diff --git a/wlauto/instrumentation/energy_model/__init__.py b/wlauto/instrumentation/energy_model/__init__.py index a5e23a71..3a27e7a5 100644 --- a/wlauto/instrumentation/energy_model/__init__.py +++ b/wlauto/instrumentation/energy_model/__init__.py @@ -290,7 +290,7 @@ def fit_polynomial(s, n): return poly(s.index) -def get_cpus_power_table(data, index, opps): # pylint: disable=too-many-locals +def get_cpus_power_table(data, index, opps, leak_factors): # pylint: disable=too-many-locals # pylint: disable=no-member power_table = data[[index, 'cluster', 'cpus', 'power']].pivot_table(index=index, columns=['cluster', 'cpus'], @@ -307,32 +307,10 @@ def get_cpus_power_table(data, index, opps): # pylint: disable=too-many-locals bs_power_table.loc[bs_power_table[cluster, 1].notnull(), (cluster, 0)] = \ (2 * power_table[cluster, 1] - power_table[cluster, 2]).values else: - df = pd.concat([bs_power_table[cluster], - opps[cluster].set_index('frequency')], - axis=1).dropna(subset=[1]).reset_index() - - # Create a projection by calculating coefficients from the lowest two OPPs (assume minimal leakage) - v0 = df.voltage[0] - v1 = df.voltage[1] - f0 = df.frequency[0] - f1 = df.frequency[1] - - # Assumption: - # P = k1*v*f + k2*v^2*f - coeffs = np.array([ - [v0 * f0, (v0**2) * f0], - [v1 * f1, (v1**2) * f1] - ]) - c1pow = np.array([df[1][0], df[1][1]]) - c2pow = np.array([df[2][0], df[2][1]]) - c1k1, c1k2 = np.linalg.solve(coeffs, c1pow) - c2k1, c2k2 = np.linalg.solve(coeffs, c2pow) - - df['a1'] = pd.Series(df.frequency * df.voltage * c1k1 + df.frequency * df.voltage ** 2 * c1k2, - index=df.index) - df['a2'] = pd.Series(df.frequency * df.voltage * c2k1 + df.frequency * df.voltage ** 2 * c2k2, - index=df.index) - bs_power_table.loc[bs_power_table[cluster, 1].notnull(), (cluster, 0)] = (2 * df.a1 - df.a2).values + leakage = leak_factors[cluster] * 2 * (opps['voltage'] / 1000000)**3 / 0.9**3 + leakage_delta = leakage - leakage[0] + bs_power_table.loc[bs_power_table[cluster, 1].notnull(), (cluster, 0)] = \ + (2 * power_table[cluster, 1] + leakage_delta - power_table[cluster, 2]).values # re-order columns and rename colum '0' to 'cluster' power_table = power_table[sorted(power_table.columns, @@ -431,6 +409,14 @@ class EnergyModelInstrument(Instrument): description="""OPP table mapping frequency to volatage (kHz --> mV) for the big cluster."""), Parameter('little_opps', kind=opp_table, description="""OPP table mapping frequency to volatage (kHz --> mV) for the little cluster."""), + Parameter('big_leakage', kind=int, default=120, + description=""" + Leakage factor for the big cluster (this is specific to a particular core implementation). + """), + Parameter('little_leakage', kind=int, default=60, + description=""" + Leakage factor for the little cluster (this is specific to a particular core implementation). + """), ] def validate(self): @@ -575,7 +561,8 @@ class EnergyModelInstrument(Instrument): message = 'OPPs not specified for one or both clusters; cluster power will not be adjusted for leakage.' self.logger.warning(message) opps = {'big': self.big_opps, 'little': self.little_opps} - measured_cpus_table, cpus_table = get_cpus_power_table(freq_power_table, 'frequency', opps) + leakages = {'big': self.big_leakage, 'little': self.little_leakage} + measured_cpus_table, cpus_table = get_cpus_power_table(freq_power_table, 'frequency', opps, leakages) measured_cpus_output = os.path.join(output_directory, MEASURED_CPUS_TABLE_FILE) with open(measured_cpus_output, 'w') as wfh: measured_cpus_table.to_csv(wfh)