1
0
mirror of https://github.com/ARM-software/workload-automation.git synced 2025-01-19 12:24:32 +00:00

171 lines
7.0 KiB
Python
Raw Normal View History

import os
import re
import logging
from collections import defaultdict
from wlauto.utils.fps import FpsProcessor, SurfaceFlingerFrame, GfxInfoFrame, VSYNC_INTERVAL
try:
import pandas as pd
except ImportError:
pd = None
class UxPerfParser(object):
'''
Parses logcat messages for UX Performance markers.
UX Performance markers are output from logcat under a debug priority. The
logcat tag for the marker messages is UX_PERF. The messages associated with
this tag consist of a name for the action to be recorded and a timestamp.
These fields are delimited by a single space. e.g.
<TAG> : <MESSAGE>
UX_PERF : gestures_swipe_left_start 861975087367
...
...
UX_PERF : gestures_swipe_left_end 862132085804
Timestamps are produced using the running Java Virtual Machine's
high-resolution time source, in nanoseconds.
'''
def __init__(self, context, prefix=''):
self.context = context
self.prefix = prefix
self.actions = defaultdict(list)
self.logger = logging.getLogger('UxPerfParser')
# regex for matching logcat message format:
self.regex = re.compile(r'UX_PERF.*?:\s*(?P<message>.*\d+$)')
def parse(self, log):
'''
Opens log file and parses UX_PERF markers.
Actions delimited by markers are captured in a dictionary with
actions mapped to timestamps.
'''
loglines = self._read(log)
self._gen_action_timestamps(loglines)
def add_action_frames(self, frames, drop_threshold, generate_csv): # pylint: disable=too-many-locals
'''
Uses FpsProcessor to parse frame.csv extracting fps, frame count, jank
and vsync metrics on a per action basis. Adds results to metrics.
'''
refresh_period = self._parse_refresh_peroid()
for action in self.actions:
# default values
fps, frame_count, janks, not_at_vsync = float('nan'), 0, 0, 0
p90, p95, p99 = [float('nan')] * 3
metrics = (fps, frame_count, janks, not_at_vsync)
df = self._create_sub_df(self.actions[action], frames)
if not df.empty: # pylint: disable=maybe-no-member
fp = FpsProcessor(df, action=action)
try:
per_frame_fps, metrics = fp.process(refresh_period, drop_threshold)
fps, frame_count, janks, not_at_vsync = metrics
if generate_csv:
name = action + '_fps'
filename = name + '.csv'
fps_outfile = os.path.join(self.context.output_directory, filename)
per_frame_fps.to_csv(fps_outfile, index=False, header=True)
self.context.add_artifact(name, path=filename, kind='data')
p90, p95, p99 = fp.percentiles()
except AttributeError:
self.logger.warning('Non-matched timestamps in dumpsys output: action={}'
.format(action))
self.context.result.add_metric(self.prefix + action + '_FPS', fps)
self.context.result.add_metric(self.prefix + action + '_frame_count', frame_count)
self.context.result.add_metric(self.prefix + action + '_janks', janks, lower_is_better=True)
self.context.result.add_metric(self.prefix + action + '_not_at_vsync', not_at_vsync, lower_is_better=True)
self.context.result.add_metric(self.prefix + action + '_frame_time_90percentile', p90, 'ms', lower_is_better=True)
self.context.result.add_metric(self.prefix + action + '_frame_time_95percentile', p95, 'ms', lower_is_better=True)
self.context.result.add_metric(self.prefix + action + '_frame_time_99percentile', p99, 'ms', lower_is_better=True)
def add_action_timings(self):
'''
Add simple action timings in millisecond resolution to metrics
'''
for action, timestamps in self.actions.iteritems():
# nanosecond precision, but not necessarily nanosecond resolution
# truncate to guarantee millisecond precision
ts_ms = tuple(int(ts) for ts in timestamps)
if len(ts_ms) == 2:
start, finish = ts_ms
duration = finish - start
result = self.context.result
result.add_metric(self.prefix + action + "_start", start, units='ms')
result.add_metric(self.prefix + action + "_finish", finish, units='ms')
result.add_metric(self.prefix + action + "_duration", duration, units='ms', lower_is_better=True)
else:
self.logger.warning('Expected two timestamps. Received {}'.format(ts_ms))
def _gen_action_timestamps(self, lines):
'''
Parses lines and matches against logcat tag.
Groups timestamps by action name.
Creates a dictionary of lists with actions mapped to timestamps.
'''
for line in lines:
match = self.regex.search(line)
if match:
message = match.group('message')
action_with_suffix, timestamp = message.rsplit(' ', 1)
action, _ = action_with_suffix.rsplit('_', 1)
self.actions[action].append(timestamp)
def _parse_refresh_peroid(self):
'''
Reads the first line of the raw dumpsys output for the refresh period.
'''
raw_path = os.path.join(self.context.output_directory, 'surfaceflinger.raw')
if os.path.isfile(raw_path):
raw_lines = self._read(raw_path)
refresh_period = int(raw_lines.next())
else:
refresh_period = VSYNC_INTERVAL
return refresh_period
def _create_sub_df(self, action, frames):
'''
Creates a data frame containing fps metrics for a captured action.
'''
if len(action) == 2:
start, end = map(int, action)
df = pd.read_csv(frames)
# SurfaceFlinger Algorithm
if df.columns.tolist() == list(SurfaceFlingerFrame._fields): # pylint: disable=maybe-no-member
field = 'actual_present_time'
# GfxInfo Algorithm
elif df.columns.tolist() == list(GfxInfoFrame._fields): # pylint: disable=maybe-no-member
field = 'FrameCompleted'
else:
field = ''
self.logger.error('frames.csv not in a recognised format. Cannot parse.')
if field:
df = df[start < df[field]]
df = df[df[field] <= end]
else:
self.logger.warning('Discarding action. Expected 2 timestamps, got {}!'.format(len(action)))
df = pd.DataFrame()
return df
def _read(self, log):
'''
Opens a file a yields the lines with whitespace stripped.
'''
try:
with open(log, 'r') as rfh:
for line in rfh:
yield line.strip()
except IOError:
self.logger.error('Could not open {}'.format(log))