
A better way is to keep the three workload specs and define a section for each
|
||||
governor:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
config:
|
||||
instrumentation: [coreutil, ~cpufreq]
|
||||
coreutil:
|
||||
threshold: 80
|
||||
sysfs_extractor:
|
||||
paths: [/proc/meminfo]
|
||||
result_processors: [sqlite]
|
||||
sqlite:
|
||||
database: ~/my_wa_results.sqlite
|
||||
global:
|
||||
iterations: 5
|
||||
sections:
|
||||
- id: perf
|
||||
runtime_params:
|
||||
sysfile_values:
|
||||
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: performance
|
||||
- id: inter
|
||||
runtime_params:
|
||||
sysfile_values:
|
||||
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: interactive
|
||||
workloads:
|
||||
- id: 01_dhry
|
||||
name: dhrystone
|
||||
label: dhrystone_15over6
|
||||
workload_params:
|
||||
threads: 6
|
||||
mloops: 15
|
||||
- id: 02_memc
|
||||
name: memcpy
|
||||
instrumentation: [sysfs_extractor]
|
||||
- id: 03_cycl
|
||||
name: cyclictest
|
||||
iterations: 10
|
||||
|
||||
A section, just like an workload spec, needs to have a unique ID. Apart from
|
||||
that, a "section" is similar to the ``global`` section we've already seen --
|
||||
everything that goes into a section will be applied to each workload spec.
|
||||
Workload specs defined under top-level ``workloads`` entry will be executed for
|
||||
each of the sections listed under ``sections``.
|
||||
|
||||
.. note:: It is also possible to have a ``workloads`` entry within a section,
|
||||
in which case, those workloads will only be executed for that specific
|
||||
section.
|
||||
|
||||
In order to maintain the uniqueness requirement of workload spec IDs, they will
|
||||
be namespaced under each section by prepending the section ID to the spec ID
|
||||
with an under score. So in the agenda above, we no longer have a workload spec
|
||||
with ID ``01_dhry``, instead there are two specs with IDs ``perf_01_dhry`` and
|
||||
``inter_01_dhry``.
|
||||
|
||||
Note that the ``global`` section still applies to every spec in the agenda. So
|
||||
the precedence order is -- spec settings override section settings, which in
|
||||
turn override global settings.
|
||||
|
||||
|
||||
Other Configuration
|
||||
===================
|
||||
|
||||
.. _configuration_in_agenda:
|
||||
|
||||
As mentioned previously, ``config`` section in an agenda can contain anything
|
||||
that can be defined in ``config.py`` (with Python syntax translated to the
|
||||
equivalent YAML). Certain configuration (e.g. ``run_name``) makes more sense
|
||||
to define in an agenda than a config file. Refer to the
|
||||
:ref:`configuration-specification` section for details.
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
config:
|
||||
project: governor_comparison
|
||||
run_name: performance_vs_interactive
|
||||
|
||||
device: generic_android
|
||||
reboot_policy: never
|
||||
|
||||
instrumentation: [coreutil, ~cpufreq]
|
||||
coreutil:
|
||||
threshold: 80
|
||||
sysfs_extractor:
|
||||
paths: [/proc/meminfo]
|
||||
result_processors: [sqlite]
|
||||
sqlite:
|
||||
database: ~/my_wa_results.sqlite
|
||||
global:
|
||||
iterations: 5
|
||||
sections:
|
||||
- id: perf
|
||||
runtime_params:
|
||||
sysfile_values:
|
||||
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: performance
|
||||
- id: inter
|
||||
runtime_params:
|
||||
sysfile_values:
|
||||
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor: interactive
|
||||
workloads:
|
||||
- id: 01_dhry
|
||||
name: dhrystone
|
||||
label: dhrystone_15over6
|
||||
workload_params:
|
||||
threads: 6
|
||||
mloops: 15
|
||||
- id: 02_memc
|
||||
name: memcpy
|
||||
instrumentation: [sysfs_extractor]
|
||||
- id: 03_cycl
|
||||
name: cyclictest
|
||||
iterations: 10
|
||||
|
7
doc/source/changes.rst
Normal file
7
doc/source/changes.rst
Normal file
@@ -0,0 +1,7 @@
|
||||
What's New in Workload Automation
|
||||
=================================
|
||||
|
||||
Version 2.3.0
|
||||
-------------
|
||||
|
||||
- First publicly-released version.
|
270
doc/source/conf.py
Normal file
270
doc/source/conf.py
Normal file
@@ -0,0 +1,270 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# Copyright 2015 ARM Limited
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
#
|
||||
# Workload Automation 2 documentation build configuration file, created by
|
||||
# sphinx-quickstart on Mon Jul 15 09:00:46 2013.
|
||||
#
|
||||
# This file is execfile()d with the current directory set to its containing dir.
|
||||
#
|
||||
# Note that not all possible configuration values are present in this
|
||||
# autogenerated file.
|
||||
#
|
||||
# All configuration values have a default; values that are commented out
|
||||
# serve to show the default.
|
||||
|
||||
import sys, os
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings('ignore', "Module louie was already imported")
|
||||
|
||||
this_dir = os.path.dirname(__file__)
|
||||
sys.path.insert(0, os.path.join(this_dir, '../..'))
|
||||
import wlauto
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
# -- General configuration -----------------------------------------------------
|
||||
|
||||
# If your documentation needs a minimal Sphinx version, state it here.
|
||||
#needs_sphinx = '1.0'
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be extensions
|
||||
# coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
|
||||
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode']
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
|
||||
# The suffix of source filenames.
|
||||
source_suffix = '.rst'
|
||||
|
||||
# The encoding of source files.
|
||||
#source_encoding = 'utf-8-sig'
|
||||
|
||||
# The master toctree document.
|
||||
master_doc = 'index'
|
||||
|
||||
# General information about the project.
|
||||
project = u'Workload Automation'
|
||||
copyright = u'2013, ARM Ltd'
|
||||
|
||||
# The version info for the project you're documenting, acts as replacement for
|
||||
# |version| and |release|, also used in various other places throughout the
|
||||
# built documents.
|
||||
#
|
||||
# The short X.Y version.
|
||||
version = wlauto.__version__
|
||||
# The full version, including alpha/beta/rc tags.
|
||||
release = wlauto.__version__
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
#language = None
|
||||
|
||||
# There are two options for replacing |today|: either, you set today to some
|
||||
# non-false value, then it is used:
|
||||
#today = ''
|
||||
# Else, today_fmt is used as the format for a strftime call.
|
||||
#today_fmt = '%B %d, %Y'
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
exclude_patterns = ['**/*-example']
|
||||
|
||||
# The reST default role (used for this markup: `text`) to use for all documents.
|
||||
#default_role = None
|
||||
|
||||
# If true, '()' will be appended to :func: etc. cross-reference text.
|
||||
#add_function_parentheses = True
|
||||
|
||||
# If true, the current module name will be prepended to all description
|
||||
# unit titles (such as .. function::).
|
||||
#add_module_names = True
|
||||
|
||||
# If true, sectionauthor and moduleauthor directives will be shown in the
|
||||
# output. They are ignored by default.
|
||||
#show_authors = False
|
||||
|
||||
# The name of the Pygments (syntax highlighting) style to use.
|
||||
pygments_style = 'sphinx'
|
||||
|
||||
# A list of ignored prefixes for module index sorting.
|
||||
#modindex_common_prefix = []
|
||||
|
||||
|
||||
# -- Options for HTML output ---------------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
html_theme = 'default'
|
||||
|
||||
# Theme options are theme-specific and customize the look and feel of a theme
|
||||
# further. For a list of options available for each theme, see the
|
||||
# documentation.
|
||||
#html_theme_options = {}
|
||||
|
||||
# Add any paths that contain custom themes here, relative to this directory.
|
||||
#html_theme_path = []
|
||||
|
||||
# The name for this set of Sphinx documents. If None, it defaults to
|
||||
# "<project> v<release> documentation".
|
||||
#html_title = None
|
||||
|
||||
# A shorter title for the navigation bar. Default is the same as html_title.
|
||||
#html_short_title = None
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the top
|
||||
# of the sidebar.
|
||||
#html_logo = None
|
||||
|
||||
# The name of an image file (within the static path) to use as favicon of the
|
||||
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
|
||||
# pixels large.
|
||||
#html_favicon = None
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ['_static']
|
||||
|
||||
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
|
||||
# using the given strftime format.
|
||||
#html_last_updated_fmt = '%b %d, %Y'
|
||||
|
||||
# If true, SmartyPants will be used to convert quotes and dashes to
|
||||
# typographically correct entities.
|
||||
#html_use_smartypants = True
|
||||
|
||||
# Custom sidebar templates, maps document names to template names.
|
||||
#html_sidebars = {}
|
||||
|
||||
# Additional templates that should be rendered to pages, maps page names to
|
||||
# template names.
|
||||
#html_additional_pages = {}
|
||||
|
||||
# If false, no module index is generated.
|
||||
#html_domain_indices = True
|
||||
|
||||
# If false, no index is generated.
|
||||
#html_use_index = True
|
||||
|
||||
# If true, the index is split into individual pages for each letter.
|
||||
#html_split_index = False
|
||||
|
||||
# If true, links to the reST sources are added to the pages.
|
||||
#html_show_sourcelink = True
|
||||
|
||||
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
|
||||
#html_show_sphinx = True
|
||||
|
||||
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
|
||||
#html_show_copyright = True
|
||||
|
||||
# If true, an OpenSearch description file will be output, and all pages will
|
||||
# contain a <link> tag referring to it. The value of this option must be the
|
||||
# base URL from which the finished HTML is served.
|
||||
#html_use_opensearch = ''
|
||||
|
||||
# This is the file name suffix for HTML files (e.g. ".xhtml").
|
||||
#html_file_suffix = None
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
htmlhelp_basename = 'WorkloadAutomationdoc'
|
||||
|
||||
|
||||
# -- Options for LaTeX output --------------------------------------------------
|
||||
|
||||
latex_elements = {
|
||||
# The paper size ('letterpaper' or 'a4paper').
|
||||
#'papersize': 'letterpaper',
|
||||
|
||||
# The font size ('10pt', '11pt' or '12pt').
|
||||
#'pointsize': '10pt',
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#'preamble': '',
|
||||
}
|
||||
|
||||
# Grouping the document tree into LaTeX files. List of tuples
|
||||
# (source start file, target name, title, author, documentclass [howto/manual]).
|
||||
latex_documents = [
|
||||
('index', 'WorkloadAutomation.tex', u'Workload Automation Documentation',
|
||||
u'WA Mailing List \\textless{}workload-automation@arm.com\\textgreater{},Sergei Trofimov \\textless{}sergei.trofimov@arm.com\\textgreater{}, Vasilis Flouris \\textless{}vasilis.flouris@arm.com\\textgreater{}, Mohammed Binsabbar \\textless{}mohammed.binsabbar@arm.com\\textgreater{}', 'manual'),
|
||||
]
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the top of
|
||||
# the title page.
|
||||
#latex_logo = None
|
||||
|
||||
# For "manual" documents, if this is true, then toplevel headings are parts,
|
||||
# not chapters.
|
||||
#latex_use_parts = False
|
||||
|
||||
# If true, show page references after internal links.
|
||||
#latex_show_pagerefs = False
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#latex_show_urls = False
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#latex_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#latex_domain_indices = True
|
||||
|
||||
|
||||
# -- Options for manual page output --------------------------------------------
|
||||
|
||||
# One entry per manual page. List of tuples
|
||||
# (source start file, name, description, authors, manual section).
|
||||
man_pages = [
|
||||
('index', 'workloadautomation', u'Workload Automation Documentation',
|
||||
[u'WA Mailing List <workload-automation@arm.com>, Sergei Trofimov <sergei.trofimov@arm.com>, Vasilis Flouris <vasilis.flouris@arm.com>'], 1)
|
||||
]
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#man_show_urls = False
|
||||
|
||||
|
||||
# -- Options for Texinfo output ------------------------------------------------
|
||||
|
||||
# Grouping the document tree into Texinfo files. List of tuples
|
||||
# (source start file, target name, title, author,
|
||||
# dir menu entry, description, category)
|
||||
texinfo_documents = [
|
||||
('index', 'WorkloadAutomation', u'Workload Automation Documentation',
|
||||
u'WA Mailing List <workload-automation@arm.com>, Sergei Trofimov <sergei.trofimov@arm.com>, Vasilis Flouris <vasilis.flouris@arm.com>', 'WorkloadAutomation', 'A framwork for automationg workload execution on mobile devices.',
|
||||
'Miscellaneous'),
|
||||
]
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#texinfo_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#texinfo_domain_indices = True
|
||||
|
||||
# How to display URL addresses: 'footnote', 'no', or 'inline'.
|
||||
#texinfo_show_urls = 'footnote'
|
||||
|
||||
|
||||
def setup(app):
|
||||
app.add_object_type('confval', 'confval',
|
||||
objname='configuration value',
|
||||
indextemplate='pair: %s; configuration value')
|
188
doc/source/configuration.rst
Normal file
188
doc/source/configuration.rst
Normal file
@@ -0,0 +1,188 @@
|
||||
.. _configuration-specification:
|
||||
|
||||
=============
|
||||
Configuration
|
||||
=============
|
||||
|
||||
In addition to specifying run execution parameters through an agenda, the
|
||||
behavior of WA can be modified through configuration file(s). The default
|
||||
configuration file is ``~/.workload_automation/config.py`` (the location can be
|
||||
changed by setting ``WA_USER_DIRECTORY`` environment variable, see :ref:`envvars`
|
||||
section below). This file will be
|
||||
created when you first run WA if it does not already exist. This file must
|
||||
always exist and will always be loaded. You can add to or override the contents
|
||||
of that file on invocation of Workload Automation by specifying an additional
|
||||
configuration file using ``--config`` option.
|
||||
|
||||
The config file is just a Python source file, so it can contain any valid Python
|
||||
code (though execution of arbitrary code through the config file is
|
||||
discouraged). Variables with specific names will be picked up by the framework
|
||||
and used to modify the behavior of Workload automation.
|
||||
|
||||
.. note:: As of version 2.1.3 is also possible to specify the following
|
||||
configuration in the agenda. See :ref:`configuration in an agenda <configuration_in_agenda>`\ .
|
||||
|
||||
|
||||
.. _available_settings:
|
||||
|
||||
Available Settings
|
||||
==================
|
||||
|
||||
.. note:: Extensions such as workloads, instrumentation or result processors
|
||||
may also pick up certain settings from this file, so the list below is
|
||||
not exhaustive. Please refer to the documentation for the specific
|
||||
extensions to see what settings they accept.
|
||||
|
||||
.. confval:: device
|
||||
|
||||
This setting defines what specific Device subclass will be used to interact
|
||||
the connected device. Obviously, this must match your setup.
|
||||
|
||||
.. confval:: device_config
|
||||
|
||||
This must be a Python dict containing setting-value mapping for the
|
||||
configured :rst:dir:`device`. What settings and values are valid is specific
|
||||
to each device. Please refer to the documentation for your device.
|
||||
|
||||
.. confval:: reboot_policy
|
||||
|
||||
This defines when during execution of a run the Device will be rebooted. The
|
||||
possible values are:
|
||||
|
||||
``"never"``
|
||||
The device will never be rebooted.
|
||||
``"initial"``
|
||||
The device will be rebooted when the execution first starts, just before
|
||||
executing the first workload spec.
|
||||
``"each_spec"``
|
||||
The device will be rebooted before running a new workload spec.
|
||||
Note: this acts the same as each_iteration when execution order is set to by_iteration
|
||||
``"each_iteration"``
|
||||
The device will be rebooted before each new iteration.
|
||||
|
||||
.. seealso::
|
||||
|
||||
:doc:`execution_model`
|
||||
|
||||
.. confval:: execution_order
|
||||
|
||||
Defines the order in which the agenda spec will be executed. At the moment,
|
||||
the following execution orders are supported:
|
||||
|
||||
``"by_iteration"``
|
||||
The first iteration of each workload spec is executed one after the other,
|
||||
so all workloads are executed before proceeding on to the second iteration.
|
||||
E.g. A1 B1 C1 A2 C2 A3. This is the default if no order is explicitly specified.
|
||||
|
||||
In case of multiple sections, this will spread them out, such that specs
|
||||
from the same section are further part. E.g. given sections X and Y, global
|
||||
specs A and B, and two iterations, this will run ::
|
||||
|
||||
X.A1, Y.A1, X.B1, Y.B1, X.A2, Y.A2, X.B2, Y.B2
|
||||
|
||||
``"by_section"``
|
||||
Same as ``"by_iteration"``, however this will group specs from the same
|
||||
section together, so given sections X and Y, global specs A and B, and two iterations,
|
||||
this will run ::
|
||||
|
||||
X.A1, X.B1, Y.A1, Y.B1, X.A2, X.B2, Y.A2, Y.B2
|
||||
|
||||
``"by_spec"``
|
||||
All iterations of the first spec are executed before moving on to the next
|
||||
spec. E.g. A1 A2 A3 B1 C1 C2 This may also be specified as ``"classic"``,
|
||||
as this was the way workloads were executed in earlier versions of WA.
|
||||
|
||||
``"random"``
|
||||
Execution order is entirely random.
|
||||
|
||||
Added in version 2.1.5.
|
||||
|
||||
.. confval:: instrumentation
|
||||
|
||||
This should be a list of instruments to be enabled during run execution.
|
||||
Values must be names of available instruments. Instruments are used to
|
||||
collect additional data, such as energy measurements or execution time,
|
||||
during runs.
|
||||
|
||||
.. seealso::
|
||||
|
||||
:doc:`api/wlauto.instrumentation`
|
||||
|
||||
.. confval:: result_processors
|
||||
|
||||
This should be a list of result processors to be enabled during run execution.
|
||||
Values must be names of available result processors. Result processor define
|
||||
how data is output from WA.
|
||||
|
||||
.. seealso::
|
||||
|
||||
:doc:`api/wlauto.result_processors`
|
||||
|
||||
.. confval:: logging
|
||||
|
||||
A dict that contains logging setting. At the moment only three settings are
|
||||
supported:
|
||||
|
||||
``"file format"``
|
||||
Controls how logging output appears in the run.log file in the output
|
||||
directory.
|
||||
``"verbose format"``
|
||||
Controls how logging output appear on the console when ``--verbose`` flag
|
||||
was used.
|
||||
``"regular format"``
|
||||
Controls how logging output appear on the console when ``--verbose`` flag
|
||||
was not used.
|
||||
|
||||
All three values should be Python `old-style format strings`_ specifying which
|
||||
`log record attributes`_ should be displayed.
|
||||
|
||||
There are also a couple of settings are used to provide additional metadata
|
||||
for a run. These may get picked up by instruments or result processors to
|
||||
attach context to results.
|
||||
|
||||
.. confval:: project
|
||||
|
||||
A string naming the project for which data is being collected. This may be
|
||||
useful, e.g. when uploading data to a shared database that is populated from
|
||||
multiple projects.
|
||||
|
||||
.. confval:: project_stage
|
||||
|
||||
A dict or a string that allows adding additional identifier. This is may be
|
||||
useful for long-running projects.
|
||||
|
||||
.. confval:: run_name
|
||||
|
||||
A string that labels the WA run that is bing performed. This would typically
|
||||
be set in the ``config`` section of an agenda (see
|
||||
:ref:`configuration in an agenda <configuration_in_agenda>`) rather than in the config file.
|
||||
|
||||
.. _old-style format strings: http://docs.python.org/2/library/stdtypes.html#string-formatting-operations
|
||||
.. _log record attributes: http://docs.python.org/2/library/logging.html#logrecord-attributes
|
||||
|
||||
|
||||
.. _envvars:
|
||||
|
||||
Environment Variables
|
||||
=====================
|
||||
|
||||
In addition to standard configuration described above, WA behaviour can be
|
||||
altered through environment variables. These can determine where WA looks for
|
||||
various assets when it starts.
|
||||
|
||||
.. confval:: WA_USER_DIRECTORY
|
||||
|
||||
This is the location WA will look for config.py, inustrumentation , and it
|
||||
will also be used for local caches, etc. If this variable is not set, the
|
||||
default location is ``~/.workload_automation`` (this is created when WA
|
||||
is installed).
|
||||
|
||||
.. note:: This location **must** be writable by the user who runs WA.
|
||||
|
||||
|
||||
.. confval:: WA_EXTENSION_PATHS
|
||||
|
||||
By default, WA will look for extensions in its own package and in
|
||||
subdirectories under ``WA_USER_DIRECTORY``. This environment variable can
|
||||
be used specify a colon-separated list of additional locations WA should
|
||||
use to look for extensions.
|
45
doc/source/contributing.rst
Normal file
45
doc/source/contributing.rst
Normal file
@@ -0,0 +1,45 @@
|
||||
|
||||
Contributing Code
|
||||
=================
|
||||
|
||||
We welcome code contributions via GitHub pull requests to the official WA
|
||||
repository. To help with maintainability of the code line we ask that the code
|
||||
uses a coding style consistent with the rest of WA code, which is basically
|
||||
`PEP8 <https://www.python.org/dev/peps/pep-0008/>`_ with line length and block
|
||||
comment rules relaxed (the wrapper for PEP8 checker inside ``dev_scripts`` will
|
||||
run it with appropriate configuration).
|
||||
|
||||
We ask that the following checks are performed on the modified code prior to
|
||||
submitting a pull request:
|
||||
|
||||
.. note:: You will need pylint and pep8 static checkers installed::
|
||||
|
||||
pip install pep8
|
||||
pip install pylint
|
||||
|
||||
It is recommened that you install via pip rather than through your
|
||||
distribution's package mananger because the latter is likely to
|
||||
contain out-of-date version of these tools.
|
||||
|
||||
- ``./dev_scripts/pylint`` should be run without arguments and should produce no
|
||||
output (any output should be addressed by making appropriate changes in the
|
||||
code or adding a pylint ignore directive, if there is a good reason for
|
||||
keeping the code as is).
|
||||
- ``./dev_scripts/pep8`` should be run without arguments and should produce no
|
||||
output (any output should be addressed by making appropriate changes in the
|
||||
code).
|
||||
- If the modifications touch core framework (anything under ``wlauto/core``), unit
|
||||
tests should be run using ``nosetests``, and they should all pass.
|
||||
|
||||
- If significant additions have been made to the framework, unit
|
||||
tests should be added to cover the new functionality.
|
||||
|
||||
- If modifications have been made to documentation (this includes description
|
||||
attributes for Parameters and Extensions), documentation should be built to
|
||||
make sure no errors or warning during build process, and a visual inspection
|
||||
of new/updated sections in resulting HTML should be performed to ensure
|
||||
everything renders as expected.
|
||||
|
||||
Once you have your contribution is ready, please follow instructions in `GitHub
|
||||
documentation <https://help.github.com/articles/creating-a-pull-request/>`_ to
|
||||
create a pull request.
|
74
doc/source/conventions.rst
Normal file
74
doc/source/conventions.rst
Normal file
@@ -0,0 +1,74 @@
|
||||
===========
|
||||
Conventions
|
||||
===========
|
||||
|
||||
Interface Definitions
|
||||
=====================
|
||||
|
||||
Throughout this documentation a number of stubbed-out class definitions will be
|
||||
presented showing an interface defined by a base class that needs to be
|
||||
implemented by the deriving classes. The following conventions will be used when
|
||||
presenting such an interface:
|
||||
|
||||
- Methods shown raising :class:`NotImplementedError` are abstract and *must*
|
||||
be overridden by subclasses.
|
||||
- Methods with ``pass`` in their body *may* be (but do not need to be) overridden
|
||||
by subclasses. If not overridden, these methods will default to the base
|
||||
class implementation, which may or may not be a no-op (the ``pass`` in the
|
||||
interface specification does not necessarily mean that the method does not have an
|
||||
actual implementation in the base class).
|
||||
|
||||
.. note:: If you *do* override these methods you must remember to call the
|
||||
base class' version inside your implementation as well.
|
||||
|
||||
- Attributes who's value is shown as ``None`` *must* be redefined by the
|
||||
subclasses with an appropriate value.
|
||||
- Attributes who's value is shown as something other than ``None`` (including
|
||||
empty strings/lists/dicts) *may* be (but do not need to be) overridden by
|
||||
subclasses. If not overridden, they will default to the value shown.
|
||||
|
||||
Keep in mind that the above convention applies only when showing interface
|
||||
definitions and may not apply elsewhere in the documentation. Also, in the
|
||||
interest of clarity, only the relevant parts of the base class definitions will
|
||||
be shown some members (such as internal methods) may be omitted.
|
||||
|
||||
|
||||
Code Snippets
|
||||
=============
|
||||
|
||||
Code snippets provided are intended to be valid Python code, and to be complete.
|
||||
However, for the sake of clarity, in some cases only the relevant parts will be
|
||||
shown with some details omitted (details that may necessary to validity of the code
|
||||
but not to understanding of the concept being illustrated). In such cases, a
|
||||
commented ellipsis will be used to indicate that parts of the code have been
|
||||
dropped. E.g. ::
|
||||
|
||||
# ...
|
||||
|
||||
def update_result(self, context):
|
||||
# ...
|
||||
context.result.add_metric('energy', 23.6, 'Joules', lower_is_better=True)
|
||||
|
||||
# ...
|
||||
|
||||
|
||||
Core Class Names
|
||||
================
|
||||
|
||||
When core classes are referenced throughout the documentation, usually their
|
||||
fully-qualified names are given e.g. :class:`wlauto.core.workload.Workload`.
|
||||
This is done so that Sphinx_ can resolve them and provide a link. While
|
||||
implementing extensions, however, you should *not* be importing anything
|
||||
directly form under :mod:`wlauto.core`. Instead, classes you are meant to
|
||||
instantiate or subclass have been aliased in the root :mod:`wlauto` package,
|
||||
and should be imported from there, e.g. ::
|
||||
|
||||
from wlauto import Workload
|
||||
|
||||
All examples given in the documentation follow this convention. Please note that
|
||||
this only applies to the :mod:`wlauto.core` subpackage; all other classes
|
||||
should be imported for their corresponding subpackages.
|
||||
|
||||
.. _Sphinx: http://sphinx-doc.org/
|
||||
|
||||
|
246
doc/source/daq_device_setup.rst
Normal file
246
doc/source/daq_device_setup.rst
Normal file
@@ -0,0 +1,246 @@
|
||||
.. _daq_setup:
|
||||
|
||||
DAQ Server Guide
|
||||
================
|
||||
|
||||
NI-DAQ, or just "DAQ", is the Data Acquisition device developed by National
|
||||
Instruments:
|
||||
|
||||
http://www.ni.com/data-acquisition/
|
||||
|
||||
WA uses the DAQ to collect power measurements during workload execution. A
|
||||
client/server solution for this is distributed as part of WA, though it is
|
||||
distinct from WA and may be used separately (by invoking the client APIs from a
|
||||
Python script, or used directly from the command line).
|
||||
|
||||
This solution is dependent on the NI-DAQmx driver for the DAQ device. At the
|
||||
time of writing, only Windows versions of the driver are supported (there is an
|
||||
old Linux version that works on some versions of RHEL and Centos, but it is
|
||||
unsupported and won't work with recent Linux kernels). Because of this, the
|
||||
server part of the solution will need to be run on a Windows machine (though it
|
||||
should also work on Linux, if the driver becomes available).
|
||||
|
||||
|
||||
.. _daq_wiring:
|
||||
|
||||
DAQ Device Wiring
|
||||
-----------------
|
||||
|
||||
The server expects the device to be wired in a specific way in order to be able
|
||||
to collect power measurements. Two consecutive Analogue Input (AI) channels on
|
||||
the DAQ are used to form a logical "port" (starting with AI/0 and AI/1 for port
|
||||
0). Of these, the lower/even channel (e.g. AI/0) is used to measure the voltage
|
||||
on the rail we're interested in; the higher/odd channel (e.g. AI/1) is used to
|
||||
measure the voltage drop across a known very small resistor on the same rail,
|
||||
which is then used to calculate current. The logical wiring diagram looks like
|
||||
this::
|
||||
|
||||
Port N
|
||||
======
|
||||
|
|
||||
| AI/(N*2)+ <--- Vr -------------------------|
|
||||
| |
|
||||
| AI/(N*2)- <--- GND -------------------// |
|
||||
| |
|
||||
| AI/(N*2+1)+ <--- V ------------|-------V |
|
||||
| r | |
|
||||
| AI/(N*2+1)- <--- Vr --/\/\/\----| |
|
||||
| | |
|
||||
| | |
|
||||
| |------------------------------|
|
||||
======
|
||||
|
||||
Where:
|
||||
V: Voltage going into the resistor
|
||||
Vr: Voltage between resistor and the SOC
|
||||
GND: Ground
|
||||
r: The resistor across the rail with a known
|
||||
small value.
|
||||
|
||||
|
||||
The physical wiring will depend on the specific DAQ device, as channel layout
|
||||
varies between models.
|
||||
|
||||
.. note:: Current solution supports variable number of ports, however it
|
||||
assumes that the ports are sequential and start at zero. E.g. if you
|
||||
want to measure power on three rails, you will need to wire ports 0-2
|
||||
(AI/0 to AI/5 channels on the DAQ) to do it. It is not currently
|
||||
possible to use any other configuration (e.g. ports 1, 2 and 5).
|
||||
|
||||
|
||||
Setting up NI-DAQmx driver on a Windows Machine
|
||||
-----------------------------------------------
|
||||
|
||||
- The NI-DAQmx driver is pretty big in size, 1.5 GB. The driver name is
|
||||
'NI-DAQmx' and its version '9.7.0f0' which you can obtain it from National
|
||||
Instruments website by downloading NI Measurement & Automation Explorer (Ni
|
||||
MAX) from: http://joule.ni.com/nidu/cds/view/p/id/3811/lang/en
|
||||
|
||||
.. note:: During the installation process, you might be prompted to install
|
||||
.NET framework 4.
|
||||
|
||||
- The installation process is quite long, 7-15 minutes.
|
||||
- Once installed, open NI MAX, which should be in your desktop, if not type its
|
||||
name in the start->search.
|
||||
- Connect the NI-DAQ device to your machine. You should see it appear under
|
||||
'Devices and Interfaces'. If not, press 'F5' to refresh the list.
|
||||
- Complete the device wiring as described in the :ref:`daq_wiring` section.
|
||||
- Quit NI MAX.
|
||||
|
||||
|
||||
Setting up DAQ server
|
||||
---------------------
|
||||
|
||||
The DAQ power measurement solution is implemented in daqpower Python library,
|
||||
the package for which can be found in WA's install location under
|
||||
``wlauto/external/daq_server/daqpower-1.0.0.tar.gz`` (the version number in your
|
||||
installation may be different).
|
||||
|
||||
- Install NI-DAQmx driver, as described in the previous section.
|
||||
- Install Python 2.7.
|
||||
- Download and install ``pip``, ``numpy`` and ``twisted`` Python packages.
|
||||
These packages have C extensions, an so you will need a native compiler set
|
||||
up if you want to install them from PyPI. As an easier alternative, you can
|
||||
find pre-built Windows installers for these packages here_ (the versions are
|
||||
likely to be older than what's on PyPI though).
|
||||
- Install the daqpower package using pip::
|
||||
|
||||
pip install C:\Python27\Lib\site-packages\wlauto\external\daq_server\daqpower-1.0.0.tar.gz
|
||||
|
||||
This should automatically download and install ``PyDAQmx`` package as well
|
||||
(the Python bindings for the NI-DAQmx driver).
|
||||
|
||||
.. _here: http://www.lfd.uci.edu/~gohlke/pythonlibs/
|
||||
|
||||
|
||||
Running DAQ server
|
||||
------------------
|
||||
|
||||
Once you have installed the ``daqpower`` package and the required dependencies as
|
||||
described above, you can start the server by executing ``run-daq-server`` from the
|
||||
command line. The server will start listening on the default port, 45677.
|
||||
|
||||
.. note:: There is a chance that pip will not add ``run-daq-server`` into your
|
||||
path. In that case, you can run daq server as such:
|
||||
``python C:\path to python\Scripts\run-daq-server``
|
||||
|
||||
You can optionally specify flags to control the behaviour or the server::
|
||||
|
||||
usage: run-daq-server [-h] [-d DIR] [-p PORT] [--debug] [--verbose]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-d DIR, --directory DIR
|
||||
Working directory
|
||||
-p PORT, --port PORT port the server will listen on.
|
||||
--debug Run in debug mode (no DAQ connected).
|
||||
--verbose Produce verobose output.
|
||||
|
||||
.. note:: The server will use a working directory (by default, the directory
|
||||
the run-daq-server command was executed in, or the location specified
|
||||
with -d flag) to store power traces before they are collected by the
|
||||
client. This directory must be read/write-able by the user running
|
||||
the server.
|
||||
|
||||
|
||||
Collecting Power with WA
|
||||
------------------------
|
||||
|
||||
.. note:: You do *not* need to install the ``daqpower`` package on the machine
|
||||
running WA, as it is already included in the WA install structure.
|
||||
However, you do need to make sure that ``twisted`` package is
|
||||
installed.
|
||||
|
||||
You can enable ``daq`` instrument your agenda/config.py in order to get WA to
|
||||
collect power measurements. At minimum, you will also need to specify the
|
||||
resistor values for each port in your configuration, e.g.::
|
||||
|
||||
resistor_values = [0.005, 0.005] # in Ohms
|
||||
|
||||
This also specifies the number of logical ports (measurement sites) you want to
|
||||
use, and, implicitly, the port numbers (ports 0 to N-1 will be used).
|
||||
|
||||
.. note:: "ports" here refers to the logical ports wired on the DAQ (see :ref:`daq_wiring`,
|
||||
not to be confused with the TCP port the server is listening on.
|
||||
|
||||
Unless you're running the DAQ server and WA on the same machine (unlikely
|
||||
considering that WA is officially supported only on Linux and recent NI-DAQmx
|
||||
drivers are only available on Windows), you will also need to specify the IP
|
||||
address of the server::
|
||||
|
||||
daq_server = 127.0.0.1
|
||||
|
||||
There are a number of other settings that can optionally be specified in the
|
||||
configuration (e.g. the labels to be used for DAQ ports). Please refer to the
|
||||
:class:`wlauto.instrumentation.daq.Daq` documentation for details.
|
||||
|
||||
|
||||
Collecting Power from the Command Line
|
||||
--------------------------------------
|
||||
|
||||
``daqpower`` package also comes with a client that may be used from the command
|
||||
line. Unlike when collecting power with WA, you *will* need to install the
|
||||
``daqpower`` package. Once installed, you will be able to interract with a
|
||||
running DAQ server by invoking ``send-daq-command``. The invocation syntax is ::
|
||||
|
||||
send-daq-command --host HOST [--port PORT] COMMAND [OPTIONS]
|
||||
|
||||
Options are command-specific. COMMAND may be one of the following (and they
|
||||
should generally be inoked in that order):
|
||||
|
||||
:configure: Set up a new session, specifying the configuration values to
|
||||
be used. If there is already a configured session, it will
|
||||
be terminated. OPTIONS for this this command are the DAQ
|
||||
configuration parameters listed in the DAQ instrument
|
||||
documentation with all ``_`` replaced by ``-`` and prefixed
|
||||
with ``--``, e.g. ``--resistor-values``.
|
||||
:start: Start collecting power measurments.
|
||||
:stop: Stop collecting power measurments.
|
||||
:get_data: Pull files containg power measurements from the server.
|
||||
There is one option for this command:
|
||||
``--output-directory`` which specifies where the files will
|
||||
be pulled to; if this is not specified, the will be in the
|
||||
current directory.
|
||||
:close: Close the currently configured server session. This will get rid
|
||||
of the data files and configuration on the server, so it would
|
||||
no longer be possible to use "start" or "get_data" commands
|
||||
before a new session is configured.
|
||||
|
||||
A typical command line session would go like this:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
send-daq-command --host 127.0.0.1 configure --resistor-values 0.005 0.005
|
||||
# set up and kick off the use case you want to measure
|
||||
send-daq-command --host 127.0.0.1 start
|
||||
# wait for the use case to complete
|
||||
send-daq-command --host 127.0.0.1 stop
|
||||
send-daq-command --host 127.0.0.1 get_data
|
||||
# files called PORT_0.csv and PORT_1.csv will appear in the current directory
|
||||
# containing measurements collected during use case execution
|
||||
send-daq-command --host 127.0.0.1 close
|
||||
# the session is terminated and the csv files on the server have been
|
||||
# deleted. A new session may now be configured.
|
||||
|
||||
In addtion to these "standard workflow" commands, the following commands are
|
||||
also available:
|
||||
|
||||
:list_devices: Returns a list of DAQ devices detected by the NI-DAQmx
|
||||
driver. In case mutiple devices are connected to the
|
||||
server host, you can specify the device you want to use
|
||||
with ``--device-id`` option when configuring a session.
|
||||
:list_ports: Returns a list of ports tha have been configured for the
|
||||
current session, e.g. ``['PORT_0', 'PORT_1']``.
|
||||
:list_port_files: Returns a list of data files that have been geneted
|
||||
(unless something went wrong, there should be one for
|
||||
each port).
|
||||
|
||||
|
||||
Collecting Power from another Python Script
|
||||
-------------------------------------------
|
||||
|
||||
You can invoke the above commands from a Python script using
|
||||
:py:func:`daqpower.client.execute_command` function, passing in
|
||||
:class:`daqpower.config.ServerConfiguration` and, in case of the configure command,
|
||||
:class:`daqpower.config.DeviceConfigruation`. Please see the implementation of
|
||||
the ``daq`` WA instrument for examples of how these APIs can be used.
|
407
doc/source/device_setup.rst
Normal file
407
doc/source/device_setup.rst
Normal file
@@ -0,0 +1,407 @@
|
||||
Setting Up A Device
|
||||
===================
|
||||
|
||||
WA should work with most Android devices out-of-the box, as long as the device
|
||||
is discoverable by ``adb`` (i.e. gets listed when you run ``adb devices``). For
|
||||
USB-attached devices, that should be the case; for network devices, ``adb connect``
|
||||
would need to be invoked with the IP address of the device. If there is only one
|
||||
device connected to the host running WA, then no further configuration should be
|
||||
necessary (though you may want to :ref:`tweak some Android settings <configuring-android>`\ ).
|
||||
|
||||
If you have multiple devices connected, have a non-standard Android build (e.g.
|
||||
on a development board), or want to use of the more advanced WA functionality,
|
||||
further configuration will be required.
|
||||
|
||||
Android
|
||||
+++++++
|
||||
|
||||
General Device Setup
|
||||
--------------------
|
||||
|
||||
You can specify the device interface by setting ``device`` setting in
|
||||
``~/.workload_automation/config.py``. Available interfaces can be viewed by
|
||||
running ``wa list devices`` command. If you don't see your specific device
|
||||
listed (which is likely unless you're using one of the ARM-supplied platforms), then
|
||||
you should use ``generic_android`` interface (this is set in the config by
|
||||
default).
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
device = 'generic_android'
|
||||
|
||||
The device interface may be configured through ``device_config`` setting, who's
|
||||
value is a ``dict`` mapping setting names to their values. You can find the full
|
||||
list of available parameter by looking up your device interface in the
|
||||
:ref:`devices` section of the documentation. Some of the most common parameters
|
||||
you might want to change are outlined below.
|
||||
|
||||
.. confval:: adb_name
|
||||
|
||||
If you have multiple Android devices connected to the host machine, you will
|
||||
need to set this to indicate to WA which device you want it to use.
|
||||
|
||||
.. confval:: working_directory
|
||||
|
||||
WA needs a "working" directory on the device which it will use for collecting
|
||||
traces, caching assets it pushes to the device, etc. By default, it will
|
||||
create one under ``/sdcard`` which should be mapped and writable on standard
|
||||
Android builds. If this is not the case for your device, you will need to
|
||||
specify an alternative working directory (e.g. under ``/data/local``).
|
||||
|
||||
.. confval:: scheduler
|
||||
|
||||
This specifies the scheduling mechanism (from the perspective of core layout)
|
||||
utilized by the device). For recent big.LITTLE devices, this should generally
|
||||
be "hmp" (ARM Hetrogeneous Mutli-Processing); some legacy development
|
||||
platforms might have Linaro IKS kernels, in which case it should be "iks".
|
||||
For homogeneous (single-cluster) devices, it should be "smp". Please see
|
||||
``scheduler`` parameter in the ``generic_android`` device documentation for
|
||||
more details.
|
||||
|
||||
.. confval:: core_names
|
||||
|
||||
This and ``core_clusters`` need to be set if you want to utilize some more
|
||||
advanced WA functionality (like setting of core-related runtime parameters
|
||||
such as governors, frequencies, etc). ``core_names`` should be a list of
|
||||
core names matching the order in which they are exposed in sysfs. For
|
||||
example, ARM TC2 SoC is a 2x3 big.LITTLE system; it's core_names would be
|
||||
``['a7', 'a7', 'a7', 'a15', 'a15']``, indicating that cpu0-cpu2 in cpufreq
|
||||
sysfs structure are A7's and cpu3 and cpu4 are A15's.
|
||||
|
||||
.. confval:: core_clusters
|
||||
|
||||
If ``core_names`` is defined, this must also be defined. This is a list of
|
||||
integer values indicating the cluster the corresponding core in
|
||||
``cores_names`` belongs to. For example, for TC2, this would be
|
||||
``[0, 0, 0, 1, 1]``, indicating that A7's are on cluster 0 and A15's are on
|
||||
cluster 1.
|
||||
|
||||
A typical ``device_config`` inside ``config.py`` may look something like
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
device_config = dict(
|
||||
'adb_name'='0123456789ABCDEF',
|
||||
'working_direcory'='/sdcard/wa-working',
|
||||
'core_names'=['a7', 'a7', 'a7', 'a15', 'a15'],
|
||||
'core_clusters'=[0, 0, 0, 1, 1],
|
||||
# ...
|
||||
)
|
||||
|
||||
.. _configuring-android:
|
||||
|
||||
Configuring Android
|
||||
-------------------
|
||||
|
||||
There are a few additional tasks you may need to perform once you have a device
|
||||
booted into Android (especially if this is an initial boot of a fresh OS
|
||||
deployment):
|
||||
|
||||
- You have gone through FTU (first time usage) on the home screen and
|
||||
in the apps menu.
|
||||
- You have disabled the screen lock.
|
||||
- You have set sleep timeout to the highest possible value (30 mins on
|
||||
most devices).
|
||||
- You have disabled brightness auto-adjust and have set the brightness
|
||||
to a fixed level.
|
||||
- You have set the locale language to "English" (this is important for
|
||||
some workloads in which UI automation looks for specific text in UI
|
||||
elements).
|
||||
|
||||
TC2 Setup
|
||||
---------
|
||||
|
||||
This section outlines how to setup ARM TC2 development platform to work with WA.
|
||||
|
||||
Pre-requisites
|
||||
~~~~~~~~~~~~~~
|
||||
|
||||
You can obtain the full set of images for TC2 from Linaro:
|
||||
|
||||
https://releases.linaro.org/latest/android/vexpress-lsk.
|
||||
|
||||
For the easiest setup, follow the instructions on the "Firmware" and "Binary
|
||||
Image Installation" tabs on that page.
|
||||
|
||||
.. note:: The default ``reboot_policy`` in ``config.py`` is to not reboot. With
|
||||
this WA will assume that the device is already booted into Android
|
||||
prior to WA being invoked. If you want to WA to do the initial boot of
|
||||
the TC2, you will have to change reboot policy to at least
|
||||
``initial``.
|
||||
|
||||
|
||||
Setting Up Images
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. note:: Make sure that both DIP switches near the black reset button on TC2
|
||||
are up (this is counter to the Linaro guide that instructs to lower
|
||||
one of the switches).
|
||||
|
||||
.. note:: The TC2 must have an Ethernet connection.
|
||||
|
||||
|
||||
If you have followed the setup instructions on the Linaro page, you should have
|
||||
a USB stick or an SD card with the file system, and internal microSD on the
|
||||
board (VEMSD) with the firmware images. The default Linaro configuration is to
|
||||
boot from the image on the boot partition in the file system you have just
|
||||
created. This is not supported by WA, which expects the image to be in NOR flash
|
||||
on the board. This requires you to copy the images from the boot partition onto
|
||||
the internal microSD card.
|
||||
|
||||
Assuming the boot partition of the Linaro file system is mounted on
|
||||
``/media/boot`` and the internal microSD is mounted on ``/media/VEMSD``, copy
|
||||
the following images::
|
||||
|
||||
cp /media/boot/zImage /media/VEMSD/SOFTWARE/kern_mp.bin
|
||||
cp /media/boot/initrd /media/VEMSD/SOFTWARE/init_mp.bin
|
||||
cp /media/boot/v2p-ca15-tc2.dtb /media/VEMSD/SOFTWARE/mp_a7bc.dtb
|
||||
|
||||
Optionally
|
||||
##########
|
||||
|
||||
The default device tree configuration the TC2 is to boot on the A7 cluster. It
|
||||
is also possible to configure the device tree to boot on the A15 cluster, or to
|
||||
boot with one of the clusters disabled (turning TC2 into an A7-only or A15-only
|
||||
device). Please refer to the "Firmware" tab on the Linaro paged linked above for
|
||||
instructions on how to compile the appropriate device tree configurations.
|
||||
|
||||
WA allows selecting between these configurations using ``os_mode`` boot
|
||||
parameter of the TC2 device interface. In order for this to work correctly,
|
||||
device tree files for the A15-bootcluster, A7-only and A15-only configurations
|
||||
should be copied into ``/media/VEMSD/SOFTWARE/`` as ``mp_a15bc.dtb``,
|
||||
``mp_a7.dtb`` and ``mp_a15.dtb`` respectively.
|
||||
|
||||
This is entirely optional. If you're not planning on switching boot cluster
|
||||
configuration, those files do not need to be present in VEMSD.
|
||||
|
||||
config.txt
|
||||
##########
|
||||
|
||||
Also, make sure that ``USB_REMOTE`` setting in ``/media/VEMSD/config.txt`` is set
|
||||
to ``TRUE`` (this will allow rebooting the device by writing reboot.txt to
|
||||
VEMSD). ::
|
||||
|
||||
USB_REMOTE: TRUE ;Selects remote command via USB
|
||||
|
||||
|
||||
TC2-specific device_config settings
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
There are a few settings that may need to be set in ``device_config`` inside
|
||||
your ``config.py`` which are specific to TC2:
|
||||
|
||||
.. note:: TC2 *does not* accept most "standard" android ``device_config``
|
||||
settings.
|
||||
|
||||
adb_name
|
||||
If you're running WA with reboots disabled (which is the default reboot
|
||||
policy), you will need to manually run ``adb connect`` with TC2's IP
|
||||
address and set this.
|
||||
|
||||
root_mount
|
||||
WA expects TC2's internal microSD to be mounted on the host under
|
||||
``/media/VEMSD``. If this location is different, it needs to be specified
|
||||
using this setting.
|
||||
|
||||
boot_firmware
|
||||
WA defaults to try booting using UEFI, which will require some additional
|
||||
firmware from ARM that may not be provided with Linaro releases (see the
|
||||
UEFI and PSCI section below). If you do not have those images, you will
|
||||
need to set ``boot_firmware`` to ``bootmon``.
|
||||
|
||||
fs_medium
|
||||
TC2's file system can reside either on an SD card or on a USB stick. Boot
|
||||
configuration is different depending on this. By default, WA expects it
|
||||
to be on ``usb``; if you are using and SD card, you should set this to
|
||||
``sd``.
|
||||
|
||||
bm_image
|
||||
Bootmon image that comes as part of TC2 firmware periodically gets
|
||||
updated. At the time of the release, ``bm_v519r.axf`` was used by
|
||||
ARM. If you are using a more recent image, you will need to set this
|
||||
indicating the image name (just the name of the actual file, *not* the
|
||||
path). Note: this setting only applies if using ``bootmon`` boot
|
||||
firmware.
|
||||
|
||||
serial_device
|
||||
WA will assume TC2 is connected on ``/dev/ttyS0`` by default. If the
|
||||
serial port is different, you will need to set this.
|
||||
|
||||
|
||||
UEFI and PSCI
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
UEFI is a boot firmware alternative to bootmon. Currently UEFI is coupled with PSCI (Power State Coordination Interface). That means
|
||||
that in order to use PSCI, UEFI has to be the boot firmware. Currently the reverse dependency is true as well (for TC2). Therefore
|
||||
using UEFI requires enabling PSCI.
|
||||
|
||||
In case you intend to use uefi/psci mode instead of bootmon, you will need two additional files: tc2_sec.bin and tc2_uefi.bin.
|
||||
after obtaining those files, place them inside /media/VEMSD/SOFTWARE/ directory as such::
|
||||
|
||||
cp tc2_sec.bin /media/VEMSD/SOFTWARE/
|
||||
cp tc2_uefi.bin /media/VEMSD/SOFTWARE/
|
||||
|
||||
|
||||
Juno Setup
|
||||
----------
|
||||
|
||||
.. note:: At the time of writing, the Android software stack on Juno was still
|
||||
very immature. Some workloads may not run, and there maybe stability
|
||||
issues with the device.
|
||||
|
||||
|
||||
The full software stack can be obtained from Linaro:
|
||||
|
||||
https://releases.linaro.org/14.08/members/arm/android/images/armv8-android-juno-lsk
|
||||
|
||||
Please follow the instructions on the "Binary Image Installation" tab on that
|
||||
page. More up-to-date firmware and kernel may also be obtained by registered
|
||||
members from ARM Connected Community: http://www.arm.com/community/ (though this
|
||||
is not guaranteed to work with the Linaro file system).
|
||||
|
||||
UEFI
|
||||
~~~~
|
||||
|
||||
Juno uses UEFI_ to boot the kernel image. UEFI supports multiple boot
|
||||
configurations, and presents a menu on boot to select (in default configuration
|
||||
it will automatically boot the first entry in the menu if not interrupted before
|
||||
a timeout). WA will look for a specific entry in the UEFI menu
|
||||
(``'WA'`` by default, but that may be changed by setting ``uefi_entry`` in the
|
||||
``device_config``). When following the UEFI instructions on the above Linaro
|
||||
page, please make sure to name the entry appropriately (or to correctly set the
|
||||
``uefi_entry``).
|
||||
|
||||
.. _UEFI: http://en.wikipedia.org/wiki/UEFI
|
||||
|
||||
There are two supported way for Juno to discover kernel images through UEFI. It
|
||||
can either load them from NOR flash on the board, or form boot partition on the
|
||||
file system. The setup described on the Linaro page uses the boot partition
|
||||
method.
|
||||
|
||||
If WA does not find the UEFI entry it expects, it will create one. However, it
|
||||
will assume that the kernel image resides in NOR flash, which means it will not
|
||||
work with Linaro file system. So if you're replicating the Linaro setup exactly,
|
||||
you will need to create the entry manually, as outline on the above-linked page.
|
||||
|
||||
Rebooting
|
||||
~~~~~~~~~
|
||||
|
||||
At the time of writing, normal Android reboot did not work properly on Juno
|
||||
Android, causing the device to crash into an irrecoverable state. Therefore, WA
|
||||
will perform a hard reset to reboot the device. It will attempt to do this by
|
||||
toggling the DTR line on the serial connection to the device. In order for this
|
||||
to work, you need to make sure that SW1 configuration switch on the back panel of
|
||||
the board (the right-most DIP switch) is toggled *down*.
|
||||
|
||||
|
||||
Linux
|
||||
+++++
|
||||
|
||||
General Device Setup
|
||||
--------------------
|
||||
|
||||
You can specify the device interface by setting ``device`` setting in
|
||||
``~/.workload_automation/config.py``. Available interfaces can be viewed by
|
||||
running ``wa list devices`` command. If you don't see your specific device
|
||||
listed (which is likely unless you're using one of the ARM-supplied platforms), then
|
||||
you should use ``generic_linux`` interface (this is set in the config by
|
||||
default).
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
device = 'generic_linux'
|
||||
|
||||
The device interface may be configured through ``device_config`` setting, who's
|
||||
value is a ``dict`` mapping setting names to their values. You can find the full
|
||||
list of available parameter by looking up your device interface in the
|
||||
:ref:`devices` section of the documentation. Some of the most common parameters
|
||||
you might want to change are outlined below.
|
||||
|
||||
Currently, the only only supported method for talking to a Linux device is over
|
||||
SSH. Device configuration must specify the parameters need to establish the
|
||||
connection.
|
||||
|
||||
.. confval:: host
|
||||
|
||||
This should be either the the DNS name or IP address of the device.
|
||||
|
||||
.. confval:: username
|
||||
|
||||
The login name of the user on the device that WA will use. This user should
|
||||
have a home directory (unless an alternative working directory is specified
|
||||
using ``working_directory`` config -- see below), and, for full
|
||||
functionality, the user should have sudo rights (WA will be able to use
|
||||
sudo-less acounts but some instruments or workload may not work).
|
||||
|
||||
.. confval:: password
|
||||
|
||||
Password for the account on the device. Either this of a ``keyfile`` (see
|
||||
below) must be specified.
|
||||
|
||||
.. confval:: keyfile
|
||||
|
||||
If key-based authentication is used, this may be used to specify the SSH identity
|
||||
file instead of the password.
|
||||
|
||||
.. confval:: property_files
|
||||
|
||||
This is a list of paths that will be pulled for each WA run into the __meta
|
||||
subdirectory in the results. The intention is to collect meta-data about the
|
||||
device that may aid in reporducing the results later. The paths specified do
|
||||
not have to exist on the device (they will be ignored if they do not). The
|
||||
default list is ``['/proc/version', '/etc/debian_version', '/etc/lsb-release', '/etc/arch-release']``
|
||||
|
||||
|
||||
In addition, ``working_directory``, ``scheduler``, ``core_names``, and
|
||||
``core_clusters`` can also be specified and have the same meaning as for Android
|
||||
devices (see above).
|
||||
|
||||
A typical ``device_config`` inside ``config.py`` may look something like
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
device_config = dict(
|
||||
'host'='192.168.0.7',
|
||||
'username'='guest',
|
||||
'password'='guest',
|
||||
'core_names'=['a7', 'a7', 'a7', 'a15', 'a15'],
|
||||
'core_clusters'=[0, 0, 0, 1, 1],
|
||||
# ...
|
||||
)
|
||||
|
||||
|
||||
Related Settings
|
||||
++++++++++++++++
|
||||
|
||||
Reboot Policy
|
||||
-------------
|
||||
|
||||
This indicates when during WA execution the device will be rebooted. By default
|
||||
this is set to ``never``, indicating that WA will not reboot the device. Please
|
||||
see ``reboot_policy`` documentation in :ref:`configuration-specification` for
|
||||
|
||||
more details.
|
||||
|
||||
Execution Order
|
||||
---------------
|
||||
|
||||
``execution_order`` defines the order in which WA will execute workloads.
|
||||
``by_iteration`` (set by default) will execute the first iteration of each spec
|
||||
first, followed by the second iteration of each spec (that defines more than one
|
||||
iteration) and so forth. The alternative will loop through all iterations for
|
||||
the first first spec first, then move on to second spec, etc. Again, please see
|
||||
:ref:`configuration-specification` for more details.
|
||||
|
||||
|
||||
Adding a new device interface
|
||||
+++++++++++++++++++++++++++++
|
||||
|
||||
If you are working with a particularly unusual device (e.g. a early stage
|
||||
development board) or need to be able to handle some quirk of your Android build,
|
||||
configuration available in ``generic_android`` interface may not be enough for
|
||||
you. In that case, you may need to write a custom interface for your device. A
|
||||
device interface is an ``Extension`` (a plug-in) type in WA and is implemented
|
||||
similar to other extensions (such as workloads or instruments). Pleaser refer to
|
||||
:ref:`adding_a_device` section for information on how this may be done.
|
115
doc/source/execution_model.rst
Normal file
115
doc/source/execution_model.rst
Normal file
@@ -0,0 +1,115 @@
|
||||
++++++++++++++++++
|
||||
Framework Overview
|
||||
++++++++++++++++++
|
||||
|
||||
Execution Model
|
||||
===============
|
||||
|
||||
At the high level, the execution model looks as follows:
|
||||
|
||||
.. image:: wa-execution.png
|
||||
:scale: 50 %
|
||||
|
||||
After some initial setup, the framework initializes the device, loads and initialized
|
||||
instrumentation and begins executing jobs defined by the workload specs in the agenda. Each job
|
||||
executes in four basic stages:
|
||||
|
||||
setup
|
||||
Initial setup for the workload is performed. E.g. required assets are deployed to the
|
||||
devices, required services or applications are launched, etc. Run time configuration of the
|
||||
device for the workload is also performed at this time.
|
||||
|
||||
run
|
||||
This is when the workload actually runs. This is defined as the part of the workload that is
|
||||
to be measured. Exactly what happens at this stage depends entirely on the workload.
|
||||
|
||||
result processing
|
||||
Results generated during the execution of the workload, if there are any, are collected,
|
||||
parsed and extracted metrics are passed up to the core framework.
|
||||
|
||||
teardown
|
||||
Final clean up is performed, e.g. applications may closed, files generated during execution
|
||||
deleted, etc.
|
||||
|
||||
Signals are dispatched (see signal_dispatch_ below) at each stage of workload execution,
|
||||
which installed instrumentation can hook into in order to collect measurements, alter workload
|
||||
execution, etc. Instrumentation implementation usually mirrors that of workloads, defining
|
||||
setup, teardown and result processing stages for a particular instrument. Instead of a ``run``,
|
||||
instruments usually implement a ``start`` and a ``stop`` which get triggered just before and just
|
||||
after a workload run. However, the signal dispatch mechanism give a high degree of flexibility
|
||||
to instruments allowing them to hook into almost any stage of a WA run (apart from the very
|
||||
early initialization).
|
||||
|
||||
Metrics and artifacts generated by workloads and instrumentation are accumulated by the framework
|
||||
and are then passed to active result processors. This happens after each individual workload
|
||||
execution and at the end of the run. A result process may chose to act at either or both of these
|
||||
points.
|
||||
|
||||
|
||||
Control Flow
|
||||
============
|
||||
|
||||
This section goes into more detail explaining the relationship between the major components of the
|
||||
framework and how control passes between them during a run. It will only go through the major
|
||||
transition and interactions and will not attempt to describe very single thing that happens.
|
||||
|
||||
.. note:: This is the control flow for the ``wa run`` command which is the main functionality
|
||||
of WA. Other commands are much simpler and most of what is described below does not
|
||||
apply to them.
|
||||
|
||||
#. ``wlauto.core.entry_point`` parses the command form the arguments and executes the run command
|
||||
(``wlauto.commands.run.RunCommand``).
|
||||
#. Run command initializes the output directory and creates a ``wlauto.core.agenda.Agenda`` based on
|
||||
the command line arguments. Finally, it instantiates a ``wlauto.core.execution.Executor`` and
|
||||
passes it the Agenda.
|
||||
#. The Executor uses the Agenda to create a ``wlauto.core.configuraiton.RunConfiguration`` fully
|
||||
defines the configuration for the run (it will be serialised into ``__meta`` subdirectory under
|
||||
the output directory.
|
||||
#. The Executor proceeds to instantiate and install instrumentation, result processors and the
|
||||
device interface, based on the RunConfiguration. The executor also initialise a
|
||||
``wlauto.core.execution.ExecutionContext`` which is used to track the current state of the run
|
||||
execution and also serves as a means of communication between the core framework and the
|
||||
extensions.
|
||||
#. Finally, the Executor instantiates a ``wlauto.core.execution.Runner``, initializes its job
|
||||
queue with workload specs from the RunConfiguraiton, and kicks it off.
|
||||
#. The Runner performs the run time initialization of the device and goes through the workload specs
|
||||
(in the order defined by ``execution_order`` setting), running each spec according to the
|
||||
execution model described in the previous section. The Runner sends signals (see below) at
|
||||
appropriate points during execution.
|
||||
#. At the end of the run, the control is briefly passed back to the Executor, which outputs a
|
||||
summary for the run.
|
||||
|
||||
|
||||
.. _signal_dispatch:
|
||||
|
||||
Signal Dispatch
|
||||
===============
|
||||
|
||||
WA uses the `louie <https://pypi.python.org/pypi/Louie/1.1>`_ (formerly, pydispatcher) library
|
||||
for signal dispatch. Callbacks can be registered for signals emitted during the run. WA uses a
|
||||
version of louie that has been modified to introduce priority to registered callbacks (so that
|
||||
callbacks that are know to be slow can be registered with a lower priority so that they do not
|
||||
interfere with other callbacks).
|
||||
|
||||
This mechanism is abstracted for instrumentation. Methods of an :class:`wlauto.core.Instrument`
|
||||
subclass automatically get hooked to appropriate signals based on their names when the instrument
|
||||
is "installed" for the run. Priority can be specified by adding ``very_fast_``, ``fast_`` ,
|
||||
``slow_`` or ``very_slow_`` prefixes to method names.
|
||||
|
||||
The full list of method names and the signals they map to may be viewed
|
||||
:ref:`here <instrumentation_method_map>`.
|
||||
|
||||
Signal dispatching mechanism may also be used directly, for example to dynamically register
|
||||
callbacks at runtime or allow extensions other than ``Instruments`` to access stages of the run
|
||||
they are normally not aware of.
|
||||
|
||||
The sending of signals is the responsibility of the Runner. Signals gets sent during transitions
|
||||
between execution stages and when special evens, such as errors or device reboots, occur.
|
||||
|
||||
See Also
|
||||
--------
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
instrumentation_method_map
|
138
doc/source/index.rst
Normal file
138
doc/source/index.rst
Normal file
@@ -0,0 +1,138 @@
|
||||
.. Workload Automation 2 documentation master file, created by
|
||||
sphinx-quickstart on Mon Jul 15 09:00:46 2013.
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
Welcome to Documentation for Workload Automation
|
||||
================================================
|
||||
|
||||
Workload Automation (WA) is a framework for running workloads on real hardware devices. WA
|
||||
supports a number of output formats as well as additional instrumentation (such as Streamline
|
||||
traces). A number of workloads are included with the framework.
|
||||
|
||||
|
||||
.. contents:: Contents
|
||||
|
||||
|
||||
What's New
|
||||
~~~~~~~~~~
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
changes
|
||||
|
||||
|
||||
Usage
|
||||
~~~~~
|
||||
|
||||
This section lists general usage documentation. If you're new to WA2, it is
|
||||
recommended you start with the :doc:`quickstart` page. This section also contains
|
||||
installation and configuration guides.
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
quickstart
|
||||
installation
|
||||
device_setup
|
||||
invocation
|
||||
agenda
|
||||
configuration
|
||||
|
||||
|
||||
Extensions
|
||||
~~~~~~~~~~
|
||||
|
||||
This section lists extensions that currently come with WA2. Each package below
|
||||
represents a particular type of extension (e.g. a workload); each sub-package of
|
||||
that package is a particular instance of that extension (e.g. the Andebench
|
||||
workload). Clicking on a link will show what the individual extension does,
|
||||
what configuration parameters it takes, etc.
|
||||
|
||||
For how to implement you own extensions, please refer to the guides in the
|
||||
:ref:`in-depth` section.
|
||||
|
||||
.. raw:: html
|
||||
|
||||
<style>
|
||||
td {
|
||||
vertical-align: text-top;
|
||||
}
|
||||
</style>
|
||||
<table <tr><td>
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
extensions/workloads
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</td><td>
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
extensions/instruments
|
||||
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</td><td>
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
extensions/result_processors
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</td><td>
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
extensions/devices
|
||||
|
||||
.. raw:: html
|
||||
|
||||
</td></tr></table>
|
||||
|
||||
.. _in-depth:
|
||||
|
||||
In-depth
|
||||
~~~~~~~~
|
||||
|
||||
This section contains more advanced topics, such how to write your own extensions
|
||||
and detailed descriptions of how WA functions under the hood.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
|
||||
conventions
|
||||
writing_extensions
|
||||
execution_model
|
||||
resources
|
||||
additional_topics
|
||||
daq_device_setup
|
||||
revent
|
||||
contributing
|
||||
|
||||
API Reference
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 5
|
||||
|
||||
api/modules
|
||||
|
||||
|
||||
Indices and tables
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
||||
|
144
doc/source/installation.rst
Normal file
144
doc/source/installation.rst
Normal file
@@ -0,0 +1,144 @@
|
||||
============
|
||||
Installation
|
||||
============
|
||||
|
||||
.. module:: wlauto
|
||||
|
||||
This page describes how to install Workload Automation 2.
|
||||
|
||||
|
||||
Prerequisites
|
||||
=============
|
||||
|
||||
Operating System
|
||||
----------------
|
||||
|
||||
WA runs on a native Linux install. It was tested with Ubuntu 12.04,
|
||||
but any recent Linux distribution should work. It should run on either
|
||||
32bit or 64bit OS, provided the correct version of Android (see below)
|
||||
was installed. Officially, **other environments are not supported**. WA
|
||||
has been known to run on Linux Virtual machines and in Cygwin environments,
|
||||
though additional configuration maybe required in both cases (known issues
|
||||
include makings sure USB/serial connections are passed to the VM, and wrong
|
||||
python/pip binaries being picked up in Cygwin). WA *should* work on other
|
||||
Unix-based systems such as BSD or Mac OS X, but it has not been tested
|
||||
in those environments. WA *does not* run on Windows (though it should be
|
||||
possible to get limited functionality with minimal porting effort).
|
||||
|
||||
|
||||
Android SDK
|
||||
-----------
|
||||
|
||||
You need to have the Android SDK with at least one platform installed.
|
||||
To install it, download the ADT Bundle from here_. Extract it
|
||||
and add ``<path_to_android_sdk>/sdk/platform-tools`` and ``<path_to_android_sdk>/sdk/tools``
|
||||
to your ``PATH``. To test that you've installed it properly run ``adb
|
||||
version``, the output should be similar to this::
|
||||
|
||||
$$ adb version
|
||||
Android Debug Bridge version 1.0.31
|
||||
$$
|
||||
|
||||
.. _here: https://developer.android.com/sdk/index.html
|
||||
|
||||
Once that is working, run ::
|
||||
|
||||
android update sdk
|
||||
|
||||
This will open up a dialog box listing available android platforms and
|
||||
corresponding API levels, e.g. ``Android 4.3 (API 18)``. For WA, you will need
|
||||
at least API level 18 (i.e. Android 4.3), though installing the latest is
|
||||
usually the best bet.
|
||||
|
||||
Optionally (but recommended), you should also set ``ANDROID_HOME`` to point to
|
||||
the install location of the SDK (i.e. ``<path_to_android_sdk>/sdk``).
|
||||
|
||||
|
||||
Python
|
||||
------
|
||||
|
||||
Workload Automation 2 requires Python 2.7 (Python 3 is not supported, at the moment).
|
||||
|
||||
|
||||
pip
|
||||
---
|
||||
|
||||
pip is the recommended package manager for Python. It is not part of standard
|
||||
Python distribution and would need to be installed separately. On Ubuntu and
|
||||
similar distributions, this may be done with APT::
|
||||
|
||||
sudo apt-get install python-pip
|
||||
|
||||
|
||||
Python Packages
|
||||
---------------
|
||||
|
||||
.. note:: pip should automatically download and install missing dependencies,
|
||||
so if you're using pip, you can skip this section.
|
||||
|
||||
Workload Automation 2 depends on the following additional libraries:
|
||||
|
||||
* pexpect
|
||||
* docutils
|
||||
* pySerial
|
||||
* pyYAML
|
||||
* python-dateutil
|
||||
|
||||
You can install these with pip::
|
||||
|
||||
sudo pip install pexpect
|
||||
sudo pip install pyserial
|
||||
sudo pip install pyyaml
|
||||
sudo pip install docutils
|
||||
sudo pip install python-dateutil
|
||||
|
||||
Some of these may also be available in your distro's repositories, e.g. ::
|
||||
|
||||
sudo apt-get install python-serial
|
||||
|
||||
Distro package versions tend to be older, so pip installation is recommended.
|
||||
However, pip will always download and try to build the source, so in some
|
||||
situations distro binaries may provide an easier fall back. Please also note that
|
||||
distro package names may differ from pip packages.
|
||||
|
||||
|
||||
Optional Python Packages
|
||||
------------------------
|
||||
|
||||
.. note:: unlike the mandatory dependencies in the previous section,
|
||||
pip will *not* install these automatically, so you will have
|
||||
to explicitly install them if/when you need them.
|
||||
|
||||
In addition to the mandatory packages listed in the previous sections, some WA
|
||||
functionality (e.g. certain extensions) may have additional dependencies. Since
|
||||
they are not necessary to be able to use most of WA, they are not made mandatory
|
||||
to simplify initial WA installation. If you try to use an extension that has
|
||||
additional, unmet dependencies, WA will tell you before starting the run, and
|
||||
you can install it then. They are listed here for those that would rather
|
||||
install them upfront (e.g. if you're planning to use WA to an environment that
|
||||
may not always have Internet access).
|
||||
|
||||
* nose
|
||||
* pandas
|
||||
* PyDAQmx
|
||||
* pymongo
|
||||
* jinja2
|
||||
|
||||
|
||||
.. note:: Some packages have C extensions and will require Python development
|
||||
headers to install. You can get those by installing ``python-dev``
|
||||
package in apt on Ubuntu (or the equivalent for your distribution).
|
||||
|
||||
Installing
|
||||
==========
|
||||
|
||||
Download the tarball and run pip::
|
||||
|
||||
sudo pip install wlauto-$version.tar.gz
|
||||
|
||||
If the above succeeds, try ::
|
||||
|
||||
wa --version
|
||||
|
||||
Hopefully, this should output something along the lines of "Workload Automation
|
||||
version $version".
|
73
doc/source/instrumentation_method_map.rst
Normal file
73
doc/source/instrumentation_method_map.rst
Normal file
@@ -0,0 +1,73 @@
|
||||
Instrumentation Signal-Method Mapping
|
||||
=====================================
|
||||
|
||||
.. _instrumentation_method_map:
|
||||
|
||||
Instrument methods get automatically hooked up to signals based on their names. Mostly, the method
|
||||
name correponds to the name of the signal, however there are a few convienience aliases defined
|
||||
(listed first) to make easier to relate instrumenation code to the workload execution model.
|
||||
|
||||
======================================== =========================================
|
||||
method name signal
|
||||
======================================== =========================================
|
||||
initialize run-init-signal
|
||||
setup successful-workload-setup-signal
|
||||
start before-workload-execution-signal
|
||||
stop after-workload-execution-signal
|
||||
process_workload_result successful-iteration-result-update-signal
|
||||
update_result after-iteration-result-update-signal
|
||||
teardown after-workload-teardown-signal
|
||||
finalize run-fin-signal
|
||||
on_run_start start-signal
|
||||
on_run_end end-signal
|
||||
on_workload_spec_start workload-spec-start-signal
|
||||
on_workload_spec_end workload-spec-end-signal
|
||||
on_iteration_start iteration-start-signal
|
||||
on_iteration_end iteration-end-signal
|
||||
before_initial_boot before-initial-boot-signal
|
||||
on_successful_initial_boot successful-initial-boot-signal
|
||||
after_initial_boot after-initial-boot-signal
|
||||
before_first_iteration_boot before-first-iteration-boot-signal
|
||||
on_successful_first_iteration_boot successful-first-iteration-boot-signal
|
||||
after_first_iteration_boot after-first-iteration-boot-signal
|
||||
before_boot before-boot-signal
|
||||
on_successful_boot successful-boot-signal
|
||||
after_boot after-boot-signal
|
||||
on_spec_init spec-init-signal
|
||||
on_run_init run-init-signal
|
||||
on_iteration_init iteration-init-signal
|
||||
before_workload_setup before-workload-setup-signal
|
||||
on_successful_workload_setup successful-workload-setup-signal
|
||||
after_workload_setup after-workload-setup-signal
|
||||
before_workload_execution before-workload-execution-signal
|
||||
on_successful_workload_execution successful-workload-execution-signal
|
||||
after_workload_execution after-workload-execution-signal
|
||||
before_workload_result_update before-iteration-result-update-signal
|
||||
on_successful_workload_result_update successful-iteration-result-update-signal
|
||||
after_workload_result_update after-iteration-result-update-signal
|
||||
before_workload_teardown before-workload-teardown-signal
|
||||
on_successful_workload_teardown successful-workload-teardown-signal
|
||||
after_workload_teardown after-workload-teardown-signal
|
||||
before_overall_results_processing before-overall-results-process-signal
|
||||
on_successful_overall_results_processing successful-overall-results-process-signal
|
||||
after_overall_results_processing after-overall-results-process-signal
|
||||
on_error error_logged
|
||||
on_warning warning_logged
|
||||
======================================== =========================================
|
||||
|
||||
|
||||
The names above may be prefixed with one of pre-defined prefixes to set the priority of the
|
||||
Instrument method realive to other callbacks registered for the signal (within the same priority
|
||||
level, callbacks are invoked in the order they were registered). The table below shows the mapping
|
||||
of the prifix to the corresponding priority:
|
||||
|
||||
=========== ===
|
||||
prefix priority
|
||||
=========== ===
|
||||
very_fast\_ 20
|
||||
fast\_ 10
|
||||
normal\_ 0
|
||||
slow\_ -10
|
||||
very_slow\_ -20
|
||||
=========== ===
|
||||
|
17
doc/source/instrumentation_method_map.template
Normal file
17
doc/source/instrumentation_method_map.template
Normal file
@@ -0,0 +1,17 @@
|
||||
Instrumentation Signal-Method Mapping
|
||||
=====================================
|
||||
|
||||
.. _instrumentation_method_map:
|
||||
|
||||
Instrument methods get automatically hooked up to signals based on their names. Mostly, the method
|
||||
name correponds to the name of the signal, however there are a few convienience aliases defined
|
||||
(listed first) to make easier to relate instrumenation code to the workload execution model.
|
||||
|
||||
$signal_names
|
||||
|
||||
The names above may be prefixed with one of pre-defined prefixes to set the priority of the
|
||||
Instrument method realive to other callbacks registered for the signal (within the same priority
|
||||
level, callbacks are invoked in the order they were registered). The table below shows the mapping
|
||||
of the prifix to the corresponding priority:
|
||||
|
||||
$priority_prefixes
|
135
doc/source/invocation.rst
Normal file
135
doc/source/invocation.rst
Normal file
@@ -0,0 +1,135 @@
|
||||
.. _invocation:
|
||||
|
||||
========
|
||||
Commands
|
||||
========
|
||||
|
||||
Installing the wlauto package will add ``wa`` command to your system,
|
||||
which you can run from anywhere. This has a number of sub-commands, which can
|
||||
be viewed by executing ::
|
||||
|
||||
wa -h
|
||||
|
||||
Individual sub-commands are discussed in detail below.
|
||||
|
||||
run
|
||||
---
|
||||
|
||||
The most common sub-command you will use is ``run``. This will run specfied
|
||||
workload(s) and process resulting output. This takes a single mandatory
|
||||
argument that specifies what you want WA to run. This could be either a
|
||||
workload name, or a path to an "agenda" file that allows to specify multiple
|
||||
workloads as well as a lot additional configuration (see :ref:`agenda`
|
||||
section for details). Executing ::
|
||||
|
||||
wa run -h
|
||||
|
||||
Will display help for this subcommand that will look somehtign like this::
|
||||
|
||||
usage: run [-d DIR] [-f] AGENDA
|
||||
|
||||
Execute automated workloads on a remote device and process the resulting
|
||||
output.
|
||||
|
||||
positional arguments:
|
||||
AGENDA Agenda for this workload automation run. This defines
|
||||
which workloads will be executed, how many times, with
|
||||
which tunables, etc. See /usr/local/lib/python2.7
|
||||
/dist-packages/wlauto/agenda-example.csv for an
|
||||
example of how this file should be structured.
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-c CONFIG, --config CONFIG
|
||||
specify an additional config.py
|
||||
-v, --verbose The scripts will produce verbose output.
|
||||
--version Output the version of Workload Automation and exit.
|
||||
--debug Enable debug mode. Note: this implies --verbose.
|
||||
-d DIR, --output-directory DIR
|
||||
Specify a directory where the output will be
|
||||
generated. If the directoryalready exists, the script
|
||||
will abort unless -f option (see below) is used,in
|
||||
which case the contents of the directory will be
|
||||
overwritten. If this optionis not specified, then
|
||||
wa_output will be used instead.
|
||||
-f, --force Overwrite output directory if it exists. By default,
|
||||
the script will abort in thissituation to prevent
|
||||
accidental data loss.
|
||||
-i ID, --id ID Specify a workload spec ID from an agenda to run. If
|
||||
this is specified, only that particular spec will be
|
||||
run, and other workloads in the agenda will be
|
||||
ignored. This option may be used to specify multiple
|
||||
IDs.
|
||||
|
||||
|
||||
Output Directory
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
The exact contents on the output directory will depend on configuration options
|
||||
used, instrumentation and output processors enabled, etc. Typically, the output
|
||||
directory will contain a results file at the top level that lists all
|
||||
measurements that were collected (currently, csv and json formats are
|
||||
supported), along with a subdirectory for each iteration executed with output
|
||||
for that specific iteration.
|
||||
|
||||
At the top level, there will also be a run.log file containing the complete log
|
||||
output for the execution. The contents of this file is equivalent to what you
|
||||
would get in the console when using --verbose option.
|
||||
|
||||
Finally, there will be a __meta subdirectory. This will contain a copy of the
|
||||
agenda file used to run the workloads along with any other device-specific
|
||||
configuration files used during execution.
|
||||
|
||||
|
||||
list
|
||||
----
|
||||
|
||||
This lists all extensions of a particular type. For example ::
|
||||
|
||||
wa list workloads
|
||||
|
||||
will list all workloads currently included in WA. The list will consist of
|
||||
extension names and short descriptions of the functionality they offer.
|
||||
|
||||
|
||||
show
|
||||
----
|
||||
|
||||
This will show detailed information about an extension, including more in-depth
|
||||
description and any parameters/configuration that are available. For example
|
||||
executing ::
|
||||
|
||||
wa show andebench
|
||||
|
||||
will produce something like ::
|
||||
|
||||
|
||||
andebench
|
||||
|
||||
AndEBench is an industry standard Android benchmark provided by The Embedded Microprocessor Benchmark Consortium
|
||||
(EEMBC).
|
||||
|
||||
parameters:
|
||||
|
||||
number_of_threads
|
||||
Number of threads that will be spawned by AndEBench.
|
||||
type: int
|
||||
|
||||
single_threaded
|
||||
If ``true``, AndEBench will run with a single thread. Note: this must not be specified if ``number_of_threads``
|
||||
has been specified.
|
||||
type: bool
|
||||
|
||||
http://www.eembc.org/andebench/about.php
|
||||
|
||||
From the website:
|
||||
|
||||
- Initial focus on CPU and Dalvik interpreter performance
|
||||
- Internal algorithms concentrate on integer operations
|
||||
- Compares the difference between native and Java performance
|
||||
- Implements flexible multicore performance analysis
|
||||
- Results displayed in Iterations per second
|
||||
- Detailed log file for comprehensive engineering analysis
|
||||
|
||||
|
||||
|
162
doc/source/quickstart.rst
Normal file
162
doc/source/quickstart.rst
Normal file
@@ -0,0 +1,162 @@
|
||||
==========
|
||||
Quickstart
|
||||
==========
|
||||
|
||||
This sections will show you how to quickly start running workloads using
|
||||
Workload Automation 2.
|
||||
|
||||
|
||||
Install
|
||||
=======
|
||||
|
||||
.. note:: This is a quick summary. For more detailed instructions, please see
|
||||
the :doc:`installation` section.
|
||||
|
||||
Make sure you have Python 2.7 and a recent Android SDK with API level 18 or above
|
||||
installed on your system. For the SDK, make sure that either ``ANDROID_HOME``
|
||||
environment variable is set, or that ``adb`` is in your ``PATH``.
|
||||
|
||||
.. note:: A complete install of the Android SDK is required, as WA uses a
|
||||
number of its utilities, not just adb.
|
||||
|
||||
In addition to the base Python 2.7 install, you will also need to have ``pip``
|
||||
(Python's package manager) installed as well. This is usually a separate package.
|
||||
|
||||
Once you have the pre-requisites and a tarball with the workload automation package,
|
||||
you can install it with pip::
|
||||
|
||||
sudo pip install wlauto-2.2.0dev.tar.gz
|
||||
|
||||
This will install Workload Automation on your system, along with the Python
|
||||
packages it depends on.
|
||||
|
||||
(Optional) Verify installation
|
||||
-------------------------------
|
||||
|
||||
Once the tarball has been installed, try executing ::
|
||||
|
||||
wa -h
|
||||
|
||||
You should see a help message outlining available subcommands.
|
||||
|
||||
|
||||
(Optional) APK files
|
||||
--------------------
|
||||
|
||||
A large number of WA workloads are installed as APK files. These cannot be
|
||||
distributed with WA and so you will need to obtain those separately.
|
||||
|
||||
For more details, please see the :doc:`installation` section.
|
||||
|
||||
|
||||
Configure Your Device
|
||||
=====================
|
||||
|
||||
Out of the box, WA is configured to work with a generic Android device through
|
||||
``adb``. If you only have one device listed when you execute ``adb devices``,
|
||||
and your device has a standard Android configuration, then no extra configuration
|
||||
is required (if your device is connected via network, you will have to manually execute
|
||||
``adb connect <device ip>`` so that it appears in the device listing).
|
||||
|
||||
If you have multiple devices connected, you will need to tell WA which one you
|
||||
want it to use. You can do that by setting ``adb_name`` in device configuration inside
|
||||
``~/.workload_automation/config.py``\ , e.g.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# ...
|
||||
|
||||
device_config = dict(
|
||||
adb_name = 'abcdef0123456789',
|
||||
# ...
|
||||
)
|
||||
|
||||
# ...
|
||||
|
||||
This should give you basic functionality. If your device has non-standard
|
||||
Android configuration (e.g. it's a development board) or your need some advanced
|
||||
functionality (e.g. big.LITTLE tuning parameters), additional configuration may
|
||||
be required. Please see the :doc:`device_setup` section for more details.
|
||||
|
||||
|
||||
Running Your First Workload
|
||||
===========================
|
||||
|
||||
The simplest way to run a workload is to specify it as a parameter to WA ``run``
|
||||
sub-command::
|
||||
|
||||
wa run dhrystone
|
||||
|
||||
You will see INFO output from WA as it executes each stage of the run. A
|
||||
completed run output should look something like this::
|
||||
|
||||
INFO Initializing
|
||||
INFO Running workloads
|
||||
INFO Connecting to device
|
||||
INFO Initializing device
|
||||
INFO Running workload 1 dhrystone (iteration 1)
|
||||
INFO Setting up
|
||||
INFO Executing
|
||||
INFO Processing result
|
||||
INFO Tearing down
|
||||
INFO Processing overall results
|
||||
INFO Status available in wa_output/status.txt
|
||||
INFO Done.
|
||||
INFO Ran a total of 1 iterations: 1 OK
|
||||
INFO Results can be found in wa_output
|
||||
|
||||
Once the run has completed, you will find a directory called ``wa_output``
|
||||
in the location where you have invoked ``wa run``. Within this directory,
|
||||
you will find a "results.csv" file which will contain results obtained for
|
||||
dhrystone, as well as a "run.log" file containing detailed log output for
|
||||
the run. You will also find a sub-directory called 'drystone_1_1' that
|
||||
contains the results for that iteration. Finally, you will find a copy of the
|
||||
agenda file in the ``wa_output/__meta`` subdirectory. The contents of
|
||||
iteration-specific subdirectories will vary from workload to workload, and,
|
||||
along with the contents of the main output directory, will depend on the
|
||||
instrumentation and result processors that were enabled for that run.
|
||||
|
||||
The ``run`` sub-command takes a number of options that control its behavior,
|
||||
you can view those by executing ``wa run -h``. Please see the :doc:`invocation`
|
||||
section for details.
|
||||
|
||||
|
||||
Create an Agenda
|
||||
================
|
||||
|
||||
Simply running a single workload is normally of little use. Typically, you would
|
||||
want to specify several workloads, setup the device state and, possibly, enable
|
||||
additional instrumentation. To do this, you would need to create an "agenda" for
|
||||
the run that outlines everything you want WA to do.
|
||||
|
||||
Agendas are written using YAML_ markup language. A simple agenda might look
|
||||
like this:
|
||||
|
||||
.. code-block:: yaml
|
||||
|
||||
config:
|
||||
instrumentation: [~execution_time]
|
||||
result_processors: [json]
|
||||
global:
|
||||
iterations: 2
|
||||
workloads:
|
||||
- memcpy
|
||||
- name: dhrystone
|
||||
params:
|
||||
mloops: 5
|
||||
threads: 1
|
||||
|
||||
This agenda
|
||||
|
||||
- Specifies two workloads: memcpy and dhrystone.
|
||||
- Specifies that dhrystone should run in one thread and execute five million loops.
|
||||
- Specifies that each of the two workloads should be run twice.
|
||||
- Enables json result processor, in addition to the result processors enabled in
|
||||
the config.py.
|
||||
- Disables execution_time instrument, if it is enabled in the config.py
|
||||
|
||||
There is a lot more that could be done with an agenda. Please see :doc:`agenda`
|
||||
section for details.
|
||||
|
||||
.. _YAML: http://en.wikipedia.org/wiki/YAML
|
||||
|
45
doc/source/resources.rst
Normal file
45
doc/source/resources.rst
Normal file
@@ -0,0 +1,45 @@
|
||||
Dynamic Resource Resolution
|
||||
===========================
|
||||
|
||||
Introduced in version 2.1.3.
|
||||
|
||||
The idea is to decouple resource identification from resource discovery.
|
||||
Workloads/instruments/devices/etc state *what* resources they need, and not
|
||||
*where* to look for them -- this instead is left to the resource resolver that
|
||||
is now part of the execution context. The actual discovery of resources is
|
||||
performed by resource getters that are registered with the resolver.
|
||||
|
||||
A resource type is defined by a subclass of
|
||||
:class:`wlauto.core.resource.Resource`. An instance of this class describes a
|
||||
resource that is to be obtained. At minimum, a ``Resource`` instance has an
|
||||
owner (which is typically the object that is looking for the resource), but
|
||||
specific resource types may define other parameters that describe an instance of
|
||||
that resource (such as file names, URLs, etc).
|
||||
|
||||
An object looking for a resource invokes a resource resolver with an instance of
|
||||
``Resource`` describing the resource it is after. The resolver goes through the
|
||||
getters registered for that resource type in priority order attempting to obtain
|
||||
the resource; once the resource is obtained, it is returned to the calling
|
||||
object. If none of the registered getters could find the resource, ``None`` is
|
||||
returned instead.
|
||||
|
||||
The most common kind of object looking for resources is a ``Workload``, and
|
||||
since v2.1.3, ``Workload`` class defines
|
||||
:py:meth:`wlauto.core.workload.Workload.init_resources` method that may be
|
||||
overridden by subclasses to perform resource resolution. For example, a workload
|
||||
looking for an APK file would do so like this::
|
||||
|
||||
from wlauto import Workload
|
||||
from wlauto.common.resources import ApkFile
|
||||
|
||||
class AndroidBenchmark(Workload):
|
||||
|
||||
# ...
|
||||
|
||||
def init_resources(self, context):
|
||||
self.apk_file = context.resource.get(ApkFile(self))
|
||||
|
||||
# ...
|
||||
|
||||
|
||||
Currently available resource types are defined in :py:mod:`wlauto.common.resources`.
|
97
doc/source/revent.rst
Normal file
97
doc/source/revent.rst
Normal file
@@ -0,0 +1,97 @@
|
||||
.. _revent_files_creation:
|
||||
|
||||
revent
|
||||
======
|
||||
|
||||
revent utility can be used to record and later play back a sequence of user
|
||||
input events, such as key presses and touch screen taps. This is an alternative
|
||||
to Android UI Automator for providing automation for workloads. ::
|
||||
|
||||
|
||||
usage:
|
||||
revent [record time file|replay file|info] [verbose]
|
||||
record: stops after either return on stdin
|
||||
or time (in seconds)
|
||||
and stores in file
|
||||
replay: replays eventlog from file
|
||||
info:shows info about each event char device
|
||||
any additional parameters make it verbose
|
||||
|
||||
Recording
|
||||
---------
|
||||
|
||||
To record, transfer the revent binary to the device, then invoke ``revent
|
||||
record``, giving it the time (in seconds) you want to record for, and the
|
||||
file you want to record to (WA expects these files to have .revent
|
||||
extension)::
|
||||
|
||||
host$ adb push revent /data/local/revent
|
||||
host$ adb shell
|
||||
device# cd /data/local
|
||||
device# ./revent record 1000 my_recording.revent
|
||||
|
||||
The recording has now started and button presses, taps, etc you perform on the
|
||||
device will go into the .revent file. The recording will stop after the
|
||||
specified time period, and you can also stop it by hitting return in the adb
|
||||
shell.
|
||||
|
||||
Replaying
|
||||
---------
|
||||
|
||||
To replay a recorded file, run ``revent replay`` on the device, giving it the
|
||||
file you want to replay::
|
||||
|
||||
device# ./revent replay my_recording.revent
|
||||
|
||||
|
||||
Using revent With Workloads
|
||||
---------------------------
|
||||
|
||||
Some workloads (pretty much all games) rely on recorded revents for their
|
||||
execution. :class:`wlauto.common.GameWorkload`-derived workloads expect two
|
||||
revent files -- one for performing the initial setup (navigating menus,
|
||||
selecting game modes, etc), and one for the actual execution of the game.
|
||||
Because revents are very device-specific\ [*]_, these two files would need to
|
||||
be recorded for each device.
|
||||
|
||||
The files must be called ``<device name>.(setup|run).revent``, where
|
||||
``<device name>`` is the name of your device (as defined by the ``name``
|
||||
attribute of your device's class). WA will look for these files in two
|
||||
places: ``<install dir>/wlauto/workloads/<workload name>/revent_files``
|
||||
and ``~/.workload_automation/dependencies/<workload name>``. The first
|
||||
location is primarily intended for revent files that come with WA (and if
|
||||
you did a system-wide install, you'll need sudo to add files there), so it's
|
||||
probably easier to use the second location for the files you record. Also,
|
||||
if revent files for a workload exist in both locations, the files under
|
||||
``~/.workload_automation/dependencies`` will be used in favor of those
|
||||
installed with WA.
|
||||
|
||||
For example, if you wanted to run angrybirds workload on "Acme" device, you would
|
||||
record the setup and run revent files using the method outlined in the section
|
||||
above and then pull them for the devices into the following locations::
|
||||
|
||||
~/workload_automation/dependencies/angrybirds/Acme.setup.revent
|
||||
~/workload_automation/dependencies/angrybirds/Acme.run.revent
|
||||
|
||||
(you may need to create the intermediate directories if they don't already
|
||||
exist).
|
||||
|
||||
.. [*] It's not just about screen resolution -- the event codes may be different
|
||||
even if devices use the same screen.
|
||||
|
||||
|
||||
revent vs. UiAutomator
|
||||
----------------------
|
||||
|
||||
In general, Android UI Automator is the preferred way of automating user input
|
||||
for workloads because, unlike revent, UI Automator does not depend on a
|
||||
particular screen resolution, and so is more portable across different devices.
|
||||
It also gives better control and can potentially be faster for ling UI
|
||||
manipulations, as input events are scripted based on the available UI elements,
|
||||
rather than generated by human input.
|
||||
|
||||
On the other hand, revent can be used to manipulate pretty much any workload,
|
||||
where as UI Automator only works for Android UI elements (such as text boxes or
|
||||
radio buttons), which makes the latter useless for things like games. Recording
|
||||
revent sequence is also faster than writing automation code (on the other hand,
|
||||
one would need maintain a different revent log for each screen resolution).
|
BIN
doc/source/wa-execution.png
Normal file
BIN
doc/source/wa-execution.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 102 KiB |
956
doc/source/writing_extensions.rst
Normal file
956
doc/source/writing_extensions.rst
Normal file
@@ -0,0 +1,956 @@
|
||||
==================
|
||||
Writing Extensions
|
||||
==================
|
||||
|
||||
Workload Automation offers several extension points (or plugin types).The most
|
||||
interesting of these are
|
||||
|
||||
:workloads: These are the tasks that get executed and measured on the device. These
|
||||
can be benchmarks, high-level use cases, or pretty much anything else.
|
||||
:devices: These are interfaces to the physical devices (development boards or end-user
|
||||
devices, such as smartphones) that use cases run on. Typically each model of a
|
||||
physical device would require it's own interface class (though some functionality
|
||||
may be reused by subclassing from an existing base).
|
||||
:instruments: Instruments allow collecting additional data from workload execution (e.g.
|
||||
system traces). Instruments are not specific to a particular Workload. Instruments
|
||||
can hook into any stage of workload execution.
|
||||
:result processors: These are used to format the results of workload execution once they have been
|
||||
collected. Depending on the callback used, these will run either after each
|
||||
iteration or at the end of the run, after all of the results have been
|
||||
collected.
|
||||
|
||||
You create an extension by subclassing the appropriate base class, defining
|
||||
appropriate methods and attributes, and putting the .py file with the class into
|
||||
an appropriate subdirectory under ``~/.workload_automation`` (there is one for
|
||||
each extension type).
|
||||
|
||||
|
||||
Extension Basics
|
||||
================
|
||||
|
||||
This sub-section covers things common to implementing extensions of all types.
|
||||
It is recommended you familiarize yourself with the information here before
|
||||
proceeding onto guidance for specific extension types.
|
||||
|
||||
To create an extension, you basically subclass an appropriate base class and them
|
||||
implement the appropriate methods
|
||||
|
||||
The Context
|
||||
-----------
|
||||
|
||||
The majority of methods in extensions accept a context argument. This is an
|
||||
instance of :class:`wlauto.core.execution.ExecutionContext`. If contains
|
||||
of information about current state of execution of WA and keeps track of things
|
||||
like which workload is currently running and the current iteration.
|
||||
|
||||
Notable attributes of the context are
|
||||
|
||||
context.spec
|
||||
the current workload specification being executed. This is an
|
||||
instance of :class:`wlauto.core.configuration.WorkloadRunSpec`
|
||||
and defines the workload and the parameters under which it is
|
||||
being executed.
|
||||
|
||||
context.workload
|
||||
``Workload`` object that is currently being executed.
|
||||
|
||||
context.current_iteration
|
||||
The current iteration of the spec that is being executed. Note that this
|
||||
is the iteration for that spec, i.e. the number of times that spec has
|
||||
been run, *not* the total number of all iterations have been executed so
|
||||
far.
|
||||
|
||||
context.result
|
||||
This is the result object for the current iteration. This is an instance
|
||||
of :class:`wlauto.core.result.IterationResult`. It contains the status
|
||||
of the iteration as well as the metrics and artifacts generated by the
|
||||
workload and enable instrumentation.
|
||||
|
||||
context.device
|
||||
The device interface object that can be used to interact with the
|
||||
device. Note that workloads and instruments have their own device
|
||||
attribute and they should be using that instead.
|
||||
|
||||
In addition to these, context also defines a few useful paths (see below).
|
||||
|
||||
|
||||
Paths
|
||||
-----
|
||||
|
||||
You should avoid using hard-coded absolute paths in your extensions whenever
|
||||
possible, as they make your code too dependent on a particular environment and
|
||||
may mean having to make adjustments when moving to new (host and/or device)
|
||||
platforms. To help avoid hard-coded absolute paths, WA automation defines
|
||||
a number of standard locations. You should strive to define your paths relative
|
||||
to one of those.
|
||||
|
||||
On the host
|
||||
~~~~~~~~~~~
|
||||
|
||||
Host paths are available through the context object, which is passed to most
|
||||
extension methods.
|
||||
|
||||
context.run_output_directory
|
||||
This is the top-level output directory for all WA results (by default,
|
||||
this will be "wa_output" in the directory in which WA was invoked.
|
||||
|
||||
context.output_directory
|
||||
This is the output directory for the current iteration. This will an
|
||||
iteration-specific subdirectory under the main results location. If
|
||||
there is no current iteration (e.g. when processing overall run results)
|
||||
this will point to the same location as ``root_output_directory``.
|
||||
|
||||
context.host_working_directory
|
||||
This an addition location that may be used by extensions to store
|
||||
non-iteration specific intermediate files (e.g. configuration).
|
||||
|
||||
Additionally, the global ``wlauto.settings`` object exposes on other location:
|
||||
|
||||
settings.dependency_directory
|
||||
this is the root directory for all extension dependencies (e.g. media
|
||||
files, assets etc) that are not included within the extension itself.
|
||||
|
||||
As per Python best practice, it is recommended that methods and values in
|
||||
``os.path`` standard library module are used for host path manipulation.
|
||||
|
||||
On the device
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
Workloads and instruments have a ``device`` attribute, which is an interface to
|
||||
the device used by WA. It defines the following location:
|
||||
|
||||
device.working_directory
|
||||
This is the directory for all WA-related files on the device. All files
|
||||
deployed to the device should be pushed to somewhere under this location
|
||||
(the only exception being executables installed with ``device.install``
|
||||
method).
|
||||
|
||||
Since there could be a mismatch between path notation used by the host and the
|
||||
device, the ``os.path`` modules should *not* be used for on-device path
|
||||
manipulation. Instead device has an equipment module exposed through
|
||||
``device.path`` attribute. This has all the same attributes and behaves the
|
||||
same way as ``os.path``, but is guaranteed to produce valid paths for the device,
|
||||
irrespective of the host's path notation.
|
||||
|
||||
.. note:: result processors, unlike workloads and instruments, do not have their
|
||||
own device attribute; however they can access the device through the
|
||||
context.
|
||||
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
All extensions can be parameterized. Parameters are specified using
|
||||
``parameters`` class attribute. This should be a list of
|
||||
:class:`wlauto.core.Parameter` instances. The following attributes can be
|
||||
specified on parameter creation:
|
||||
|
||||
name
|
||||
This is the only mandatory argument. The name will be used to create a
|
||||
corresponding attribute in the extension instance, so it must be a valid
|
||||
Python identifier.
|
||||
|
||||
kind
|
||||
This is the type of the value of the parameter. This could be an
|
||||
callable. Normally this should be a standard Python type, e.g. ``int`
|
||||
or ``float``, or one the types defined in :mod:`wlauto.utils.types`.
|
||||
If not explicitly specified, this will default to ``str``.
|
||||
|
||||
.. note:: Irrespective of the ``kind`` specified, ``None`` is always a
|
||||
valid value for a parameter. If you don't want to allow
|
||||
``None``, then set ``mandatory`` (see below) to ``True``.
|
||||
|
||||
allowed_values
|
||||
A list of the only allowed values for this parameter.
|
||||
|
||||
.. note:: For composite types, such as ``list_of_strings`` or
|
||||
``list_of_ints`` in :mod:`wlauto.utils.types`, each element of
|
||||
the value will be checked against ``allowed_values`` rather
|
||||
than the composite value itself.
|
||||
|
||||
default
|
||||
The default value to be used for this parameter if one has not been
|
||||
specified by the user. Defaults to ``None``.
|
||||
|
||||
mandatory
|
||||
A ``bool`` indicating whether this parameter is mandatory. Setting this
|
||||
to ``True`` will make ``None`` an illegal value for the parameter.
|
||||
Defaults to ``False``.
|
||||
|
||||
.. note:: Specifying a ``default`` will mean that this parameter will,
|
||||
effectively, be ignored (unless the user sets the param to ``None``).
|
||||
|
||||
.. note:: Mandatory parameters are *bad*. If at all possible, you should
|
||||
strive to provide a sensible ``default`` or to make do without
|
||||
the parameter. Only when the param is absolutely necessary,
|
||||
and there really is no sensible default that could be given
|
||||
(e.g. something like login credentials), should you consider
|
||||
making it mandatory.
|
||||
|
||||
constraint
|
||||
This is an additional constraint to be enforced on the parameter beyond
|
||||
its type or fixed allowed values set. This should be a predicate (a function
|
||||
that takes a single argument -- the user-supplied value -- and returns
|
||||
a ``bool`` indicating whether the constraint has been satisfied).
|
||||
|
||||
override
|
||||
A parameter name must be unique not only within an extension but also
|
||||
with that extension's class hierarchy. If you try to declare a parameter
|
||||
with the same name as already exists, you will get an error. If you do
|
||||
want to override a parameter from further up in the inheritance
|
||||
hierarchy, you can indicate that by setting ``override`` attribute to
|
||||
``True``.
|
||||
|
||||
When overriding, you do not need to specify every other attribute of the
|
||||
parameter, just the ones you what to override. Values for the rest will
|
||||
be taken from the parameter in the base class.
|
||||
|
||||
|
||||
Validation and cross-parameter constraints
|
||||
------------------------------------------
|
||||
|
||||
An extension will get validated at some point after constructions. When exactly
|
||||
this occurs depends on the extension type, but it *will* be validated before it
|
||||
is used.
|
||||
|
||||
You can implement ``validate`` method in your extension (that takes no arguments
|
||||
beyond the ``self``) to perform any additions *internal* validation in your
|
||||
extension. By "internal", I mean that you cannot make assumptions about the
|
||||
surrounding environment (e.g. that the device has been initialized).
|
||||
|
||||
The contract for ``validate`` method is that it should raise an exception
|
||||
(either ``wlauto.exceptions.ConfigError`` or extension-specific exception type -- see
|
||||
further on this page) if some validation condition has not, and cannot, been met.
|
||||
If the method returns without raising an exception, then the extension is in a
|
||||
valid internal state.
|
||||
|
||||
Note that ``validate`` can be used not only to verify, but also to impose a
|
||||
valid internal state. In particular, this where cross-parameter constraints can
|
||||
be resolved. If the ``default`` or ``allowed_values`` of one parameter depend on
|
||||
another parameter, there is no way to express that declaratively when specifying
|
||||
the parameters. In that case the dependent attribute should be left unspecified
|
||||
on creation and should instead be set inside ``validate``.
|
||||
|
||||
Logging
|
||||
-------
|
||||
|
||||
Every extension class has it's own logger that you can access through
|
||||
``self.logger`` inside the extension's methods. Generally, a :class:`Device` will log
|
||||
everything it is doing, so you shouldn't need to add much additional logging in
|
||||
your expansion's. But you might what to log additional information, e.g.
|
||||
what settings your extension is using, what it is doing on the host, etc.
|
||||
Operations on the host will not normally be logged, so your extension should
|
||||
definitely log what it is doing on the host. One situation in particular where
|
||||
you should add logging is before doing something that might take a significant amount
|
||||
of time, such as downloading a file.
|
||||
|
||||
|
||||
Documenting
|
||||
-----------
|
||||
|
||||
All extensions and their parameter should be documented. For extensions
|
||||
themselves, this is done through ``description`` class attribute. The convention
|
||||
for an extension description is that the first paragraph should be a short
|
||||
summary description of what the extension does and why one would want to use it
|
||||
(among other things, this will get extracted and used by ``wa list`` command).
|
||||
Subsequent paragraphs (separated by blank lines) can then provide a more
|
||||
detailed description, including any limitations and setup instructions.
|
||||
|
||||
For parameters, the description is passed as an argument on creation. Please
|
||||
note that if ``default``, ``allowed_values``, or ``constraint``, are set in the
|
||||
parameter, they do not need to be explicitly mentioned in the description (wa
|
||||
documentation utilities will automatically pull those). If the ``default`` is set
|
||||
in ``validate`` or additional cross-parameter constraints exist, this *should*
|
||||
be documented in the parameter description.
|
||||
|
||||
Both extensions and their parameters should be documented using reStructureText
|
||||
markup (standard markup for Python documentation). See:
|
||||
|
||||
http://docutils.sourceforge.net/rst.html
|
||||
|
||||
Aside from that, it is up to you how you document your extension. You should try
|
||||
to provide enough information so that someone unfamiliar with your extension is
|
||||
able to use it, e.g. you should document all settings and parameters your
|
||||
extension expects (including what the valid value are).
|
||||
|
||||
|
||||
Error Notification
|
||||
------------------
|
||||
|
||||
When you detect an error condition, you should raise an appropriate exception to
|
||||
notify the user. The exception would typically be :class:`ConfigError` or
|
||||
(depending the type of the extension)
|
||||
:class:`WorkloadError`/:class:`DeviceError`/:class:`InstrumentError`/:class:`ResultProcessorError`.
|
||||
All these errors are defined in :mod:`wlauto.exception` module.
|
||||
|
||||
:class:`ConfigError` should be raised where there is a problem in configuration
|
||||
specified by the user (either through the agenda or config files). These errors
|
||||
are meant to be resolvable by simple adjustments to the configuration (and the
|
||||
error message should suggest what adjustments need to be made. For all other
|
||||
errors, such as missing dependencies, mis-configured environment, problems
|
||||
performing operations, etc., the extension type-specific exceptions should be
|
||||
used.
|
||||
|
||||
If the extension itself is capable of recovering from the error and carrying
|
||||
on, it may make more sense to log an ERROR or WARNING level message using the
|
||||
extension's logger and to continue operation.
|
||||
|
||||
|
||||
Utils
|
||||
-----
|
||||
|
||||
Workload Automation defines a number of utilities collected under
|
||||
:mod:`wlauto.utils` subpackage. These utilities were created to help with the
|
||||
implementation of the framework itself, but may be also be useful when
|
||||
implementing extensions.
|
||||
|
||||
|
||||
Adding a Workload
|
||||
=================
|
||||
|
||||
.. note:: You can use ``wa create workload [name]`` script to generate a new workload
|
||||
structure for you. This script can also create the boilerplate for
|
||||
UI automation, if your workload needs it. See ``wa create -h`` for more
|
||||
details.
|
||||
|
||||
New workloads can be added by subclassing :class:`wlauto.core.workload.Workload`
|
||||
|
||||
|
||||
The Workload class defines the following interface::
|
||||
|
||||
class Workload(Extension):
|
||||
|
||||
name = None
|
||||
|
||||
def init_resources(self, context):
|
||||
pass
|
||||
|
||||
def setup(self, context):
|
||||
raise NotImplementedError()
|
||||
|
||||
def run(self, context):
|
||||
raise NotImplementedError()
|
||||
|
||||
def update_result(self, context):
|
||||
raise NotImplementedError()
|
||||
|
||||
def teardown(self, context):
|
||||
raise NotImplementedError()
|
||||
|
||||
def validate(self):
|
||||
pass
|
||||
|
||||
.. note:: Please see :doc:`conventions` section for notes on how to interpret
|
||||
this.
|
||||
|
||||
The interface should be implemented as follows
|
||||
|
||||
:name: This identifies the workload (e.g. it used to specify it in the
|
||||
agenda_.
|
||||
:init_resources: This method may be optionally override to implement dynamic
|
||||
resource discovery for the workload.
|
||||
**Added in version 2.1.3**
|
||||
:setup: Everything that needs to be in place for workload execution should
|
||||
be done in this method. This includes copying files to the device,
|
||||
starting up an application, configuring communications channels,
|
||||
etc.
|
||||
:run: This method should perform the actual task that is being measured.
|
||||
When this method exits, the task is assumed to be complete.
|
||||
|
||||
.. note:: Instrumentation is kicked off just before calling this
|
||||
method and is disabled right after, so everything in this
|
||||
method is being measured. Therefore this method should
|
||||
contain the least code possible to perform the operations
|
||||
you are interested in measuring. Specifically, things like
|
||||
installing or starting applications, processing results, or
|
||||
copying files to/from the device should be done elsewhere if
|
||||
possible.
|
||||
|
||||
:update_result: This method gets invoked after the task execution has
|
||||
finished and should be used to extract metrics and add them
|
||||
to the result (see below).
|
||||
:teardown: This could be used to perform any cleanup you may wish to do,
|
||||
e.g. Uninstalling applications, deleting file on the device, etc.
|
||||
|
||||
:validate: This method can be used to validate any assumptions your workload
|
||||
makes about the environment (e.g. that required files are
|
||||
present, environment variables are set, etc) and should raise
|
||||
a :class:`wlauto.exceptions.WorkloadError` if that is not the
|
||||
case. The base class implementation only makes sure sure that
|
||||
the name attribute has been set.
|
||||
|
||||
.. _agenda: agenda.html
|
||||
|
||||
Workload methods (except for ``validate``) take a single argument that is a
|
||||
:class:`wlauto.core.execution.ExecutionContext` instance. This object keeps
|
||||
track of the current execution state (such as the current workload, iteration
|
||||
number, etc), and contains, among other things, a
|
||||
:class:`wlauto.core.workload.WorkloadResult` instance that should be populated
|
||||
from the ``update_result`` method with the results of the execution. ::
|
||||
|
||||
# ...
|
||||
|
||||
def update_result(self, context):
|
||||
# ...
|
||||
context.result.add_metric('energy', 23.6, 'Joules', lower_is_better=True)
|
||||
|
||||
# ...
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
This example shows a simple workload that times how long it takes to compress a
|
||||
file of a particular size on the device.
|
||||
|
||||
.. note:: This is intended as an example of how to implement the Workload
|
||||
interface. The methodology used to perform the actual measurement is
|
||||
not necessarily sound, and this Workload should not be used to collect
|
||||
real measurements.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import os
|
||||
from wlauto import Workload, Parameter
|
||||
|
||||
class ZiptestWorkload(Workload):
|
||||
|
||||
name = 'ziptest'
|
||||
description = '''
|
||||
Times how long it takes to gzip a file of a particular size on a device.
|
||||
|
||||
This workload was created for illustration purposes only. It should not be
|
||||
used to collect actual measurements.
|
||||
|
||||
'''
|
||||
|
||||
parameters = [
|
||||
Parameter('file_size', kind=int, default=2000000,
|
||||
description='Size of the file (in bytes) to be gzipped.')
|
||||
]
|
||||
|
||||
def setup(self, context):
|
||||
# Generate a file of the specified size containing random garbage.
|
||||
host_infile = os.path.join(context.output_directory, 'infile')
|
||||
command = 'openssl rand -base64 {} > {}'.format(self.file_size, host_infile)
|
||||
os.system(command)
|
||||
# Set up on-device paths
|
||||
devpath = self.device.path # os.path equivalent for the device
|
||||
self.device_infile = devpath.join(self.device.working_directory, 'infile')
|
||||
self.device_outfile = devpath.join(self.device.working_directory, 'outfile')
|
||||
# Push the file to the device
|
||||
self.device.push_file(host_infile, self.device_infile)
|
||||
|
||||
def run(self, context):
|
||||
self.device.execute('cd {} && (time gzip {}) &>> {}'.format(self.device.working_directory,
|
||||
self.device_infile,
|
||||
self.device_outfile))
|
||||
|
||||
def update_result(self, context):
|
||||
# Pull the results file to the host
|
||||
host_outfile = os.path.join(context.output_directory, 'outfile')
|
||||
self.device.pull_file(self.device_outfile, host_outfile)
|
||||
# Extract metrics form the file's contents and update the result
|
||||
# with them.
|
||||
content = iter(open(host_outfile).read().strip().split())
|
||||
for value, metric in zip(content, content):
|
||||
mins, secs = map(float, value[:-1].split('m'))
|
||||
context.result.add_metric(metric, secs + 60 * mins)
|
||||
|
||||
def teardown(self, context):
|
||||
# Clean up on-device file.
|
||||
self.device.delete_file(self.device_infile)
|
||||
self.device.delete_file(self.device_outfile)
|
||||
|
||||
|
||||
|
||||
.. _GameWorkload:
|
||||
|
||||
Adding revent-dependent Workload:
|
||||
---------------------------------
|
||||
|
||||
:class:`wlauto.common.game.GameWorkload` is the base class for all the workloads
|
||||
that depend on :ref:`revent_files_creation` files. It implements all the methods
|
||||
needed to push the files to the device and run them. New GameWorkload can be
|
||||
added by subclassing :class:`wlauto.common.game.GameWorkload`:
|
||||
|
||||
The GameWorkload class defines the following interface::
|
||||
|
||||
class GameWorkload(Workload):
|
||||
|
||||
name = None
|
||||
package = None
|
||||
activity = None
|
||||
|
||||
The interface should be implemented as follows
|
||||
|
||||
:name: This identifies the workload (e.g. it used to specify it in the
|
||||
agenda_.
|
||||
:package: This is the name of the '.apk' package without its file extension.
|
||||
:activity: The name of the main activity that runs the package.
|
||||
|
||||
Example:
|
||||
--------
|
||||
|
||||
This example shows a simple GameWorkload that plays a game.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from wlauto.common.game import GameWorkload
|
||||
|
||||
class MyGame(GameWorkload):
|
||||
|
||||
name = 'mygame'
|
||||
package = 'com.mylogo.mygame'
|
||||
activity = 'myActivity.myGame'
|
||||
|
||||
Convention for Naming revent Files for :class:`wlauto.common.game.GameWorkload`
|
||||
-------------------------------------------------------------------------------
|
||||
|
||||
There is a convention for naming revent files which you should follow if you
|
||||
want to record your own revent files. Each revent file must start with the
|
||||
device name(case sensitive) then followed by a dot '.' then the stage name
|
||||
then '.revent'. All your custom revent files should reside at
|
||||
'~/.workload_automation/dependencies/WORKLOAD NAME/'. These are the current
|
||||
supported stages:
|
||||
|
||||
:setup: This stage is where the game is loaded. It is a good place to
|
||||
record revent here to modify the game settings and get it ready
|
||||
to start.
|
||||
:run: This stage is where the game actually starts. This will allow for
|
||||
more accurate results if the revent file for this stage only
|
||||
records the game being played.
|
||||
|
||||
For instance, to add a custom revent files for a device named mydevice and
|
||||
a workload name mygame, you create a new directory called mygame in
|
||||
'~/.workload_automation/dependencies/'. Then you add the revent files for
|
||||
the stages you want in ~/.workload_automation/dependencies/mygame/::
|
||||
|
||||
mydevice.setup.revent
|
||||
mydevice.run.revent
|
||||
|
||||
Any revent file in the dependencies will always overwrite the revent file in the
|
||||
workload directory. So it is possible for example to just provide one revent for
|
||||
setup in the dependencies and use the run.revent that is in the workload directory.
|
||||
|
||||
Adding an Instrument
|
||||
====================
|
||||
|
||||
Instruments can be used to collect additional measurements during workload
|
||||
execution (e.g. collect power readings). An instrument can hook into almost any
|
||||
stage of workload execution. A typical instrument would implement a subset of
|
||||
the following interface::
|
||||
|
||||
class Instrument(Extension):
|
||||
|
||||
name = None
|
||||
description = None
|
||||
|
||||
parameters = [
|
||||
]
|
||||
|
||||
def initialize(self, context):
|
||||
pass
|
||||
|
||||
def setup(self, context):
|
||||
pass
|
||||
|
||||
def start(self, context):
|
||||
pass
|
||||
|
||||
def stop(self, context):
|
||||
pass
|
||||
|
||||
def update_result(self, context):
|
||||
pass
|
||||
|
||||
def teardown(self, context):
|
||||
pass
|
||||
|
||||
def finalize(self, context):
|
||||
pass
|
||||
|
||||
This is similar to a Workload, except all methods are optional. In addition to
|
||||
the workload-like methods, instruments can define a number of other methods that
|
||||
will get invoked at various points during run execution. The most useful of
|
||||
which is perhaps ``initialize`` that gets invoked after the device has been
|
||||
initialised for the first time, and can be used to perform one-time setup (e.g.
|
||||
copying files to the device -- there is no point in doing that for each
|
||||
iteration). The full list of available methods can be found in
|
||||
:ref:`Signals Documentation <instrument_name_mapping>`.
|
||||
|
||||
|
||||
Prioritization
|
||||
--------------
|
||||
|
||||
Callbacks (e.g. ``setup()`` methods) for all instrumentation get executed at the
|
||||
same point during workload execution, one after another. The order in which the
|
||||
callbacks get invoked should be considered arbitrary and should not be relied
|
||||
on (e.g. you cannot expect that just because instrument A is listed before
|
||||
instrument B in the config, instrument A's callbacks will run first).
|
||||
|
||||
In some cases (e.g. in ``start()`` and ``stop()`` methods), it is important to
|
||||
ensure that a particular instrument's callbacks run a closely as possible to the
|
||||
workload's invocations in order to maintain accuracy of readings; or,
|
||||
conversely, that a callback is executed after the others, because it takes a
|
||||
long time and may throw off the accuracy of other instrumentation. You can do
|
||||
this by prepending ``fast_`` or ``slow_`` to your callbacks' names. For
|
||||
example::
|
||||
|
||||
class PreciseInstrument(Instument):
|
||||
|
||||
# ...
|
||||
|
||||
def fast_start(self, context):
|
||||
pass
|
||||
|
||||
def fast_stop(self, context):
|
||||
pass
|
||||
|
||||
# ...
|
||||
|
||||
``PreciseInstrument`` will be started after all other instrumentation (i.e.
|
||||
*just* before the workload runs), and it will stopped before all other
|
||||
instrumentation (i.e. *just* after the workload runs). It is also possible to
|
||||
use ``very_fast_`` and ``very_slow_`` prefixes when you want to be really
|
||||
sure that your callback will be the last/first to run.
|
||||
|
||||
If more than one active instrument have specified fast (or slow) callbacks, then
|
||||
their execution order with respect to each other is not guaranteed. In general,
|
||||
having a lot of instrumentation enabled is going to necessarily affect the
|
||||
readings. The best way to ensure accuracy of measurements is to minimize the
|
||||
number of active instruments (perhaps doing several identical runs with
|
||||
different instruments enabled).
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
Below is a simple instrument that measures the execution time of a workload::
|
||||
|
||||
class ExecutionTimeInstrument(Instrument):
|
||||
"""
|
||||
Measure how long it took to execute the run() methods of a Workload.
|
||||
|
||||
"""
|
||||
|
||||
name = 'execution_time'
|
||||
|
||||
def initialize(self, context):
|
||||
self.start_time = None
|
||||
self.end_time = None
|
||||
|
||||
def fast_start(self, context):
|
||||
self.start_time = time.time()
|
||||
|
||||
def fast_stop(self, context):
|
||||
self.end_time = time.time()
|
||||
|
||||
def update_result(self, context):
|
||||
execution_time = self.end_time - self.start_time
|
||||
context.result.add_metric('execution_time', execution_time, 'seconds')
|
||||
|
||||
|
||||
Adding a Result Processor
|
||||
=========================
|
||||
|
||||
A result processor is responsible for processing the results. This may
|
||||
involve formatting and writing them to a file, uploading them to a database,
|
||||
generating plots, etc. WA comes with a few result processors that output
|
||||
results in a few common formats (such as csv or JSON).
|
||||
|
||||
You can add your own result processors by creating a Python file in
|
||||
``~/.workload_automation/result_processors`` with a class that derives from
|
||||
:class:`wlauto.core.result.ResultProcessor`, which has the following interface::
|
||||
|
||||
class ResultProcessor(Extension):
|
||||
|
||||
name = None
|
||||
description = None
|
||||
|
||||
parameters = [
|
||||
]
|
||||
|
||||
def initialize(self, context):
|
||||
pass
|
||||
|
||||
def process_iteration_result(self, result, context):
|
||||
pass
|
||||
|
||||
def export_iteration_result(self, result, context):
|
||||
pass
|
||||
|
||||
def process_run_result(self, result, context):
|
||||
pass
|
||||
|
||||
def export_run_result(self, result, context):
|
||||
pass
|
||||
|
||||
def finalize(self, context):
|
||||
pass
|
||||
|
||||
|
||||
The method names should be fairly self-explanatory. The difference between
|
||||
"process" and "export" methods is that export methods will be invoke after
|
||||
process methods for all result processors have been generated. Process methods
|
||||
may generated additional artifacts (metrics, files, etc), while export methods
|
||||
should not -- the should only handle existing results (upload them to a
|
||||
database, archive on a filer, etc).
|
||||
|
||||
The result object passed to iteration methods is an instance of
|
||||
:class:`wlauto.core.result.IterationResult`, the result object passed to run
|
||||
methods is an instance of :class:`wlauto.core.result.RunResult`. Please refer to
|
||||
their API documentation for details.
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
Here is an example result processor that formats the results as a column-aligned
|
||||
table::
|
||||
|
||||
import os
|
||||
from wlauto import ResultProcessor
|
||||
from wlauto.utils.misc import write_table
|
||||
|
||||
|
||||
class Table(ResultProcessor):
|
||||
|
||||
name = 'table'
|
||||
description = 'Gerates a text file containing a column-aligned table with run results.'
|
||||
|
||||
def process_run_result(self, result, context):
|
||||
rows = []
|
||||
for iteration_result in result.iteration_results:
|
||||
for metric in iteration_result.metrics:
|
||||
rows.append([metric.name, str(metric.value), metric.units or '',
|
||||
metric.lower_is_better and '-' or '+'])
|
||||
|
||||
outfile = os.path.join(context.output_directory, 'table.txt')
|
||||
with open(outfile, 'w') as wfh:
|
||||
write_table(rows, wfh)
|
||||
|
||||
|
||||
Adding a Resource Getter
|
||||
========================
|
||||
|
||||
A resource getter is a new extension type added in version 2.1.3. A resource
|
||||
getter implement a method of acquiring resources of a particular type (such as
|
||||
APK files or additional workload assets). Resource getters are invoked in
|
||||
priority order until one returns the desired resource.
|
||||
|
||||
If you want WA to look for resources somewhere it doesn't by default (e.g. you
|
||||
have a repository of APK files), you can implement a getter for the resource and
|
||||
register it with a higher priority than the standard WA getters, so that it gets
|
||||
invoked first.
|
||||
|
||||
Instances of a resource getter should implement the following interface::
|
||||
|
||||
class ResourceGetter(Extension):
|
||||
|
||||
name = None
|
||||
resource_type = None
|
||||
priority = GetterPriority.environment
|
||||
|
||||
def get(self, resource, **kwargs):
|
||||
raise NotImplementedError()
|
||||
|
||||
The getter should define a name (as with all extensions), a resource
|
||||
type, which should be a string, e.g. ``'jar'``, and a priority (see `Getter
|
||||
Prioritization`_ below). In addition, ``get`` method should be implemented. The
|
||||
first argument is an instance of :class:`wlauto.core.resource.Resource`
|
||||
representing the resource that should be obtained. Additional keyword
|
||||
arguments may be used by the invoker to provide additional information about
|
||||
the resource. This method should return an instance of the resource that
|
||||
has been discovered (what "instance" means depends on the resource, e.g. it
|
||||
could be a file path), or ``None`` if this getter was unable to discover
|
||||
that resource.
|
||||
|
||||
Getter Prioritization
|
||||
---------------------
|
||||
|
||||
A priority is an integer with higher numeric values indicating a higher
|
||||
priority. The following standard priority aliases are defined for getters:
|
||||
|
||||
|
||||
:cached: The cached version of the resource. Look here first. This priority also implies
|
||||
that the resource at this location is a "cache" and is not the only version of the
|
||||
resource, so it may be cleared without losing access to the resource.
|
||||
:preferred: Take this resource in favour of the environment resource.
|
||||
:environment: Found somewhere under ~/.workload_automation/ or equivalent, or
|
||||
from environment variables, external configuration files, etc.
|
||||
These will override resource supplied with the package.
|
||||
:package: Resource provided with the package.
|
||||
:remote: Resource will be downloaded from a remote location (such as an HTTP server
|
||||
or a samba share). Try this only if no other getter was successful.
|
||||
|
||||
These priorities are defined as class members of
|
||||
:class:`wlauto.core.resource.GetterPriority`, e.g. ``GetterPriority.cached``.
|
||||
|
||||
Most getters in WA will be registered with either ``environment`` or
|
||||
``package`` priorities. So if you want your getter to override the default, it
|
||||
should typically be registered as ``preferred``.
|
||||
|
||||
You don't have to stick to standard priority levels (though you should, unless
|
||||
there is a good reason). Any integer is a valid priority. The standard priorities
|
||||
range from -20 to 20 in increments of 10.
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
The following is an implementation of a getter for a workload APK file that
|
||||
looks for the file under
|
||||
``~/.workload_automation/dependencies/<workload_name>``::
|
||||
|
||||
import os
|
||||
import glob
|
||||
|
||||
from wlauto import ResourceGetter, GetterPriority, settings
|
||||
from wlauto.exceptions import ResourceError
|
||||
|
||||
|
||||
class EnvironmentApkGetter(ResourceGetter):
|
||||
|
||||
name = 'environment_apk'
|
||||
resource_type = 'apk'
|
||||
priority = GetterPriority.environment
|
||||
|
||||
def get(self, resource):
|
||||
resource_dir = _d(os.path.join(settings.dependency_directory, resource.owner.name))
|
||||
version = kwargs.get('version')
|
||||
found_files = glob.glob(os.path.join(resource_dir, '*.apk'))
|
||||
if version:
|
||||
found_files = [ff for ff in found_files if version.lower() in ff.lower()]
|
||||
if len(found_files) == 1:
|
||||
return found_files[0]
|
||||
elif not found_files:
|
||||
return None
|
||||
else:
|
||||
raise ResourceError('More than one .apk found in {} for {}.'.format(resource_dir,
|
||||
resource.owner.name))
|
||||
|
||||
.. _adding_a_device:
|
||||
|
||||
Adding a Device
|
||||
===============
|
||||
|
||||
At the moment, only Android devices are supported. Most of the functionality for
|
||||
interacting with a device is implemented in
|
||||
:class:`wlauto.common.AndroidDevice` and is exposed through ``generic_android``
|
||||
device interface, which should suffice for most purposes. The most common area
|
||||
where custom functionality may need to be implemented is during device
|
||||
initialization. Usually, once the device gets to the Android home screen, it's
|
||||
just like any other Android device (modulo things like differences between
|
||||
Android versions).
|
||||
|
||||
If your device doesn't not work with ``generic_device`` interface and you need
|
||||
to write a custom interface to handle it, you would do that by subclassing
|
||||
``AndroidDevice`` and then just overriding the methods you need. Typically you
|
||||
will want to override one or more of the following:
|
||||
|
||||
reset
|
||||
Trigger a device reboot. The default implementation just sends ``adb
|
||||
reboot`` to the device. If this command does not work, an alternative
|
||||
implementation may need to be provided.
|
||||
|
||||
hard_reset
|
||||
This is a harsher reset that involves cutting the power to a device
|
||||
(e.g. holding down power button or removing battery from a phone). The
|
||||
default implementation is a no-op that just sets some internal flags. If
|
||||
you're dealing with unreliable prototype hardware that can crash and
|
||||
become unresponsive, you may want to implement this in order for WA to
|
||||
be able to recover automatically.
|
||||
|
||||
connect
|
||||
When this method returns, adb connection to the device has been
|
||||
established. This gets invoked after a reset. The default implementation
|
||||
just waits for the device to appear in the adb list of connected
|
||||
devices. If this is not enough (e.g. your device is connected via
|
||||
Ethernet and requires an explicit ``adb connect`` call), you may wish to
|
||||
override this to perform the necessary actions before invoking the
|
||||
``AndroidDevice``\ s version.
|
||||
|
||||
init
|
||||
This gets called once at the beginning of the run once the connection to
|
||||
the device has been established. There is no default implementation.
|
||||
It's there to allow whatever custom initialisation may need to be
|
||||
performed for the device (setting properties, configuring services,
|
||||
etc).
|
||||
|
||||
Please refer to the API documentation for :class:`wlauto.common.AndroidDevice`
|
||||
for the full list of its methods and their functionality.
|
||||
|
||||
|
||||
Other Extension Types
|
||||
=====================
|
||||
|
||||
In addition to extension types covered above, there are few other, more
|
||||
specialized ones. They will not be covered in as much detail. Most of them
|
||||
expose relatively simple interfaces with only a couple of methods and it is
|
||||
expected that if the need arises to extend them, the API-level documentation
|
||||
that accompanies them, in addition to what has been outlined here, should
|
||||
provide enough guidance.
|
||||
|
||||
:commands: This allows extending WA with additional sub-commands (to supplement
|
||||
exiting ones outlined in the :ref:`invocation` section).
|
||||
:modules: Modules are "extensions for extensions". They can be loaded by other
|
||||
extensions to expand their functionality (for example, a flashing
|
||||
module maybe loaded by a device in order to support flashing).
|
||||
|
||||
|
||||
Packaging Your Extensions
|
||||
=========================
|
||||
|
||||
If your have written a bunch of extensions, and you want to make it easy to
|
||||
deploy them to new systems and/or to update them on existing systems, you can
|
||||
wrap them in a Python package. You can use ``wa create package`` command to
|
||||
generate appropriate boiler plate. This will create a ``setup.py`` and a
|
||||
directory for your package that you can place your extensions into.
|
||||
|
||||
For example, if you have a workload inside ``my_workload.py`` and a result
|
||||
processor in ``my_result_processor.py``, and you want to package them as
|
||||
``my_wa_exts`` package, first run the create command ::
|
||||
|
||||
wa create package my_wa_exts
|
||||
|
||||
This will create a ``my_wa_exts`` directory which contains a
|
||||
``my_wa_exts/setup.py`` and a subdirectory ``my_wa_exts/my_wa_exts`` which is
|
||||
the package directory for your extensions (you can rename the top-level
|
||||
``my_wa_exts`` directory to anything you like -- it's just a "container" for the
|
||||
setup.py and the package directory). Once you have that, you can then copy your
|
||||
extensions into the package directory, creating
|
||||
``my_wa_exts/my_wa_exts/my_workload.py`` and
|
||||
``my_wa_exts/my_wa_exts/my_result_processor.py``. If you have a lot of
|
||||
extensions, you might want to organize them into subpackages, but only the
|
||||
top-level package directory is created by default, and it is OK to have
|
||||
everything in there.
|
||||
|
||||
.. note:: When discovering extensions thorugh this mechanism, WA traveries the
|
||||
Python module/submodule tree, not the directory strucuter, therefore,
|
||||
if you are going to create subdirectories under the top level dictory
|
||||
created for you, it is important that your make sure they are valid
|
||||
Python packages; i.e. each subdirectory must contain a __init__.py
|
||||
(even if blank) in order for the code in that directory and its
|
||||
subdirectories to be discoverable.
|
||||
|
||||
At this stage, you may want to edit ``params`` structure near the bottom of
|
||||
the ``setup.py`` to add correct author, license and contact information (see
|
||||
"Writing the Setup Script" section in standard Python documentation for
|
||||
details). You may also want to add a README and/or a COPYING file at the same
|
||||
level as the setup.py. Once you have the contents of your package sorted,
|
||||
you can generate the package by running ::
|
||||
|
||||
cd my_wa_exts
|
||||
python setup.py sdist
|
||||
|
||||
This will generate ``my_wa_exts/dist/my_wa_exts-0.0.1.tar.gz`` package which
|
||||
can then be deployed on the target system with standard Python package
|
||||
management tools, e.g. ::
|
||||
|
||||
sudo pip install my_wa_exts-0.0.1.tar.gz
|
||||
|
||||
As part of the installation process, the setup.py in the package, will write the
|
||||
package's name into ``~/.workoad_automoation/packages``. This will tell WA that
|
||||
the package contains extension and it will load them next time it runs.
|
||||
|
||||
.. note:: There are no unistall hooks in ``setuputils``, so if you ever
|
||||
uninstall your WA extensions package, you will have to manually remove
|
||||
it from ``~/.workload_automation/packages`` otherwise WA will complain
|
||||
abou a missing package next time you try to run it.
|
Reference in New Issue
Block a user