1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-02-21 20:38:57 +00:00

Fixing pylint false positives in energy_model

The new  version of pylint is throwing up a couple of new
false positives that the earlier versions did not seem to flag.
This commit is contained in:
Sergei Trofimov 2015-04-27 09:53:21 +01:00
parent 841bd784d9
commit 9d5e0cdc00

View File

@ -97,7 +97,7 @@ class PowerPerformanceAnalysis(object):
self.summary['max_power'] = data[data.cpus == 1].power.max()
low_filter = np.vectorize(lambda x: x > 0 and x or 0)
low_filter = np.vectorize(lambda x: x > 0 and x or 0) # pylint: disable=no-member
def build_energy_model(freq_power_table, cpus_power, idle_power, first_cluster_idle_state):
@ -220,8 +220,8 @@ def get_figure_data(fig, fmt='png'):
def get_normalized_single_core_data(data):
finite_power = np.isfinite(data.power)
finite_perf = np.isfinite(data.performance)
finite_power = np.isfinite(data.power) # pylint: disable=no-member
finite_perf = np.isfinite(data.performance) # pylint: disable=no-member
data_single_core = data[(data.cpus == 1) & finite_perf & finite_power].copy()
data_single_core['performance_norm'] = (data_single_core.performance /
data_single_core.performance.max() * 100).apply(int)