1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-09-01 19:02:31 +01:00

Adding classifiers to metrics and updating csv and telemetry to take advantage of them

- Adding "classifiers" field to Metric objects. This is a dict mapping
  classifier names (arbitrary strings) to corresponding values for that
  specific metrics. This is to allow extensions to add
  extension-specific annotations to metric that could be handled in a
  generic way (e.g. by result processors).
- Updating telemetry workload to add classifiers for the url and internal
  iteration (or "time") for a particular result.
- Updating csv result processor with the option to use classifiers to
  add columns to results.csv (either using all classifiers found, or
  only for the specific ones listed).
This commit is contained in:
Sergei Trofimov
2015-05-14 15:10:42 +01:00
parent 782d4501cd
commit 512bacc1be
4 changed files with 65 additions and 34 deletions

View File

@@ -24,7 +24,9 @@ import os
import csv
import json
from wlauto import ResultProcessor, settings
from wlauto import ResultProcessor, Parameter
from wlauto.exceptions import ConfigError
from wlauto.utils.types import list_of_strings
class StandardProcessor(ResultProcessor):
@@ -63,15 +65,50 @@ class CsvReportProcessor(ResultProcessor):
name = 'csv'
parameters = [
Parameter('use_all_classifiers', kind=bool, default=False,
description="""
If set to ``True``, this will add a column for every classifier
that features in at least one collected metric.
.. note:: This cannot be ``True`` if ``extra_columns`` is set.
"""),
Parameter('extra_columns', kind=list_of_strings,
description="""
List of classifiers to use as columns.
.. note:: This cannot be set if ``use_all_classifiers`` is ``True``.
"""),
]
def validate(self):
if self.use_all_classifiers and self.extra_columns:
raise ConfigError('extra_columns cannot be specified when use_all_classifiers is True')
def process_run_result(self, result, context):
outfile = os.path.join(settings.output_directory, 'results.csv')
if self.use_all_classifiers:
classifiers = set([])
for ir in result.iteration_results:
for metric in ir.metrics:
classifiers.update(metric.classifiers.keys())
extra_columns = list(classifiers)
elif self.extra_columns:
extra_columns = self.extra_columns
else:
extra_columns = []
outfile = os.path.join(context.run_output_directory, 'results.csv')
with open(outfile, 'wb') as wfh:
writer = csv.writer(wfh)
writer.writerow(['id', 'workload', 'iteration', 'metric', 'value', 'units'])
for result in result.iteration_results:
for metric in result.metrics:
row = [result.id, result.spec.label, result.iteration,
metric.name, str(metric.value), metric.units or '']
writer.writerow(['id', 'workload', 'iteration', 'metric', ] +
extra_columns + ['value', 'units'])
for ir in result.iteration_results:
for metric in ir.metrics:
row = ([ir.id, ir.spec.label, ir.iteration, metric.name] +
[str(metric.classifiers.get(c) or '') for c in extra_columns] +
[str(metric.value), metric.units or ''])
writer.writerow(row)
context.add_artifact('run_result_csv', 'results.csv', 'export')
@@ -86,7 +123,7 @@ class JsonReportProcessor(ResultProcessor):
name = 'json'
def process_run_result(self, result, context):
outfile = os.path.join(settings.output_directory, 'results.json')
outfile = os.path.join(context.run_output_directory, 'results.json')
with open(outfile, 'wb') as wfh:
output = []
for result in result.iteration_results:
@@ -111,7 +148,7 @@ class SummaryCsvProcessor(ResultProcessor):
name = 'summary_csv'
def process_run_result(self, result, context):
outfile = os.path.join(settings.output_directory, 'summary.csv')
outfile = os.path.join(context.run_output_directory, 'summary.csv')
with open(outfile, 'wb') as wfh:
writer = csv.writer(wfh)
writer.writerow(['id', 'workload', 'iteration', 'metric', 'value', 'units'])