mirror of
https://github.com/ARM-software/workload-automation.git
synced 2025-09-02 03:12:34 +01:00
Merge pull request #210 from drcef/master
Implemented visual state detection functionality for revent workloads
This commit is contained in:
136
wlauto/utils/statedetect.py
Executable file
136
wlauto/utils/statedetect.py
Executable file
@@ -0,0 +1,136 @@
|
||||
# Copyright 2013-2016 ARM Limited
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
"""
|
||||
State detection functionality for revent workloads. Uses OpenCV to analyse screenshots from the device.
|
||||
Requires a 'statedetection' directory in the workload directory that includes the state definition yaml file,
|
||||
and the 'templates' folder with PNGs of all templates mentioned in the yaml file.
|
||||
|
||||
Requires the following Python libraries:
|
||||
numpy, pyyaml (yaml), imutils and opencv (cv2)
|
||||
|
||||
"""
|
||||
|
||||
import os
|
||||
|
||||
import yaml
|
||||
try:
|
||||
import numpy as np
|
||||
except ImportError:
|
||||
np = None
|
||||
try:
|
||||
import cv2
|
||||
except ImportError:
|
||||
cv2 = None
|
||||
try:
|
||||
import imutils
|
||||
except ImportError:
|
||||
imutils = None
|
||||
|
||||
|
||||
class StateDefinitionError(RuntimeError):
|
||||
def __init__(self, arg):
|
||||
self.args = arg
|
||||
|
||||
|
||||
def auto_canny(image, sigma=0.33):
|
||||
# compute the median of the single channel pixel intensities
|
||||
v = np.median(image)
|
||||
|
||||
# apply automatic Canny edge detection using the computed median
|
||||
lower = int(max(0, (1.0 - sigma) * v))
|
||||
upper = int(min(255, (1.0 + sigma) * v))
|
||||
edged = cv2.Canny(image, lower, upper)
|
||||
|
||||
# return the edged image
|
||||
return edged
|
||||
|
||||
|
||||
def match_state(screenshot_file, defpath, state_definitions):
|
||||
# check dependencies
|
||||
if np == None or cv2 == None or imutils == None:
|
||||
raise RuntimeError("State detection requires numpy, opencv (cv2) and imutils.")
|
||||
|
||||
# check if file exists, then load screenshot into opencv and create edge map
|
||||
if not os.path.isfile(screenshot_file):
|
||||
raise StateDefinitionError("Screenshot file not found")
|
||||
img_rgb = cv2.imread(screenshot_file)
|
||||
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
|
||||
img_edge = auto_canny(img_gray)
|
||||
|
||||
# make a list of all templates defined in the state definitions
|
||||
template_list = []
|
||||
for state in state_definitions["workload_states"]:
|
||||
template_list.extend(state["templates"])
|
||||
|
||||
# check all template PNGs exist
|
||||
for template_png in template_list:
|
||||
if not os.path.isfile(os.path.join(defpath, 'templates', template_png+'.png')):
|
||||
raise StateDefinitionError("Missing template PNG file: " + template_png + ".png")
|
||||
|
||||
# try to match each PNG
|
||||
matched_templates = []
|
||||
for template_png in template_list:
|
||||
template = cv2.imread(os.path.join(defpath, 'templates', template_png+'.png'), 0)
|
||||
template_edge = auto_canny(template)
|
||||
w, h = template.shape[::-1]
|
||||
|
||||
res = cv2.matchTemplate(img_edge, template_edge, cv2.TM_CCOEFF_NORMED)
|
||||
threshold = 0.5
|
||||
loc = np.where(res >= threshold)
|
||||
zipped = zip(*loc[::-1])
|
||||
|
||||
if len(zipped) > 0:
|
||||
matched_templates.append(template_png)
|
||||
|
||||
# determine the state according to the matched templates
|
||||
matched_state = "none"
|
||||
for state in state_definitions["workload_states"]:
|
||||
# look in the matched templates list for each template of this state
|
||||
match_count = 0
|
||||
for template in state["templates"]:
|
||||
if template in matched_templates:
|
||||
match_count += 1
|
||||
|
||||
if match_count >= state["matches"]:
|
||||
# we have a match
|
||||
matched_state = state["state_name"]
|
||||
break
|
||||
|
||||
return matched_state
|
||||
|
||||
|
||||
def verify_state(screenshot_file, state_defs_path, workload_phase):
|
||||
# load and parse state definition file
|
||||
statedefs_file = os.path.join(state_defs_path, 'definition.yaml')
|
||||
if not os.path.isfile(statedefs_file):
|
||||
raise StateDefinitionError("Missing state definitions yaml file: "+statedefs_file)
|
||||
with open(statedefs_file) as fh:
|
||||
state_definitions = yaml.load(fh)
|
||||
|
||||
# run a match on the screenshot
|
||||
matched_state = match_state(screenshot_file, state_defs_path, state_definitions)
|
||||
|
||||
# find what the expected state is for the given workload phase
|
||||
expected_state = None
|
||||
for phase in state_definitions["workload_phases"]:
|
||||
if phase["phase_name"] == workload_phase:
|
||||
expected_state = phase["expected_state"]
|
||||
|
||||
if expected_state is None:
|
||||
raise StateDefinitionError("Phase not defined")
|
||||
|
||||
return expected_state == matched_state
|
Reference in New Issue
Block a user