mirror of
https://github.com/ARM-software/workload-automation.git
synced 2025-03-22 10:38:37 +00:00
pep8
This commit is contained in:
parent
a6d374bcff
commit
14f5858e3d
@ -305,11 +305,11 @@ def get_cpus_power_table(data, index, opps): # pylint: disable=too-many-locals
|
|||||||
|
|
||||||
if opps[cluster] is None:
|
if opps[cluster] is None:
|
||||||
bs_power_table.loc[bs_power_table[cluster, 1].notnull(), (cluster, 0)] = \
|
bs_power_table.loc[bs_power_table[cluster, 1].notnull(), (cluster, 0)] = \
|
||||||
(2* power_table[cluster, 1] - power_table[cluster, 2]).values
|
(2 * power_table[cluster, 1] - power_table[cluster, 2]).values
|
||||||
else:
|
else:
|
||||||
df = pd.concat([bs_power_table[cluster],
|
df = pd.concat([bs_power_table[cluster],
|
||||||
opps[cluster].set_index('frequency')],
|
opps[cluster].set_index('frequency')],
|
||||||
axis=1).dropna(subset=[1]).reset_index()
|
axis=1).dropna(subset=[1]).reset_index()
|
||||||
|
|
||||||
# Create a projection by calculating coefficients from the lowest two OPPs (assume minimal leakage)
|
# Create a projection by calculating coefficients from the lowest two OPPs (assume minimal leakage)
|
||||||
v0 = df.voltage[0]
|
v0 = df.voltage[0]
|
||||||
@ -320,18 +320,18 @@ def get_cpus_power_table(data, index, opps): # pylint: disable=too-many-locals
|
|||||||
# Assumption:
|
# Assumption:
|
||||||
# P = k1*v*f + k2*v^2*f
|
# P = k1*v*f + k2*v^2*f
|
||||||
coeffs = np.array([
|
coeffs = np.array([
|
||||||
[v0 * f0, (v0**2) * f0],
|
[v0 * f0, (v0**2) * f0],
|
||||||
[v1 * f1, (v1**2) * f1]
|
[v1 * f1, (v1**2) * f1]
|
||||||
])
|
])
|
||||||
c1pow = np.array([df[1][0], df[1][1]])
|
c1pow = np.array([df[1][0], df[1][1]])
|
||||||
c2pow = np.array([df[2][0], df[2][1]])
|
c2pow = np.array([df[2][0], df[2][1]])
|
||||||
c1k1, c1k2 = np.linalg.solve(coeffs, c1pow)
|
c1k1, c1k2 = np.linalg.solve(coeffs, c1pow)
|
||||||
c2k1, c2k2 = np.linalg.solve(coeffs, c2pow)
|
c2k1, c2k2 = np.linalg.solve(coeffs, c2pow)
|
||||||
|
|
||||||
df['a1'] = pd.Series(df.frequency * df.voltage * c1k1 + df.frequency * df.voltage ** 2 * c1k2,
|
df['a1'] = pd.Series(df.frequency * df.voltage * c1k1 + df.frequency * df.voltage ** 2 * c1k2,
|
||||||
index=df.index)
|
index=df.index)
|
||||||
df['a2'] = pd.Series(df.frequency * df.voltage * c2k1 + df.frequency * df.voltage ** 2 * c2k2,
|
df['a2'] = pd.Series(df.frequency * df.voltage * c2k1 + df.frequency * df.voltage ** 2 * c2k2,
|
||||||
index=df.index)
|
index=df.index)
|
||||||
bs_power_table.loc[bs_power_table[cluster, 1].notnull(), (cluster, 0)] = (2 * df.a1 - df.a2).values
|
bs_power_table.loc[bs_power_table[cluster, 1].notnull(), (cluster, 0)] = (2 * df.a1 - df.a2).values
|
||||||
|
|
||||||
# re-order columns and rename colum '0' to 'cluster'
|
# re-order columns and rename colum '0' to 'cluster'
|
||||||
|
Loading…
x
Reference in New Issue
Block a user