1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-09-02 03:12:34 +01:00

FPS. Added gfxinfo methods of obtaining fps stats. Auto detects and uses appropriate method via android version of device

Output 90th, 95th and 99th percentile metrics. This happens for both SurfaceFlinger and Gfxinfo methods.
This commit is contained in:
Michael McGeagh
2016-11-01 17:36:17 +00:00
parent 23eb357e9e
commit 311c4e419f
2 changed files with 228 additions and 56 deletions

112
wlauto/utils/fps.py Normal file → Executable file
View File

@@ -12,6 +12,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import collections
try:
import pandas as pd
except ImportError:
pd = None
SurfaceFlingerFrame = collections.namedtuple('SurfaceFlingerFrame', 'desired_present_time actual_present_time frame_ready_time')
GfxInfoFrame = collections.namedtuple('GfxInfoFrame', 'Flags IntendedVsync Vsync OldestInputEvent NewestInputEvent HandleInputStart AnimationStart PerformTraversalsStart DrawStart SyncQueued SyncStart IssueDrawCommandsStart SwapBuffers FrameCompleted')
# https://android.googlesource.com/platform/frameworks/base/+/marshmallow-release/libs/hwui/JankTracker.cpp
# Frames that are exempt from jank metrics.
# First-draw frames, for example, are expected to be slow,
# this is hidden from the user with window animations and other tricks
# Similarly, we don't track direct-drawing via Surface:lockHardwareCanvas() for now
# Android M: WindowLayoutChanged | SurfaceCanvas
GFXINFO_EXEMPT = 1 | 4
class FpsProcessor(object):
@@ -22,7 +38,7 @@ class FpsProcessor(object):
This processor returns the four frame statistics below:
:FPS: Frames Per Second. This is the frame rate of the workload.
:frames: The total number of frames rendered during the execution of
:frame_count: The total number of frames rendered during the execution of
the workload.
:janks: The number of "janks" that occurred during execution of the
workload. Janks are sudden shifts in frame rate. They result
@@ -31,13 +47,15 @@ class FpsProcessor(object):
vsync cycle.
"""
def __init__(self, data, action=None):
def __init__(self, data, action=None, extra_data=None):
"""
data - a pandas.DataFrame object with frame data (e.g. frames.csv)
action - output metrics names with additional action specifier
extra_data - extra data given to use for calculations of metrics
"""
self.data = data
self.action = action
self.extra_data = extra_data
def process(self, refresh_period, drop_threshold): # pylint: disable=too-many-locals
"""
@@ -49,39 +67,85 @@ class FpsProcessor(object):
fps = float('nan')
frame_count, janks, not_at_vsync = 0, 0, 0
vsync_interval = refresh_period
per_frame_fps = pd.Series()
# fiter out bogus frames.
bogus_frames_filter = self.data.actual_present_time != 0x7fffffffffffffff
actual_present_times = self.data.actual_present_time[bogus_frames_filter]
# SurfaceFlinger Algorithm
if self.data.columns.tolist() == list(SurfaceFlingerFrame._fields):
# fiter out bogus frames.
bogus_frames_filter = self.data.actual_present_time != 0x7fffffffffffffff
actual_present_times = self.data.actual_present_time[bogus_frames_filter]
actual_present_time_deltas = actual_present_times - actual_present_times.shift()
actual_present_time_deltas = actual_present_time_deltas.drop(0)
actual_present_time_deltas = actual_present_times - actual_present_times.shift()
actual_present_time_deltas = actual_present_time_deltas.drop(0)
vsyncs_to_compose = actual_present_time_deltas / vsync_interval
vsyncs_to_compose.apply(lambda x: int(round(x, 0)))
vsyncs_to_compose = actual_present_time_deltas / vsync_interval
vsyncs_to_compose.apply(lambda x: int(round(x, 0)))
# drop values lower than drop_threshold FPS as real in-game frame
# rate is unlikely to drop below that (except on loading screens
# etc, which should not be factored in frame rate calculation).
per_frame_fps = (1.0 / (vsyncs_to_compose * (vsync_interval / 1e9)))
keep_filter = per_frame_fps > drop_threshold
filtered_vsyncs_to_compose = vsyncs_to_compose[keep_filter]
per_frame_fps.name = 'fps'
# drop values lower than drop_threshold FPS as real in-game frame
# rate is unlikely to drop below that (except on loading screens
# etc, which should not be factored in frame rate calculation).
per_frame_fps = (1.0 / (vsyncs_to_compose * (vsync_interval / 1e9)))
keep_filter = per_frame_fps > drop_threshold
filtered_vsyncs_to_compose = vsyncs_to_compose[keep_filter]
per_frame_fps.name = 'fps'
if not filtered_vsyncs_to_compose.empty:
total_vsyncs = filtered_vsyncs_to_compose.sum()
frame_count = filtered_vsyncs_to_compose.size
if not filtered_vsyncs_to_compose.empty:
total_vsyncs = filtered_vsyncs_to_compose.sum()
frame_count = filtered_vsyncs_to_compose.size
if total_vsyncs:
fps = 1e9 * frame_count / (vsync_interval * total_vsyncs)
if total_vsyncs:
fps = 1e9 * frame_count / (vsync_interval * total_vsyncs)
janks = self._calc_janks(filtered_vsyncs_to_compose)
not_at_vsync = self._calc_not_at_vsync(vsyncs_to_compose)
janks = self._calc_janks(filtered_vsyncs_to_compose)
not_at_vsync = self._calc_not_at_vsync(vsyncs_to_compose)
# GfxInfo Algorithm
elif self.data.columns.tolist() == list(GfxInfoFrame._fields):
frame_time = self.data.FrameCompleted - self.data.IntendedVsync
per_frame_fps = (1e9 / frame_time)
keep_filter = per_frame_fps > drop_threshold
per_frame_fps = per_frame_fps[keep_filter]
per_frame_fps.name = 'fps'
frame_count = self.data.index.size
janks = frame_time[frame_time >= vsync_interval].count()
not_at_vsync = self.data.IntendedVsync - self.data.Vsync
not_at_vsync = not_at_vsync[not_at_vsync != 0].count()
duration = self.data.Vsync.iloc[-1] - self.data.Vsync.iloc[0]
fps = (1e9 * frame_count) / float(duration)
# If gfxinfocsv is provided, get stats from that instead
if self.extra_data:
series = pd.read_csv(self.extra_data, header=None, index_col=0, squeeze=True)
if not series.empty: # pylint: disable=maybe-no-member
frame_count = series['Total frames rendered']
janks = series['Janky frames']
not_at_vsync = series['Number Missed Vsync']
metrics = (fps, frame_count, janks, not_at_vsync)
return per_frame_fps, metrics
def percentiles(self):
# SurfaceFlinger Algorithm
if self.data.columns.tolist() == list(SurfaceFlingerFrame._fields):
frame_time = self.data.frame_ready_time.diff()
# GfxInfo Algorithm
elif self.data.columns.tolist() == list(GfxInfoFrame._fields):
frame_time = self.data.FrameCompleted - self.data.IntendedVsync
data = frame_time.quantile([0.90, 0.95, 0.99])
# Convert to ms, round to nearest, cast to int
data = data.div(1e6).round().astype('int')
# If gfxinfocsv is provided, get stats from that instead
if self.extra_data:
series = pd.read_csv(self.extra_data, header=None, index_col=0, squeeze=True)
if not series.empty: # pylint: disable=maybe-no-member
data = series[series.index.str.contains('th percentile')] # pylint: disable=maybe-no-member
return list(data.get_values())
@staticmethod
def _calc_janks(filtered_vsyncs_to_compose):
"""